Please note that UPSpace will be unavailable from Friday, 2 May at 18:00 (South African Time) until Sunday, 4 May at 20:00 due to scheduled system upgrades. We apologise for any inconvenience this may cause and appreciate your understanding.
dc.contributor.author | Ibrahim, Hanif Auwal![]() |
|
dc.contributor.author | Ayomoh, Michael Kweneojo![]() |
|
dc.date.accessioned | 2023-06-14T08:12:29Z | |
dc.date.available | 2023-06-14T08:12:29Z | |
dc.date.issued | 2022-11 | |
dc.description.abstract | Please read abstract in the article. | en_US |
dc.description.department | Industrial and Systems Engineering | en_US |
dc.description.librarian | hj2023 | en_US |
dc.description.uri | https://www.elsevier.com/locate/esr | en_US |
dc.identifier.citation | Ibrahim, H.A. & Ayomoh, M.K. 2022, 'Optimum predictive modelling for a sustainable power supply mix: A case of the Nigerian power system', Energy Strategy Reviews, vol. 44, art. 100962, pp. 1-14, doi : 10.1016/j.esr.2022.100962. | en_US |
dc.identifier.issn | 2211-467X (print) | |
dc.identifier.issn | 2211-4688 (online) | |
dc.identifier.other | 10.1016/j.esr.2022.100962 | |
dc.identifier.uri | http://hdl.handle.net/2263/91118 | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | © 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). | en_US |
dc.subject | Multi-objective optimization approach | en_US |
dc.subject | Power | en_US |
dc.subject | Sustainability | en_US |
dc.subject | Economic | en_US |
dc.subject | Emissions | en_US |
dc.subject | Job creation | en_US |
dc.subject | Renewable energy | en_US |
dc.subject | Energy modelling | en_US |
dc.subject | SDG-09: Industry, innovation and infrastructure | en_US |
dc.subject | SDG-07: Affordable and clean energy | en_US |
dc.subject | Nigeria | en_US |
dc.title | Optimum predictive modelling for a sustainable power supply mix : a case of the Nigerian power system | en_US |
dc.type | Article | en_US |