JavaScript is disabled for your browser. Some features of this site may not work without it.
Please note that UPSpace will be unavailable from Friday, 2 May at 18:00 (South African Time) until Sunday, 4 May at 20:00 due to scheduled system upgrades. We apologise for any inconvenience this may cause and appreciate your understanding.
Multiscale malaria models and their uniform in-time asymptotic analysis
In this paper, we show that an extension of the classical Tikhonov–Fenichel asymptotic procedure applied to multiscale models of vector-borne diseases, with time scales determined by the dynamics of human and vector populations, yields a simplified model approximating the original one in a consistent, and uniform for large times, way. Furthermore, we construct a higher-order approximation based on the classical Chapman–Enskog procedure of kinetic theory and show, in particular, that it is equivalent to the dynamics on the first-order approximation of the slow manifold in the Fenichel theory.