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Abstract
In order to assess prognostic risk for individuals in precision health research, risk
prediction models are increasingly used, in which statistical models are used to
estimate the risk of future outcomes based on clinical and nonclinical charac-
teristics. The predictive accuracy of a risk score must be assessed before it can
be used in routine clinical decision making, where the receiver operator char-
acteristic curves, precision–recall curves, and their corresponding area under
the curves are commonly used metrics to evaluate the discriminatory ability
of a continuous risk score. Among these the precision–recall curves have been
shown to be more informative when dealing with unbalanced biomarker dis-
tribution between classes, which is common in rare event, even though except
one, all existing methods are proposed for classic uncensored data. This paper is
therefore to propose a novel nonparametric estimation approach for the time-
dependent precision–recall curve and its associated area under the curve for
right-censored data. A simulation is conducted to show the better finite sample
property of the proposed estimator over the existing method and a real-world
data from primary biliary cirrhosis trial is used to demonstrate the practical
applicability of the proposed estimator.
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1 INTRODUCTION

In precision health, prognosis often relates to the probability or risk of an individual developing a particular state of
health or an outcome over a specific time, based on his or her clinical and nonclinical characteristics (Moons et al., 2009).
Outcomes are often specific events, such as death, complications, and progression. Prognostic models are useful tools to
estimate the risk that an individual in a particular health state will develop a particular health outcome. The estimated
risk using prognostic model can give healthcare professionals an idea of the future course of patients’ illness, so they can
make decisions about treatment(s), such as deciding to start, stop, or change treatment(s). Statistical models, for example,
survival models, are important tools to predict the probability that an individual will develop a particular state of health.
As an example, the prognostic index of epithelial ovarian cancer (PIEPOC) is a risk score (or biomarker) derived using
the Cox proportional hazards regression to predict the 5-year probability of overall survival for patients with advanced
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epithelial ovarian cancer. This risk score classifies patients into low, intermediate, or high risk based on age, performance
status, histological cell type, and tumor size (Mookerjee et al., 2007).
The predictive ability of a prognostic risk score should, however, be evaluated before it is used in clinical practice. In

order to accomplish this, a risk score can be assessed for its ability to discriminate between low- and high-risk patients.
The receiver operating characteristic (ROC) curve and area under the ROC curve (AUC) are the two widely used tools
to evaluate the discrimination ability of continuous biomarkers. The ROC curve is a plot of the true positive rate (the
conditional probability that a diseased subject has a positive test) versus the false positive rate (the conditional probability
that a healthy subject has a positive test) for all possible cutoff values. These measures are originally introduced for binary
outcomes or known event status. Inmany practical situations, for example in time-to-event analysis, the disease outcomes,
however, are time dependent. Therefore, using an ROC curve and AUC that varies with time is more appropriate. As a
result, in the past few decades, many extensions have been introduced; see, for example, Heagerty et al. (2000), Heagerty
and Zheng (2005), Etzioni et al. (1999), and Slate and Turnbull (2000). Following this, several time-dependent ROC curve
and AUC estimation methods have been developed for various censoring mechanisms; see, for example, Heagerty et al.
(2000), Heagerty and Zheng (2005), Li et al. (2018), Blanche et al. (2013a), Martínez-Camblor et al. (2016), Martínez-
Camblor and Pardo-Fernández (2018), Beyene et al. (2019), Beyene and El Ghouch (2020, 2022), and the references given
in these papers.
In recent years, precision–recall curves are becoming increasingly popular and has been shown to be a better alternative

to the ROC curve for assessing the discriminatory ability of a continuous biomarker; see, for example, Ozenne et al. (2015),
Saito and Rehmsmeier (2015), and Brodersen et al. (2010). A precision–recall curve is a plot of the true positive rate (also
known as recall or sensitivity) against the positive predictive value also known as precision (the conditional probability
that a subject with a positive test result actually has the disease) for all possible cutoff values. The precision–recall curve
can be quantitatively summarized using the area under the precision–recall curve, also known as the average precision.
The higher the under the precision–recall curve, the better the biomarker can classify subjects between classes. In spite of
the fact that ROC curves and AUC are commonly used tools for assessing performance in a wide variety of applications,
they overestimate the performances andmay result in inaccurate conclusions when evaluating uncommon or rare disease
biomarkers. In this case, the precision–recall curve and its summary measure are more meaningful as shown inWilliams
(2021), Sofaer et al. (2019), Saito and Rehmsmeier (2015), Ozenne et al. (2015), Brodersen et al. (2010), and Davis and
Goadrich (2006). In spite of this advantage, Yuan et al. (2018) is the only research paper that has introduced the precision–
recall curve and its associated area under the curve estimation for censored time-to-event data. This method, however,
has two main limitations. First, the authors assumed that the event status is unknown for all the subjects under study
without explicitly mentioning this. Second, this method assumes independent censoring, that is, the censoring time is
independent of both the event time and the biomarker, which is unrealistic in many real-world biomedical studies. For
the studies when this independent censoring assumption is not met, this method may produce an erroneous value for the
area under precision–recall curve, which is out of the theoretical limit [0, 1].
This paper is then aimed to address these limitations and propose a novel nonparametric estimation method for time-

dependent precision–recall curve and the associated area under the curve, which would use all the available information
efficiently. The rest of this paper is organized as follows. In the next section, we introduce some important notations and
definitions, and propose estimation method for the true positive rate, the positive predictive value, the precision–recall
curve, and the area under this newly proposed precision–recall curve. In Section 3, the finite sample performance of the
proposed estimator is investigated through a simulation study followed by the illustration of this proposed novel method
using a real data example in Section 4. Finally, we provide discussion and conclusion in Section 5.

2 METHODS

In this section, we introduce some important notations and definitions, followed by the estimator for the time-dependent
precision–recall curve and its summary measure.

2.1 Notations and definitions

Let 𝑇 be a nonnegative random variable denoting the time-to-event of interest (survival time or event time) and𝑀 denote
a continuous biomarker that measured at baseline and its ability to predict an event 𝑇 is to be evaluated. It is possible for
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the biomarker to be either a single factor (for instance, prostate-specific antigen is used to predict prostate cancer risk)
or a combination of risk factors (e.g., the score PIEPOC predicts death risk for patients with advanced epithelial ovarian
cancer by combining age, performance status, histological cell type, and tumor size). Let us assume that the variable of
interest 𝑇 is subject to right-censoring, meaning that the exact survival time for some subjects is unknown except that
it is greater than a certain value. This can happen for a variety of reasons, including when a subject leaves the study
before a specific event occurs, or when the study ends before the event occurred. As a result the observed data set consists
of {(𝑌𝑖, Δ𝑖,𝑀𝑖), 𝑖 = 1, 2, … , 𝑛}, which are 𝑛 independent copies of (𝑌, Δ,𝑀), where 𝑌 = min(𝑇, 𝐶) is the observed time,
Δ = 𝐼(𝑇 ≤ 𝐶) is censoring indicator variable, and 𝐶 is the censoring time, which is independent of 𝑇 conditional on the
biomarker 𝑀. For a given time of interest 𝑡, Heagerty et al. (2000) defined cases as subjects who experience the event
before time 𝑡, that is, 𝑇 ≤ 𝑡, and controls as those who remain event-free through time 𝑡, that is, 𝑇 > 𝑡. This is the most
commonly used definition due to its clinical relevance (Blanche et al., 2013b; Lambert & Chevret, 2016). Assuming that
the higher value of𝑀 is associated with higher risk of getting the event, for a given cutoff value 𝑚, the time-dependent
true positive rate (TPR𝑡) is the conditional probability that𝑀 is greater than𝑚 given the event time 𝑇 is less than or equal
to 𝑡 and the time-dependent positive predictive value (PPV𝑡) is the conditional probability that the event time is less than
or equal to 𝑡 given that the biomarker𝑀 is greater than𝑚. Mathematically, these can be written as

TPR𝑡(𝑚) = 𝑃(𝑀 > 𝑚|𝑇 ≤ 𝑡),
PPV𝑡(𝑚) = 𝑃(𝑇 ≤ 𝑡|𝑀 > 𝑚), (1)

where𝑚 ∈ (−∞,∞) is a fixed cutoff value. The corresponding time-dependent precision–recall curve is defined as a plot
of the time-dependent true positive rate (or recall or sensitivity) versus the time-dependent positive predictive values (or
precision) for all possible classification cutoff values, 𝑚. The time-dependent precision–recall (PR𝑡) curve can be quan-
titatively summarized by the area under the 𝑃𝑅𝑡 curve (AUPRC𝑡). As given in Yuan et al. (2018), this can be defined
as

AUPRC𝑡 = ∫
∞

−∞

PPV𝑡(𝑠)𝑑TPR𝑡(𝑠). (2)

As a measure of the discriminatory ability of a biomarker, AUPRC can be used to compare different biomarkers, where a
higher value indicates a better biomarker performance. The maximum AUPRC value is 1, which corresponds to a perfect
biomarker, means that the biomarker perfectly distinguishes between two classes.

2.2 Review: Yuan method

In the case of censored time-to-event data, Yuan et al. (2018) proposed the only time-dependent precision–recall curve and
area under the curve estimationmethod. Their approach is based on inverse probability censoringweighting (𝐼𝑃𝐶𝑊), and
their estimators for TPR𝑡 and PPV𝑡 are given by

T̂PR𝑡(𝑚) =
∑𝑛
𝑖=1
�̂�𝑡𝑖𝐼(𝑀𝑖 > 𝑚)𝐼(𝑌𝑖 < 𝑡)∑𝑛
𝑖=1
�̂�𝑡𝑖𝐼(𝑌𝑖 < 𝑡)

,

P̂PV𝑡(𝑚) =
∑𝑛
𝑖=1
�̂�𝑡𝑖𝐼(𝑀𝑖 > 𝑚)𝐼(𝑌𝑖 < 𝑡)∑𝑛
𝑖=1
𝐼(𝑀𝑖 > 𝑚)

, (3)

where �̂�𝑡𝑖 =
𝐼(𝑌𝑖<𝑡)Δ𝑖

�̂�(𝑐)
+
𝐼(𝑌𝑖≥𝑡)
�̂�(𝑐)

, and �̂�(𝑐) is a consistent estimator of the survival function of the censoring time, 𝐺(𝑐) =
𝑃(𝐶 ≥ 𝑐). The time-dependent area under the precision–recall, which they call average precision (AP) can be written as

ÂP𝑡 =
1∑𝑛

𝑗=1
�̂�𝑡𝑗𝐼(𝑌𝑗 < 𝑡)

𝑛∑
𝑗=1

𝐼(𝑌𝑗 < 𝑡)�̂�𝑡𝑗
∑𝑛
𝑖=1
𝐼(𝑌𝑖 < 𝑡){𝐼(𝑀𝑖 > 𝑀𝑗) + 0.5 × 𝐼(𝑀𝑖 = 𝑀𝑗)}�̂�𝑡𝑖∑𝑛
𝑖=1
{𝐼(𝑀𝑖 > 𝑀𝑗) + 0.5 × 𝐼(𝑀𝑖 = 𝑀𝑗)}

. (4)
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The main assumption of this approach is that the censoring time 𝐶 is independent of both the event time 𝑇 and the
biomarker 𝑀. In case where this assumption is violated, which is the case in most of epidemiological studies, the Yuan
method may produce an erroneous estimate. There is a strong consensus that the expected value of weights may not be 1
when the independence censoring assumption is violated,whichwaswell documented inHowe et al. (2011), which studied
the limitation of the IPCW approach. As a result, the precision–recall curve estimate may not necessarily be bounded in
the square [0, 1] × [0, 1], and the time-dependent area under precision recall curve may not be contained within [0,1]. The
Yuan method also assumed, without explicitly mentioning it, that all the subjects had unknown event status, which is
unrealistic. Therefore, the objective of this study is to introduce a novel time-dependent precision–recall curve and the
associated area under the curve estimation method that overcome the abovementioned limitations by using the available
information efficiently.

2.3 Proposed method

2.3.1 Point estimation

Using the tower property of conditional expectations, or law of total probability, we first derive theoretical formulas for the
time-dependent true positive rate and positive predictive value defined above, which is the basis for our proposal. Under
the assumption that the event time 𝑇 and then censoring time 𝐶 are conditionally independent given the marker𝑀, the
time-dependent true positive rate given by (1) can be written as

TPR𝑡(𝑚) =
𝑃(𝑀 > 𝑚,𝑇 ≤ 𝑡)
𝑃(𝑇 ≤ 𝑡) =

𝐸(𝐼(𝑀 > 𝑚,𝑇 ≤ 𝑡))
𝐸(𝐼(𝑇 ≤ 𝑡)) ,

=
𝐸{𝐸(𝐼(𝑀 > 𝑚,𝑇 ≤ 𝑡)|Δ,𝑌,𝑀)}
𝐸{𝐸(𝐼(𝑇 ≤ 𝑡)|Δ,𝑌,𝑀)} = 𝐸{𝐼(𝑀 > 𝑚)𝑊𝑡}𝐸{𝑊𝑡}

, (5)

where𝑊𝑡 denotes a random variable 𝑃(𝑇 ≤ 𝑡|𝑌,Δ,𝑀), which can be written as
𝑊𝑡 ≡ 𝑃(𝑇 < 𝑡|𝑀,Δ,𝑌) = [1 − (1 − Δ) 𝑆(𝑡|𝑀)

𝑆(𝑌|𝑀)
]
𝐼(𝑌 ≤ 𝑡), (6)

where 𝑆(.|𝑀) denotes the conditional survival probability of T given the biomarkerM. In this expression, the weight𝑊𝑡
is observed for all subjects except in the case when𝑌 < 𝑡 and Δ = 0. For the estimation of time-dependent ROC curve and
the associated area under the curve, this weight was used and investigated in Beyene et al. (2019), Beyene and El Ghouch
(2020), Li et al. (2018), andMartínez-Camblor et al. (2016). In the above weight function, the conditional survival function
is unknown, which can be estimated from the observed data using the Beran estimator (Beran, 1981), see also Li et al.
(2018), Beyene et al. (2019), and Beyene and El Ghouch (2020). The Beran estimator can be written as

�̂�(𝑡|𝑚) = 𝑛∏
𝑖=1

⎧⎪⎨⎪⎩1 −
𝐼(𝑌𝑖 < 𝑡, Δ𝑖 = 1)𝑤𝑖(𝑚)

1 −
∑𝑛
𝑗=1
𝐼(𝑌𝑗 ≥ 𝑌𝑖)𝑤𝑗(𝑚)

⎫⎪⎬⎪⎭, (7)

where 𝑤𝑖(𝑚) =
𝑘((𝑚−𝑀𝑖)∕ℎ)∑𝑛
𝑗=1 𝑘((𝑚−𝑀𝑗)∕ℎ)

are Nadaraya–Watson weights (Nadaraya, 1964; Watson, 1964), ℎ ≡ ℎ𝑛 is a bandwidth,
and 𝑘 is a kernel function. In order to estimate bandwidth ℎ, we propose to use the method presented by Sheather and
Jones (1991). A similar suggestion is also made by Beyene and El Ghouch (2020).
Similarly, the theoretical formula for the time-dependent positive predictive value given in (1) can be defined as

PPV𝑡(𝑚) =
𝐸{𝐸(𝐼(𝑀 > 𝑚,𝑇 ≤ 𝑡)|Δ,𝑌,𝑀)}
𝐸(𝐼(𝑀 > 𝑚)

