JavaScript is disabled for your browser. Some features of this site may not work without it.
Please note that UPSpace will be unavailable from Friday, 2 May at 18:00 (South African Time) until Sunday, 4 May at 20:00 due to scheduled system upgrades. We apologise for any inconvenience this may cause and appreciate your understanding.
A fraud management system architecture for next-generation networks
Bihina Bella, M.A. (Madeleine Adrienne); Eloff, Jan H.P.; Olivier, Martin S.
This paper proposes an original architecture for a fraud management system (FMS) for convergent. Nextgeneration networks (NGNs), which are based on the Internet protocol (IP). The architecture has the potential to satisfy the requirements of flexibility and application-independency for effective fraud detection in NGNs that cannot be met by traditional FMSs. The proposed architecture has a thorough four-stage detection process that analyses billing records in IP detail record (IPDR) format – an emerging
IP-based billing standard – for signs of fraud. Its key feature is its usage of neural networks in the form of self-organising maps (SOMs) to help uncover unknown NGN fraud scenarios. A prototype was implemented to test the effectiveness of using a SOM for fraud detection and is also described in the paper.