Characterization of a b-metric space completeness via the existence of a fixed point of Ciric-Suzuki type quasi-contractive multivalued operators and applications
JavaScript is disabled for your browser. Some features of this site may not work without it.
Please note that UPSpace will be unavailable from Friday, 2 May at 18:00 (South African Time) until Sunday, 4 May at 20:00 due to scheduled system upgrades. We apologise for any inconvenience this may cause and appreciate your understanding.
Characterization of a b-metric space completeness via the existence of a fixed point of Ciric-Suzuki type quasi-contractive multivalued operators and applications
The aim of this paper is to introduce Ciric-Suzuki type quasi-contractive multivalued operators and to obtain the existence of fixed points of such mappings in the framework of b-metric spaces. Some examples are presented to support the results proved herein. We establish a characterization of strong b-metric and b-metric spaces completeness. An asymptotic estimate of a Hausdorff distance between the fixed point sets of two Ciric-Suzuki type quasi-contractive multivalued operators is obtained. As an application of our results, existence and uniqueness of multivalued fractals in the framework of b-metric spaces is proved.