Analysing the performance and interpretability of CNN-based architectures for plant nutrient deficiency identification

dc.contributor.authorMkhatshwa, Junior
dc.contributor.authorKavu, Tatenda
dc.contributor.authorDaramola, Olawande
dc.contributor.emailwande.daramola@up.ac.zaen_US
dc.date.accessioned2024-12-09T12:41:25Z
dc.date.available2024-12-09T12:41:25Z
dc.date.issued2024-06
dc.descriptionDATA AVAILABITY STATEMENT: The data are publicly available.en_US
dc.description.abstractEarly detection of plant nutrient deficiency is crucial for agricultural productivity. This study investigated the performance and interpretability of Convolutional Neural Networks (CNNs) for this task. Using the rice and banana datasets, we compared three CNN architectures (CNN, VGG16, Inception-V3). Inception-V3 achieved the highest accuracy (93% for rice and banana), but simpler models such as VGG-16 might be easier to understand. To address this trade-off, we employed Explainable AI (XAI) techniques (SHAP and Grad-CAM) to gain insights into model decision-making. This study emphasises the importance of both accuracy and interpretability in agricultural AI and demonstrates the value of XAI for building trust in these models.en_US
dc.description.departmentInformaticsen_US
dc.description.sdgSDG-02:Zero Hungeren_US
dc.description.sdgSDG-09: Industry, innovation and infrastructureen_US
dc.description.urihttps://www.mdpi.com/journal/computationen_US
dc.identifier.citationMkhatshwa, J.; Kavu, T.; Daramola, O. Analysing the Performance and Interpretability of CNN-Based Architectures for Plant Nutrient Deficiency Identification. Computation 2024, 12, 113. https://doi.org/10.3390/computation12060113.en_US
dc.identifier.issn2079-3197 (online)
dc.identifier.other10.3390/computation12060113
dc.identifier.urihttp://hdl.handle.net/2263/99814
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.rights© 2024 by the authors. Open Access. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).en_US
dc.subjectMachine learningen_US
dc.subjectDeep learningen_US
dc.subjectConvolutional neural networken_US
dc.subjectPlant nutrient deficiencyen_US
dc.subjectExplainable artificial intelligenceen_US
dc.subjectSDG-02: Zero hungeren_US
dc.subjectSDG-09: Industry, innovation and infrastructureen_US
dc.subjectArtificial intelligence (AI)en_US
dc.titleAnalysing the performance and interpretability of CNN-based architectures for plant nutrient deficiency identificationen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mkhatshwa_Analysing_2024.pdf
Size:
4.7 MB
Format:
Adobe Portable Document Format
Description:
Article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: