JavaScript is disabled for your browser. Some features of this site may not work without it.
Please note that UPSpace will be unavailable from Friday, 2 May at 18:00 (South African Time) until Sunday, 4 May at 20:00 due to scheduled system upgrades. We apologise for any inconvenience this may cause and appreciate your understanding.
Asymmetric colorings of products of graphs and digraphs
We extend results about asymmetric colorings of finite Cartesian products of graphs to strong and direct products of graphs and digraphs. On the way we shorten proofs for the existence of prime factorizations of finite digraphs and characterize the structure of the automorphism groups of strong and direct products. The paper ends with results on asymmetric colorings of Cartesian products of finite and infinite digraphs.
Rado constructed a (simple) denumerable graph R with the positive integers as vertex set
with the following edges: For given m and n with m < n, m is adjacent to n if n has a 1 in
the m'th position of its binary expansion. ...