JavaScript is disabled for your browser. Some features of this site may not work without it.
Please note that UPSpace will be unavailable from Friday, 2 May at 18:00 (South African Time) until Sunday, 4 May at 20:00 due to scheduled system upgrades. We apologise for any inconvenience this may cause and appreciate your understanding.
Efficient longitudinal population survival survey sampling for the measurement and verification of lighting retrofit projects
Carstens, Herman; Xia, Xiaohua; Yadavalli, Venkata S. Sarma; Rajan, Arvind
A method is presented for reducing the required sample sizes for reporting energy savings with predetermined statistical accuracy in lighting retrofit measurement and verification projects, where the population of retrofitted luminaires is to be tracked over time. The method uses a Dynamic Generalised Linear Model with Bayesian forecasting to account for past survey sample sizes and survey results and forecast future population decay, while quantifying estimation uncertainty. A Genetic Algorithm is used to optimise multi-year sampling plans, and distributions are convolved using a new method of moments technique using the Mellin transform instead of a Monte Carlo simulation. Two cases studies are investigated: single population designs, and stratified population designs, where different kinds of lights are replaced in the same retrofit study. Results show significant cost reductions and increased statistical efficiency when using the proposed Bayesian framework.