JavaScript is disabled for your browser. Some features of this site may not work without it.
Please note that UPSpace will be unavailable from Friday, 2 May at 18:00 (South African Time) until Sunday, 4 May at 20:00 due to scheduled system upgrades. We apologise for any inconvenience this may cause and appreciate your understanding.
Tumor microenvironment and the role of artificial intelligence in breast cancer detection and prognosis
A critical knowledge gap has been noted in breast cancer detection, prognosis, and evaluation between tumor microenvironment and associated neoplasm. Artificial intelligence (AI) has multiple subsets or methods for data extraction and evaluation, including artificial neural networking, which allows computational foundations, similar to neurons, to make connections and new neural pathways during data set training. Deep machine learning and AI hold great potential to accurately assess tumor microenvironment models employing vast data management techniques. Despite the significant potential AI holds, there is still much debate surrounding the appropriate and ethical curation of medical data from picture archiving and communication systems. AI output's clinical significance depends on its human predecessor's data training sets. Integration between biomarkers, risk factors, and imaging data will allow the best predictor models for patient-based outcomes.