=
𝐸{𝐼(𝑀 > 𝑚)𝑊𝑡}

𝐸(𝐼(𝑀 > 𝑚)
. (8)

From these, the estimator for the time-dependent true positive rate and positive predictive value can be defined by replac-
ing the expectation in (5) and (8) with the empirical average. This means the empirical estimators for the TPR𝑡 and PPV𝑡



BEYENE et al. 5 of 14

are given by

T̂PR𝑡(𝑚) =
∑𝑛
𝑖=1
𝐼(𝑀𝑖 > 𝑚)�̂�𝑡𝑖∑𝑛
𝑖=1
�̂�𝑡𝑖
,

P̂PV𝑡(𝑚) =
∑𝑛
𝑖=1
𝐼(𝑀𝑖 > 𝑚)�̂�𝑡𝑖∑𝑛
𝑖=1
𝐼(𝑀𝑖 > 𝑚)

, (9)

respectively, where �̂�𝑡𝑖 =
[
1 − (1 − Δ𝑖)

�̂�(𝑡|𝑀𝑖)
�̂�(𝑌𝑖|𝑀𝑖)

]
𝐼(𝑌𝑖 ≤ 𝑡). Now, the time-dependent PR curve estimate can be obtained by

plotting the estimated PPV𝑡 versus the estimated TPR𝑡 for all possible cutoff values.
The time-dependent area under precision–recall curve, as shown in Yuan et al. (2018), can be written as

AUPRC𝑡 = ∫
∞

−∞

PPV𝑡(𝑠)𝑑TPR𝑡(𝑠) = 𝐸𝑀1(PPV𝑡(𝑀1)) = 𝐸(𝑃(𝑇𝑖 < 𝑡|𝑀𝑖 > 𝑀𝑗, 𝑇𝑗 < 𝑡)), (10)

where𝑀1 denotes the biomarker for subjects with 𝑇 < 𝑡. We can rewrite this as follows:

AUPRC𝑡 = 𝐸
{
𝑃(𝑇𝑖 < 𝑡,𝑀𝑖 > 𝑀𝑗, 𝑇𝑗 < 𝑡)

𝑃(𝑀𝑖 > 𝑀𝑗, 𝑇𝑗 < 𝑡)

}

= 𝐸

{
𝐸{𝐼(𝑇𝑖 < 𝑡,𝑀𝑖 > 𝑀𝑗, 𝑇𝑗 < 𝑡)}

𝐸{𝐼(𝑀𝑖 > 𝑀𝑗, 𝑇𝑗 < 𝑡)}

}

= 𝐸

{
𝐸(𝐸{𝐼(𝑇𝑖 < 𝑡,𝑀𝑖 > 𝑀𝑗, 𝑇𝑗 < 𝑡)|𝑀𝑖,𝑀𝑗, Δ𝑖, Δ𝑗, 𝑌𝑖, 𝑌𝑗})
𝐸(𝐸{𝐼(𝑀𝑖 > 𝑀𝑗, 𝑇𝑗 < 𝑡)|𝑀𝑖,𝑀𝑗, Δ𝑖, Δ𝑗, 𝑌𝑖, 𝑌𝑗})

}

= 𝐸

{
𝑊𝑗𝐸(𝐼(𝑀𝑖 > 𝑀𝑗)𝑊𝑖)

𝐸(𝑊𝑗)𝐸(𝐼(𝑀𝑖 > 𝑀𝑗))

}
.

(11)

From this, the estimator for the time-dependent area under precision–recall curve can be given by

ÂUPRC𝑡 =
1∑𝑛
𝑗=1
�̂�𝑡𝑗

𝑛∑
𝑗=1

�̂�𝑡𝑗
∑𝑛
𝑖=1
{𝐼(𝑀𝑖 > 𝑀𝑗) + 0.5 × 𝐼(𝑀𝑖 = 𝑀𝑗)}�̂�𝑡𝑖∑𝑛
𝑖=1
{𝐼(𝑀𝑖 > 𝑀𝑗) + 0.5 × 𝐼(𝑀𝑖 = 𝑀𝑗)}

. (12)

Note that the term 0.5 × 𝐼(𝑀𝑖 = 𝑀𝑗) is included to handle tied marker values.

2.3.2 Variance and confidence interval estimation

In order to estimate variance and/or approximate confidence intervals, we propose to use a nonparametric bootstrap
method introduced by Efron (1979). This approach involves drawing B bootstrap samples of size 𝑛 with replacement from
the original data, and for each of this samples, we compute ÂUPRC𝑏, 𝑏 = 1, 2, … , 𝐵. The empirical variance of the bootstrap
estimates can be used to estimate the variance of ÂUPRC𝑡, which is given by

𝑆2𝐵 = 𝐵
−1

𝐵∑
𝑏=1

{
ÂUPRC𝑏 − 𝐵−1

𝐵∑
𝑏=1

ÂUPRC𝑏

}2
. (13)

The bootstrap estimates can also be used to approximate the (1 − 𝛼)100% confidence interval for the theoretical AUPRC𝑡.
To this end, the widely used is the percentile confidence interval that is constructed by [ÂUPRC𝐵(𝛼∕2), ÂUPRC𝐵(1 −
𝛼∕2)], where ÂUPRC𝐵(𝛼) denotes the 100𝛼th percentile of the B bootstrap estimates.
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TABLE 1 Parameter values used to generate data and censoring proportion.

𝝀 𝜸 𝜷 𝝀𝑪 Censored
1.5 2.0 −1.0 1.5 55%
1.5 2.0 −1.0 2.5 40%
1.5 2.0 −1.5 1.5 55%
1.5 2.0 −1.5 2.5 40%

The finite sample performance of the proposed time-dependent area under precision–recall curve and the variance and
confidence interval estimation methods will be investigated in the next section.

3 SIMULATION STUDY

In this section, we conduct a simulation study to investigate the performance of the proposed method under various sce-
narios with different censoring rate, sample sizes, and prediction times. Moreover, we also compare the proposed method
with the competitor approach in the literature. In the upcoming subsections, we first present the data generation process
before moving on to the simulation results discussions.

3.1 Simulation setup

To generate the survival time, we considered a Weibull proportional hazards model given by

𝑆(𝑡|𝑋) = exp(−(𝑡∕𝜆)𝛾exp(𝑋𝛽)),
where 𝜆(𝛾) are the scale(shape) parameters, respectively, and 𝛽 is the regression coefficient associated to the covariate 𝑋.
From this, using the cumulative hazard inversion method, the survival time can be expressed as

𝑇 = 𝜆−1[−𝑙𝑜𝑔(𝑈)exp(−𝑋𝛽)]1∕𝛾,

where 𝑈 is a [0,1] uniform distributed random variable and the covariate 𝑋 is assumed to follow a standard normal
distribution. The value of the scale and shape parameter is set to be 1.5 and 2, respectively.
The random censoring time 𝐶 is generated from a exponential distribution with parameter 𝜆𝐶 , which is selected to

achieve 40% and 55% censoring proportions. Moreover, we consider two regression coefficient values (𝛽 = −1 and 𝛽 =
−1.5), where the higher value corresponds to a stronger correlation between event time and biomarker. These parameters
are summarized in Table 1.
For the estimation, we consider the prediction 𝑡 corresponding the quartile values of the survival time 𝑇 (i.e., 𝑡 = 𝑄1, 𝑡 =
𝑄2, and 𝑡 = 𝑄3) and the biomarker is defined as𝑀 = exp(−((𝑇∕1.5)2)exp(𝛽′𝑋)). To compute the performance measures,
we generate 𝑁 = 1000 independent samples with two sizes (𝑛 = 250 and 𝑛 = 500).
As a performance criterion, we consider the absolute bias (Bias), mean square error (MSE), and standard deviation

(SD), which, respectively, defined as

Bias = |𝑁−1 𝑁∑
𝑠=1

ÂUPRC𝑡𝑠 − AUPRC𝑡|,
MSE = 𝑁−1

𝑁∑
𝑠=1

(ÂUPRC𝑡𝑠 − 𝐴𝑈𝑃𝑅𝐶𝑡)2,

SD =

√√√√
(𝑁 − 1)−1

𝑁∑
𝑠=1

(ÂUPRC𝑡𝑠 −
̄̂AUPRC𝑡)2,
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F IGURE 1 The true precision-recall curves and the corresponding area under the PR𝑡 curve (AUPRC) values of the data generating
process with 𝛽 = −1 (left column) and 𝛽 = −1.5 (right column) for the prediction time 𝑡 = 0.6 (dotted line), 𝑡 = 1.2 (dashed line), and 𝑡 = 2.0
(solid line).

where 𝐼(.) is an indicator function, ÂUPRC𝑡𝑠 is the estimate obtained from the 𝑠𝑡ℎ simulated data. Here, the true AUPRC𝑡
is computed from simulated data {(𝑇𝑖,𝑀𝑖), 𝑖 = 1, 2, … , 2 × 106}, using the formula given in (12) with𝑊𝑡𝑖 = 𝐼(𝑇𝑖 < 𝑡).
The true time-dependent precision-recall curve and the associated area under the precision-recall curve are presented in

Figure 1. As seen from the figure, both the precision-recall curve and the area precision-recall curve increases (decreases)
with prediction time 𝑡 (𝛽).

3.2 Simulation results

3.2.1 Evaluating and comparing finite sample performance

In this section, we present and discuss the results obtained from simulations conducted to evaluate the performance of
the proposed method on finite samples. Furthermore, we compare our method with the approach proposed by Yuan et al.
(2018) and implemented in the R package APtools Cai et al. (2018). Table 2 presents the empirical SD, the absolute bias
(Bias), and the MSE to evaluate the performance of the proposed method and compare it with the estimator proposed by
Yuan et al. (2018), hereafter denoted by (Yuan). We computed the performance measures from 1000 simulated samples
with sample sizes 𝑛 = 250, 500, censoring proportions 40% and 55%, regression coefficients 𝛽 = −1.0, −1.5 and prediction
times 𝑡 = 0.6, 1.2, 2.0. From the results, as expected, the SDs, biases and MESs of the proposed increases with increase
in censoring rate. In contrast, the performance of the proposed estimator improves with increase in sample size, and
prediction time. This is true for all simulation settings.
Compared to the Yuanmethod, the proposedmethod, in general, has smallerMSE and themagnitude of theMSE is less

than 0.005which is negligible. Similarly, the SD of the proposedmethod is smaller than the Yuanmethodwith comparable
bias as shown in Table 2. In Figure 2, we provide the boxplots of the time-dependent area under precision-recall curve
estimates obtained from both the proposed approach and the Yuan method. This figure indicate that the performance of
the proposed estimator improves with prediction time and sample size, and deteriorate with censoring rate. Furthermore,
in general, the proposed method performed better than the Yuan approach, which is consistent with the result given in
Table 2.
We would like to emphasis an interesting finding from this figure: the Yuan approach resulted in estimated AUPRC𝑡

values that exceed 1, which is outside the theoretical boundary [0,1]. These erroneous values are due to the fact that the
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TABLE 2 Bias (×100) and mean square error (MSE) (×1000) of the proposed approach and the Yuan method computed using sample
sizes (𝑛), censoring rates (cens), and prediction time (𝑡).

Proposed Yuan
𝒕 cens 𝒏 TRUE Estimate SD Bias MSE Estimate SD Bias MSE
𝜷 = −𝟏.𝟎

0.6 40 250 0.766 0.752 0.059 1.424 3.653 0.776 0.072 0.984 5.267
1.2 40 250 0.872 0.866 0.029 0.635 0.891 0.877 0.048 0.538 2.362
2.0 40 250 0.947 0.946 0.016 0.117 0.262 0.954 0.039 0.744 1.560
0.6 55 250 0.766 0.744 0.061 2.196 4.212 0.782 0.084 1.552 7.255
1.2 55 250 0.872 0.863 0.033 0.890 1.141 0.884 0.062 1.169 3.969
2.0 55 250 0.947 0.945 0.020 0.228 0.397 0.961 0.053 1.388 3.033
0.6 40 500 0.766 0.756 0.042 1.003 1.895 0.771 0.052 0.519 2.697
1.2 40 500 0.872 0.868 0.020 0.448 0.424 0.875 0.033 0.252 1.077
2.0 40 500 0.947 0.945 0.012 0.166 0.142 0.951 0.028 0.351 0.791
0.6 55 500 0.766 0.749 0.045 1.669 2.323 0.773 0.060 0.654 3.664
1.2 55 500 0.872 0.865 0.023 0.659 0.561 0.875 0.042 0.344 1.782
2.0 55 500 0.947 0.945 0.015 0.221 0.222 0.952 0.038 0.464 1.433
𝜷 = −𝟏.𝟓

0.6 40 250 0.658 0.650 0.064 0.780 4.203 0.668 0.074 1.024 5.521
1.2 40 250 0.806 0.800 0.038 0.643 1.449 0.811 0.051 0.536 2.626
2.0 40 250 0.901 0.899 0.025 0.245 0.610 0.909 0.044 0.751 1.978
0.6 55 250 0.658 0.646 0.066 1.223 4.567 0.673 0.083 1.515 7.040
1.2 55 250 0.806 0.797 0.043 0.809 1.919 0.816 0.064 1.043 4.246
2.0 55 250 0.901 0.897 0.031 0.416 0.950 0.914 0.058 1.255 3.482
0.6 40 500 0.658 0.651 0.045 0.701 2.097 0.662 0.050 0.420 2.537
1.2 40 500 0.806 0.802 0.026 0.425 0.717 0.809 0.035 0.252 1.225
2.0 40 500 0.901 0.898 0.019 0.285 0.361 0.903 0.031 0.210 0.970
0.6 55 500 0.658 0.647 0.048 1.119 2.394 0.664 0.057 0.610 3.289
1.2 55 500 0.806 0.800 0.030 0.607 0.918 0.810 0.043 0.395 1.892
2.0 55 500 0.901 0.898 0.022 0.283 0.507 0.906 0.040 0.477 1.658

simulated data are generated under the realistic assumption that the event time 𝑇 and the censoring 𝐶 are independent
given themarker𝑀, which is different andmore realistic than the Yuan approachwhere it was assumed that𝐶 is indepen-
dent of both 𝑇 and𝑀. As indicated in Section 2.2, the IPCW-based estimator of the Yuan approach may not yield weight
estimates that sum to one when the independence censoring assumption is not met (Howe et al., 2011). As a result, the
precision-recall curve estimates may not necessarily be bounded in the square [0, 1] × [0, 1], and the AUPRC𝑡 estimates
may not be contained within [0,1]. From the simulation study, in general, we can conclude that the proposed method per-
forms better than the Yuanmethod. In our simulations, we also examined the performance of the proposedmethod under
conditions where the censoring time is marker-dependent. Across all the scenarios examined, our method consistently
outperformed the Yuan approach, exhibiting smaller SD, bias, andMSE values. For brevity, we have omitted these results.

3.2.2 Evaluating variance and confidence interval estimation method

In this section, we investigate the performance of the proposed bootstrap-based variance and confidence interval esti-
mation method. Table 3 shows the empirical standard deviation (ESD), the average bootstrap standard deviation (ASD),
the average width (AW) and coverage probability (CP) of the 95% bootstrap confidence intervals computed using the per-
centile approach for the proposed method. The ESD of the time-dependent area under precision–recall curve is the SD
of the estimated AUPRC𝑡 obtained from the simulated data. The ASD of the estimator is computed as the average of the
bootstrap standards deviations obtained from the simulated data. The AW is the average difference of the upper and lower
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F IGURE 2 Boxplots for the estimated AUPRC𝑡 obtained using the proposed method (Prop) and the Yuan approach (Yuan). True values
are indicated by horizontal solid black lines.

TABLE 3 The empirical standard deviation (ESD), the average bootstrap standard deviation (ASD), the average width (AW), and
coverage probability (CP) of the 95% bootstrap confidence intervals for different sample sizes (𝑛), censoring proportions (cens), 𝑡, and 𝛽 values
computed using the percentile approach with the proposed method.

t cens n
𝜷 = −𝟏 𝜷 = −𝟏.𝟓

ESD ASD AW CP(%) ESD ASD AW CP(%)
0.6 40 250 0.059 0.058 0.228 0.948 0.064 0.062 0.241 0.940
1.2 40 250 0.029 0.029 0.114 0.954 0.038 0.038 0.147 0.950
2.0 40 250 0.016 0.016 0.061 0.924 0.025 0.025 0.098 0.941
0.6 55 250 0.061 0.062 0.239 0.949 0.066 0.064 0.251 0.941
1.2 55 250 0.033 0.033 0.127 0.951 0.043 0.042 0.163 0.941
2.0 55 250 0.020 0.019 0.075 0.924 0.031 0.031 0.120 0.939
0.6 40 500 0.042 0.041 0.161 0.939 0.045 0.044 0.173 0.943
1.2 40 500 0.020 0.021 0.080 0.954 0.026 0.027 0.104 0.946
2.0 40 500 0.012 0.011 0.044 0.928 0.019 0.018 0.071 0.943
0.6 55 500 0.045 0.044 0.170 0.932 0.048 0.046 0.181 0.939
1.2 55 500 0.023 0.023 0.090 0.955 0.030 0.030 0.115 0.934
2.0 55 500 0.015 0.014 0.054 0.936 0.022 0.022 0.085 0.945
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F IGURE 3 Boxplots for the estimated bootstrap standard deviations (SD) obtained using the proposed method.

limit of the bootstrap confidence interval. Finally, the CP is the proportion of bootstrap confidence interval that included
the true value. The CP and AW are important measures to evaluate the validity and precision, respectively, of the proposed
confidence interval estimation method.
From the simulation results presented in Table 3, both the ESD and ASD increase with increase in censoring rate and

both decrease with increase in sample size and prediction time. Furthermore, the values of ESD and ASD, in general,
are very close to each other indicating the consistency of the variability estimate obtained from the bootstrap method.
Generally, the AWs of the proposed bootstrap confidence interval increase with sample size and decrease with censor-
ing rate. In addition, for all simulation settings, the proposed percentile-based bootstrap confidence interval estimation
method, in general, provides CPs that are very close to the nominal value of 0.95. Figures 3 and 4 show the boxplots of
the bootstrap-based SD estimates and the width of 95% bootstrap confidence intervals of AUPRC𝑡, respectively. From the
figures, the performance of both the proposed variance and confidence interval estimationmethods improve (deteriorate)
with sample size (censoring), which is consistent with the result in Table 3. Based on these, we can confidently conclude
that the proposed bootstrap method makes good approximations of both variances and confidence intervals.

4 REAL DATA APPLICATION

4.1 Mayo PBC data

The data used to illustrate the proposedmethod is obtained from a randomized placebo-controlled trial of D-penicillamine
for treating primary biliary cirrhosis (PBC) conducted between 1974 and 1984 at the Mayo Clinic. In this trial, there were
312 patients randomly assigned to receive D-penicillamine (n = 158) or placebo (n = 154), of whom 125 experienced the
event of interest (death) during the follow-up period (Fleming & Harrington, 2011). The objective of this study was to
develop models to predict the survival of patients with PBC disease. Heagerty and Zheng (2005) used a Cox proportional
hazards model to derive two risk scores from these data. The first risk score (𝑀1) is calculated based on five covariates:
log(bilirubin), albumin, log(prothrombin time), edema, and age. The second risk score (𝑀2) is derived from all the covari-
ates, except log(bilirubin). These data are available in the R package survivalROC (Heagerty & packaging by Paramita
Saha-Chaudhuri, 2022) and further details about these data can be found in Heagerty and Zheng (2005).
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F IGURE 4 Boxplots for the width of the estimated bootstrap confidence interval obtained using the proposed method.

TABLE 4 Estimated time-dependent area under the precision–recall curve and associated 95% bootstrap confidence interval using the
proposed method and the Yuan approach for the risk scores,𝑀1,𝑀2 and their difference, and the prediction times, 𝑡 = 3, 6 years.

Proposed Yuan
𝒕 Marker Estimate 𝟗𝟓% CI Estimate 𝟗𝟓% CI
3 𝑀1 0.719 [0.604, 0.815] 0.726 [0.616, 0.823]
3 𝑀2 0.616 [0.485, 0.732] 0.621 [0.497, 0.738]
3 Difference 0.104 [−0.063,0.272] 0.105 [−0.059,0.266]
6 𝑀1 0.809 [0.729, 0.886] 0.814 [0.731, 0.890]
6 𝑀2 0.698 [0.609, 0.789] 0.713 [0.618, 0.798]
6 Difference 0.111 [−0.008,0.230] 0.101 [−0.021,0.222]

4.2 Data analysis

In this example, using the precision–recall curve and the associated summary index, we evaluate the ability of both risk
scores to predict the survival of patients. Figure 5 presents the estimated time-dependent precision–recall curve using the
proposed approach and the method proposed by Yuan et al. (2018) for both risk scores, that is,𝑀1 and𝑀2, at prediction
time 𝑡 = 3 years and 𝑡 = 6 years. From the figure, both the proposed method and the Yuan approach resulted in very
similar precision–recall curve estimates. This is true for both risk scores and prediction times.
Table 4 shows the estimated time-dependent area under precision–recall curve with 95% bootstrap confidence interval

using the proposed method and the Yuan approach for the risk scores, 𝑀1, 𝑀2 and their difference, and the predic-
tion times, 𝑡 = 3, 6 years. The bootstrap confidence intervals are computed using the percentile approach described in
Section 2.3 from 2000 bootstrap samples with replacement. For the proposed method and at 𝑡 = 3 years, the estimated
AUPRC𝑡 of the risk score 𝑀1 [ÂUPRC𝑡 = 0.719; 95%𝐶𝐼 ∶ 0.604 − 0.815] is higher than 𝑀2 [ÂUPRC𝑡 = 0.616; 95%𝐶𝐼 ∶
0.485 − 0.732]. This means, the risk score𝑀1 has a better classification ability compared to𝑀2. This difference in classifi-
cation ability between the two risk scores, however, is not statistically significant, as indicated by the estimated confidence
interval of the difference, which includes the “null” value (i.e., 0). This is consistent with the results of the estimated time-
dependent precision–recall curves given in Figure 5. Similar conclusions can be drawn from the estimated time-dependent
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F IGURE 5 Time-dependent precision–recall curve estimates obtained using the proposed method (solid line) and the Yuan approach
(dashed line) for𝑀1 (top row) and𝑀2 (bottom row) from Mayo PBC data with 𝑡 = 3 and 𝑡 = 6 years.

precision–recall curves and the associated area under the curves at 𝑡 = 6 years. The estimated AUPRC𝑡 using the Yuan
method for the risk score 𝑀1 is larger than 𝑀2 both for 𝑡 = 3 years and 𝑡 = 6 years; however, since zero is included in
the estimated confidence interval of the difference, this difference is not statistically significant. Finally, in general, the
estimated AUPRC𝑡 obtained using the proposed method is smaller than the estimate of Yuan approach.

5 DISCUSSIONS

There is a growing use of prognostic scores in precisionmedicine formedical applications in order to identify subjects with
a high risk of developing a particular condition. Nevertheless, the discriminatory ability of prognostic scores determines
the quality of decisions based on them. Therefore, before clinicians use a prognostic score in routine clinical practice, the
performance of the score should be properly assessed. To this end, this paper introduced a novel nonparametric time-
dependent precision–recall curve and the associated area under the curve for right-censored time-to-event data. In our
approach, we propose to estimate the conditional survival probabilities for subjects with unknown event statuses using
the well-known Beran estimator. We used the selection method proposed by Sheather and Jones (1991) to choose the
smoothing parameter required for kernelweight calculation in theBeran estimator. In addition, a nonparametric bootstrap
approach is suggested to estimate variability and make inferences about the time-dependent area under precision–recall
curve. The R package tdPRC, which implements the proposed method, is available in the Supporting Information.
The finite sample performance of the proposed time-dependent area under precision–recall curve estimation method

is assessed through a simulation study. The finding of the simulation study revealed good performance for the proposed
estimator with negligible bias and MSE. Moreover, the performance of the estimator improves with increase in sample
size. Compared to the method that exists in the literature, the proposed estimator has shown to have smaller MSE. An
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interesting finding of the study is that the Yuan approach, which is based on the IPCW, resulted in estimated AUPRC𝑡
values that exceeded 1 when the independence assumption is violated. This is due to the fact that, under a violation of
this assumption, the sum of the estimated weights will not be anymore than 1. In our simulation study, we also investi-
gated performance of the nonparametric bootstrap-based variance and confidence interval estimation method. The result
indicated that the estimation method performed well since the average SD obtained from the bootstrap estimate is very
close to the ESD and the CPs are also close to the desired nominal level. Finally, to illustrate the practical use of the pro-
posed method in real-world data, we applied it to the PBC data set. This data set contains two risk scores that are derived
using the Cox proportional hazards model (Heagerty & Zheng, 2005). Our objective was to assess and compare the ability
of these scores to identify subjects with high risk of dying due to primary biliary cirrhosis disease. The time-dependent
precision–recall curve and the associated area under the curve is estimated at two different times: 3 and 6 years. From
the results, both scores have similar and reasonable discriminatory ability. The estimated confidence interval of the differ-
ence of area under the precision–recall curve of the two biomarkers indicated no significant difference as the confidence
interval include the null value.
Finally, the proposed method is developed for right-censored data and hence extending it to other types of censored

data, for example interval-censored, would be an interesting future research topic.
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