Advancements in accurate speech emotion recognition through the integration of CNN-AM model

dc.contributor.authorAdebiyi, Marion Olubunmi
dc.contributor.authorAdeliyi, Timothy
dc.contributor.authorOlaniyan, Deborah
dc.contributor.authorOlaniyan, Julius
dc.date.accessioned2024-11-28T11:05:50Z
dc.date.available2024-11-28T11:05:50Z
dc.date.issued2024-06
dc.description.abstractIn this study, we introduce an innovative approach that combines convolutional neural networks (CNN) with an attention mechanism (AM) to achieve precise emotion detection from speech data within the context of e-learning. Our primary objective is to leverage the strengths of deep learning through CNN and harness the focus-enhancing abilities of attention mechanisms. This fusion enables our model to pinpoint crucial features within the speech signal, significantly enhancing emotion classification performance. Our experimental results validate the efficacy of our approach, with the model achieving an impressive 90% accuracy rate in emotion recognition. In conclusion, our research introduces a cutting-edge method for emotion detection by synergizing CNN and an AM, with the potential to revolutionize various sectors.en_US
dc.description.departmentInformaticsen_US
dc.description.librarianam2024en_US
dc.description.sdgSDG-09: Industry, innovation and infrastructureen_US
dc.description.urihttp://telkomnika.uad.ac.iden_US
dc.identifier.citationAdebiyi, M.O., Adeliyi, T.T., Olaniyan, D. 2024, 'Advancements in accurate speech emotion recognition through the integration of CNN-AM model', TELKOMNIKA: Telecommunication, Computing, Electronics and Control, vol. 22, no. 3, pp. 606-618. DOI: 10.12928/TELKOMNIKA.v22i3.25708.en_US
dc.identifier.issn1693-6930 (print)
dc.identifier.issn2302-9293 (online)
dc.identifier.issn10.12928/TELKOMNIKA.v22i3.25708
dc.identifier.urihttp://hdl.handle.net/2263/99664
dc.language.isoenen_US
dc.publisherUniversitas Ahmad Dahlanen_US
dc.rightsThis is an open access article under the CC BY-SA license.en_US
dc.subjectAttention mechanismen_US
dc.subjectEmotionen_US
dc.subjectRecognitionen_US
dc.subjectSignalen_US
dc.subjectConvolutional neural network (CNN)en_US
dc.subjectSpeech dataen_US
dc.subjectE-learningen_US
dc.subjectSDG-09: Industry, innovation and infrastructureen_US
dc.titleAdvancements in accurate speech emotion recognition through the integration of CNN-AM modelen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Adebiyi_Advancements_2024.pdf
Size:
645.34 KB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: