Enhancing LS-PIE’s optimal latent dimensional identification : latent expansion and latent condensation

dc.contributor.authorStevens, Jesse
dc.contributor.authorWilke, Daniel Nicolas
dc.contributor.authorSetshedi, I.I. (Isaac)
dc.date.accessioned2025-02-05T11:58:38Z
dc.date.available2025-02-05T11:58:38Z
dc.date.issued2024-08-16
dc.descriptionDATA AVAILABILITY STATEMENT : Original data presented in the study are openly available in a GitHub repository at https://github.com/Greeen16/SoftwareX-Paper. The combined heartbeat dataset is available from Kaggle at https://www.kaggle.com/datasets/shayanfazeli/heartbeat. The two constituent datasets can be found at https://www.physionet.org/content/ptbdb/1.0.0/ and at https: //www.physionet.org/content/mitdb/1.0.0/.en_US
dc.description.abstractThe Latent Space Perspicacity and Interpretation Enhancement (LS-PIE) framework enhances dimensionality reduction methods for linear latent variable models (LVMs). This paper extends LS-PIE by introducing an optimal latent discovery strategy to automate identifying optimal latent dimensions and projections based on user-defined metrics. The latent condensing (LCON) method clusters and condenses an extensive latent space into a compact form. A new approach, latent expansion (LEXP), incrementally increases latent dimensions using a linear LVM to find an optimal compact space. This study compares these methods across multiple datasets, including a simple toy problem, mixed signals, ECG data, and simulated vibrational data. LEXP can accelerate the discovery of optimal latent spaces and may yield different compact spaces from LCON, depending on the LVM. This paper highlights the LS-PIE algorithm’s applications and compares LCON and LEXP in organising, ranking, and scoring latent components akin to principal component analysis or singular value decomposition. This paper shows clear improvements in the interpretability of the resulting latent representations allowing for clearer and more focused analysis.en_US
dc.description.departmentMechanical and Aeronautical Engineeringen_US
dc.description.librarianam2024en_US
dc.description.sdgSDG-09: Industry, innovation and infrastructureen_US
dc.description.urihttps://www.mdpi.com/journal/mcaen_US
dc.identifier.citationStevens, J., Wilke, D.N. & Setshedi, I.I. Enhancing LS-PIE’s Optimal Latent Dimensional Identification: Latent Expansion and Latent Condensation. Mathematical and Computational Applications 2024, 29, 65. https://DOI.org/10.3390/mca29040065.en_US
dc.identifier.issn1300-686X (print)
dc.identifier.issn2297-8747 (online)
dc.identifier.other10.3390/mca29040065
dc.identifier.urihttp://hdl.handle.net/2263/100544
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.rights© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.en_US
dc.subjectLatent spaceen_US
dc.subjectInterpretationen_US
dc.subjectCondensingen_US
dc.subjectLatent variable modelsen_US
dc.subjectEncodingen_US
dc.subjectLatent space perspicacity and interpretation enhancement (LS-PIE)en_US
dc.subjectLinear latent variable model (LLVM)en_US
dc.subjectLatent condensing (LCON)en_US
dc.subjectLatent expansion (LEXP)en_US
dc.subjectSDG-09: Industry, innovation and infrastructureen_US
dc.titleEnhancing LS-PIE’s optimal latent dimensional identification : latent expansion and latent condensationen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Stevens_Enhancing_2024.pdf
Size:
8.03 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: