JavaScript is disabled for your browser. Some features of this site may not work without it.
Please note that UPSpace will be unavailable from Friday, 2 May at 18:00 (South African Time) until Sunday, 4 May at 20:00 due to scheduled system upgrades. We apologise for any inconvenience this may cause and appreciate your understanding.
Optimizing power allocation for URLLCD2D in 5G networks with Rician fading channel
Muhammad, Owais; Jiang, Hong; Bilal, Muhammad; Mushtaq, Muhammad Umer
The rapid evolution of wireless technologies within the 5G network brings significant challenges in managing the increased connectivity and traffic of mobile devices. This enhanced connectivity brings challenges for base stations, which must handle increased traffic and efficiently serve a growing number of mobile devices. One of the key solutions to address these challenges is integrating device-to-device (D2D) communication with ultra-reliable and low-latency communication (URLLC). This study examines the impact of the Rician fading channel on the performance of D2D communication under URLLC. It addresses the critical problem of optimizing power allocation to maximize the minimum data rate in D2D communication. A significant challenge arises due to interference issues, as the problem of maximizing the minimum data rate is non-convex, which leads to high computational complexity. This complexity makes it difficult to derive optimal solutions efficiently. To address this challenge, we introduce an algorithm that is based on derivatives to find the optimal power allocation. Comparisons are made with the branch and bound (B&B) algorithm, heuristic algorithm, and particle swarm optimization (PSO) algorithm. Our proposed algorithm improves power allocation performance and also achieves faster execution with lower computational complexity compared to the B&B, PSO, and heuristic algorithms.
Description:
DATA AVAILABILITY : The code is available in the Supplemental File.