

Supplementary Materials for

Functional traits—not nativeness—shape the effects of large mammalian herbivores on plant communities

Erick J. Lundgren et al.

Corresponding author: Erick J. Lundgren, erick.lundgren@gmail.com

Science **383**, 531 (2024) DOI: 10.1126/science.adh2616

The PDF file includes:

Materials and Methods Supplementary Text Figs. S1 to S21 Tables S1 and S2 References

1 Materials and Methods

2 Literature screening and digitization

3 This meta-analysis was part of a larger effort to understand megafauna impacts on multiple facets 4 of ecosystems [e.g. including soil nutrients, invertebrates, etc, see (43)]. This ensured that the 5 dataset included plant responses that were also measured in studies focused on other response 6 variables (e.g., spider diversity). We searched Web of Science with a string of search terms that 7 included the common names and Latin genera of all terrestrial mammalian megafauna species 8 [common names from HerbiTraits v1.2 (54)] separated with an 'OR' operand, along with the following search terms: "disturb*, graz*, brows*, impact*, effect, affect, disrupt, facilitate, 9 10 invasi*, ecosystem*, vegetat*, plant*, fauna*, reptil*, amphib*, bird*, rodent*, fish*, invertebrat*, 11 insect*, soil*, carbon, climate, albedo, river*, riparian, desert*, forest*, tundra, decomposition, 12 grassland*, savanna*, chaparral, scrub, shrub, diversity, heterogeneity, extinction, richness, environment, reptile*, ecolog*, hydrolog*, disturbance, density, biodiversity, response*, 13 14 ecosystem, herbaceous, canopy, germination, cover, pollinator*, tree, nutrient*, understorey, 15 erosion, grass*, vegetation, community, exclosure, competition, effect*, abundance, productivity". 16 To reduce unrelated results we also included a Web of Science category filter ("WC") of 17 "ECOLOGY OR ZOOLOGY OR ENVIRONMENTAL SCIENCES OR BIODIVERSITY 18 CONSERVATION OR EVOLUTIONARY BIOLOGY OR GEOGRAPHY PHYSICAL OR 19 REMOTE SENSING OR PLANT SCIENCES OR MULTIDISCIPLINARY SCIENCE OR 20 FORESTRY OR ENTOMOLOGY OR MARINE & FRESHWATER BIOLOGY OR 21 MYCOLOGY OR BIOLOGY OR OCEANOGRAPHY OR ORNITHOLOGY OR 22 BEHAVIORAL SCIENCES OR FISHERIES".

The Web of Science review was concluded on the 18th of February 2021 and returned 60,537 studies. We removed duplicate studies using the fuzzy matching algorithm with the function 'find_duplicates' in the R package 'revtools' (version 0.4.1) (55). After removing duplicates, our final search returned 46,825 studies. Title screening reduced the number of studies to 2,369.

28 We screened the full text of these studies to only include studies focused on wild 29 megafauna (\geq 45 kg) and that compared areas with low versus high megafauna densities due to 30 exclosures, policy-driven differences (hunting versus no-hunting in adjacent properties), and 31 differences in introduction or eradication histories (adjacent islands with and without megafauna). 32 Some studies compared areas with and without focal megafauna populations for unknown reasons 33 [e.g., a site with and without horses with no indication of why horses might be absent (56)], which 34 were excluded due to low confidence in the ultimate drivers of observed differences. We excluded 35 all before-after comparisons (e.g., a plot measured prior to exclosure construction and then afterwards) because of the high rates of change in many systems through time (via afforestation, 36 37 shifts in climate, succession, etc.). Studies that excluded megafauna but also all vertebrates were 38 excluded. Two additional studies reported data from extremely limiting resources (i.e., wetlands 39 in deserts). These were excluded given that such scenarios should be analyzed separately, for 40 which we did not have sufficient sample size. Studies that evaluated the effects of megafauna on 41 transplants or agricultural crops (including plantations) were not digitized. Studies that included 42 an appropriate comparison and reported a central tendency (mean or median), a measurement of 43 error (standard deviation, standard error, variance, etc), and sample size were digitized (n=154).

This literature list was supplemented by the literature contained in other relevant metaanalyses (47, 57) and those encountered in the bibliographies of the studies we digitized. Given

1 the limited number of studies from oceanic islands and regarding widely distributed introduced 2 species (feral pigs, goats) in our initial Web of Science search, we conducted focused Google 3 Scholar searches on July 15th, 2022 with the following terms: "ungulate impacts island*", "introduced goat impact island*", "introduced deer impact*", "feral camel impact*", "wild OR 4 feral boar OR hog OR swine impact*", "feral cattle impact*", "invasive ungulate hawaii OR guam 5 6 OR new zealand OR pacific island OR new caledonia OR galapagos OR caribbean OR oceanic island" and a Web of Science search on the 22nd of December 2022 using the search string 7 8 "herbivore* AND plant* AND response*". This uncovered an additional 482 studies of which 66 9 studies were fit for inclusion, leading to a total of 221 studies in our final dataset [see Fig. S11 for 10 PRISMA diagram, (58)].

We digitized central tendencies (mean, median), error (standard deviation, standard error, interquartile ranges) and sample sizes for each response (diversity, richness, and abundance) in each study [final studies: (8, 50, 52, 53, 59–264)]. We used ImageJ to extract data from figures (265). Interquartile ranges and medians (e.g., as extracted from boxplots) were converted to means and standard deviation using the function qe.mean.sd in the package 'estmeansd' version 1.0.0 (266). Means and SD/SE were reported by 213 studies (3,846 observations) while 11 studies (149 observations) reported medians and interquartile ranges.

We also digitized relevant covariates from the text, which included time since treatment (e.g., exclosure construction, introduction, eradication, etc), study coordinates (latitude, longitude), megafauna density (standardized to kg per hectare), relative abundance of megafauna (in the case of multispecies megafauna communities and if density was not provided), and the scale of measurement (treated both as area, m², and maximum measurement length, m, to allow the comparison of transects to plots).

If study coordinates were not exactly provided, we extracted latitude and longitude from the approximate center of each study location in Google Maps. Maximum measurement length was calculated as either the hypotenuse of square/rectangular plots, the length of transects, or the diameter of circular plots. Distributions of megafauna traits, environmental variables (see below), and methodological variables were similar between native and introduced megafauna communities in our final dataset [Fig. S12-S13, (25)].

We treated measurements of species richness and species diversity (e.g., Shannon Weiner index) as 'diversity' responses and density estimates (individual plants per plot), % cover, and biomass as measurements of abundance. Analyzing these responses alone led to similar results. We excluded seed abundance and diversity responses, given that seedbanks can be at disequilibrium from realized plant communities. We included all true plant species, excluding multicellular algae and lichen.

36

37 Effect sizes

38 Given the presence of negative values and zeros in our dataset, we calculated effect sizes using 39 Hedges' g, a unitless measure of standardized mean difference between groups. Each effect size

40 was associated with sampling variance calculated from the sample size and standard deviation of

41 each observation. Effect sizes and sampling variances were calculated with the function 'escalc'

42 in the R package 'metafor' (version 3.5-12) (267).

1 Model specification

Random-effect meta-analytic models were constructed with the function 'rma.mv' ('metafor'
version 3.9-14) (267). These models weight each observation (e.g. effect size) by the inverse of
their sampling variance. Studies with larger sample sizes and/or lower variance thus have higher
weight in models.

6 Several models involved interactions between multiple categorical variables (i.e., 7 megafauna nativeness, plant nativeness, landform coevolutionary history, etc). Given the 8 challenges of interpreting three and four-way interaction terms between categorical variables, and 9 in conducting contrast tests, we elected to concatenate combinations of factors into distinct levels 10 of a single variable. For example, the three-level variable for landform evolutionary history with 11 megafauna (continent, offshore island, and oceanic island) was produced from the concatenation 12 of megafauna evolutionary history (present or absent) and landform (continent or island). 13 Concatenating variables produced identical predictions as models with interaction terms between 14 each categorical variable but was more tractable to interpretation and reporting. We removed 15 intercepts from all models containing categorical predictors [following (47)]. Planned contrast 16 tests were conducted with the R function 'glht' ('multcomp', version 1.4-20) (268) with function 17 default p-value adjustments (single-step adjustment).

18 We included a random effect term for study citation, with the individual plant 19 species/group as a nested effect to capture multiple measurements of these groups within a study 20 (e.g., at different plots). Since the data included time series, we included an ordered time series 21 variable for each individual experiment (e.g., a specific plant species/group, response, and 22 sampling block) as a random effect. Likelihood ratio tests and BIC indicated that the inclusion of this time series variable significantly improved model quality across all models (LR=[22.7, 23 24 1,043.1]; p<0.0001, delta BIC=[-12.5, -1,027.1]). We did not include individual response IDs as 25 an inner random effect [e.g., following (267)] because doing so produced sigma² values of 0.

Similar to the inclusion of multiple results from the same experiment over time, which we controlled for by the time series random effect, eight studies (94 responses) reported data at different measurement scales from the same experiment (3.6% of all studies, 2.35% of all responses). We therefore ran all models with only the largest measurement scale, or the final time point from each experiment, which produced similar results as our main analyses (Fig. S14).

31 Given that data came from single-species as well as mixed-species megafauna 32 communities, we could not control for megafauna species identity as a random effect in our 33 models. We instead captured this by explicitly analyzing megafauna functional traits (see below) and by controlling for study site location as a random effect, which would capture a significant 34 35 deal of shared species identities between studies. Study site location IDs were assigned for all sites within 100 km of each other. Because some studies occurred in multiple study locations, we treated 36 37 this as a crossed random effect instead of nesting citation ID within it. Models were estimated with 38 maximum likelihood given our interest in model comparison. See R scripts for exact model 39 specifications (25).

Some studies reported plant responses at the species level, some at broad functional levels (e.g., grasses, trees, etc), and some for all plants combined. For abundance analyses, we conducted analyses with all data (Fig. 1, Fig. 2) and conducted additional sensitivity analyses including only species-level data (Fig. S15). We also analyzed the effect of native versus introduced megafauna on total native plant abundance responses, for which we had sufficient data, which confirmed our primary results (introduced g=-0.66 [-0.98, -0.34], native g=-0.62 [-0.99, -0.34], contrast: z=0.20, p-value=0.84, likelihood ratio test compared to intercept-only model: LR=0.04, p-value=0.85).

1 For diversity analyses, which by definition consist of collective plant responses, we analyzed 2 whether there were significant differences between native and introduced megafauna for the 367 3 plant responses (49 studies) that were described for total plant diversity, and not a subset, which 4 supported our primary results (introduced g=-0.14 [-0.47, 0.18], native g=0.22 [-0.06, 0.49], 5 contrast: z=1.9, p-value=0.06, likelihood ratio test: LR=3.14, p-value=0.08). Furthermore, 6 explicitly modeling megafauna impacts on plant diversity by plant functional group (Fig. S6) while 7 controlling for megafauna dietary preferences (see below), which thus excluded total plant 8 responses, also confirmed no difference between native and introduced megafauna (contrast: z=-9 0.39, p-value=0.70).

10 Meta-analyses can be prone to misleading results due to small sample size publication bias, wherein low power studies (high sampling variance due to low sample size or high error) are not 11 12 published due to non-significant results, especially if those results conflict with prevailing notions 13 (269). This can be assessed with funnel plots, which plot the sampling variance by effect size. An 14 asymmetrical distribution of high sampling variance data around the overall estimated effect is an indication of small sample publication bias. We plotted funnel plots for our primary analyses, 15 16 which suggested some degree of publication bias towards negative effects for introduced megafauna (Fig. S16-17). However, given that there is no clear way to correct for this type of 17 18 publication bias in multilevel random-effect meta-analytic models (267), we elected to report 19 results as-is. Other types of publication bias, e.g., from authors not publishing high sample size, 20 low-variance results that contradict their beliefs, cannot be accounted for.

21

22 Megafauna and plant nativeness

23 Megafauna nativeness was based on study author designations or IUCN range maps (17), if 24 unreported. While many communities had both native and introduced megafauna present, most 25 studies only manipulated (excluded) the introduced megafauna, which was possible because of 26 body size differences or through eradication. Only one study manipulated both native and 27 introduced megafauna (158). Given that the majority of megafauna biomass in this study consisted 28 of introduced megafauna, we classified this study as introduced. Excluding it (only relevant for 29 abundance analyses) led to similar results (Fig. S18, z=[-0.84, 1.65], p=[0.44, 1.0]).

The evolutionary exposure of study sites to megafauna (i.e., oceanic islands versus continents and offshore islands) was determined using PHYLACINE v1.2 range maps (*33*). We considered New Zealand, which possessed avian megafauna, an oceanic island without coevolutionary history with mammalian megafauna (due to distinctive foraging strategies of avian versus mammalian herbivores). However, counting New Zealand as an offshore island led to similar results.

36 The nativeness of collective plant responses was assigned as reported by the authors (1,864 37 observations from 104 studies). In cases where plant nativeness was unspecified (2,136 38 observations from 155 studies) we evaluated nativeness based on author-provided flora 39 descriptions of the study site by referring to the Plants of the World Online (32) and the study site 40 location. If introduced plants were described in the study system, we described the study as mixed 41 (and thus excluded it) unless the introduced plants collectively constituted <5% relative abundance (cover, biomass, density), as reported by authors, in which case we counted these systems as 42 43 'native'. From this we were able to classify an additional 1,718 observations from 113 studies as 44 native (1,499 observations, 97 studies), mixed (218 observations, 15 studies), and introduced (1 observation, 1 study). A final portion of studies did not provide site flora descriptions (418 45

observations, 42 studies). These studies generally came from large, well-protected landscapes
 (e.g., Kruger National Park, Arctic tundra). We treated these 'unspecified' responses as native.

3 The nativeness of individual plant species, relevant only to plant abundance responses, was 4 extracted from the Plants of the World Online (32), as above. Plant taxonomy was standardized 5 with the Taxonomic Name Resolution Service (TNRS) (270). To test the influence of plant 6 nativeness designations, we report on plant diversity effects excluding unspecified results (Fig. 7 S19) and for each plant nativeness designation (i.e., native, unspecified, mixed, and introduced, 8 Fig. S20). For plant abundance, we report species-level plant abundance results (Fig. S15). Across 9 all these sensitivity analyses, there was no significant difference between native and introduced 10 megafauna (see Table S2)

11

12 <u>Coevolutionary history and coevolutionary novelty</u>

13 The coevolutionary history between megafauna and the biomes to which they have been introduced was determined using biome maps from Olson et al. 2001 (271). Introduced megafauna 14 15 were considered 'coevolved' with the biome if they would have occurred in the absence of humancaused extinctions and range contractions (e.g., Equus ferus caballus in North America), based on 16 17 PHYLACINE v1.2's (33) megafauna distributions in the absence of extinctions and range 18 contractions, or if the megafauna species was native elsewhere within the focal biome, as in the 19 case of megafauna introduced to offshore islands within their native continent. Species-level 20 coevolutionary history between megafauna and individual plant species was determined by 21 comparing plant distributions (32) to PHYLACINE range maps (33). In cases of multiple 22 introduced megafauna, we based this on the dominant megafauna species, with dominance 23 determined by relative biomass.

24 Functional and phylogenetic novelty were calculated by identifying coevolved megafauna 25 communities, in the absence of Late Pleistocene extinctions and range contractions, for each study 26 location from PHYLACINE v1.2 range maps (33). Functional novelty was calculated as the Gower 27 distance to the most functionally similar 'coevolved' megafauna. Gower distances were calculated 28 using the function 'gowdis' (R package 'FD', version 1.0-12.1) (272) from key megafauna 29 functional traits that determine their effect on the environment [provided by HerbiTraits (54)]. 30 These included body mass (log₁₀ scale), two ordinal dietary traits (graminoid consumption, browse 31 consumption), fermentation type (converted to an ordinal variable describing fermentation 32 efficiency), three non-exclusive binary habitat use variables (aquatic, terrestrial, arboreal), three 33 exclusive binary variables describing limb morphology (plantigrade, digitigrade, unguligrade). 34 Variable weightings followed (5). To visualize megafauna functional space (Fig. S21), we 35 conducted a principal coordinates analysis on the Gower distance matrix using the R function 36 'cmdscale' (R package 'stats' v4.2.1) with a maximum of 4 dimensions (k=4). Phylogenetic 37 novelty was defined as the cophenetic distance between the introduced megafauna and the most 38 closely related megafauna in the absence of human-caused extinctions and range contractions 39 using the function 'pd' [R package 'ape' version 5.6-2, (273), with the phylogeny provided by 40 PHYLACINE v1.2 (33)].

For both phylogenetic and functional novelty, we identified the distances between the introduced megafauna and the most similar prehistoric 'coevolved' megafauna. This value was relativized by the introduced species' relative biomass in their community and then averaged across all introduced megafauna (Eq. 1). Relative biomass estimates were calculated from relative abundance or absolute density estimates per species, which were reported for 78.4% of data points. Mean community weighted novelty = $\frac{\sum NN \text{ distance } * \text{ rel.biomass}}{N \text{ megafauna species}}$

5 **Equation 1.** Calculation of community weighted functional and phylogenetic novelty per 6 introduced megafauna community. Functional and phylogenetic novelty was calculated from 7 Gower distance and cophenetic distance, respectively, to the most similar coevolved species. NN 8 distance = Nearest neighbor distance; rel. biomass = relative biomass in megafauna community 9 (0-1).

10

1 2

3 4

11 Environmental covariates

12 Environmental covariates were extracted for each study location by buffering each study location 13 by 5 km and using the function 'extract' from the R package 'terra' (version 1.7-6) (274). Values 14 were averaged across the 5 km buffer. Specifically, we extracted values of net primary productivity 15 (275), maximum annual temperature and precipitation (276), and the human footprint index (277). The human footprint index was available for both 1993 and 2009. We thus used values closest to 16 17 the year the data was collected or, if unreported, the year the study was published (n=78 studies). 18 For studies reporting data over multiple years, the year was adjusted for the time when the 19 individual response was collected based on commencement of study and collection interval. 20

21 Megafauna community functional traits

22 To understand how megafauna functional traits influence their effects on plants, we evaluated key 23 megafauna functional traits for all species in our dataset. Given that 80 studies (1,433 observations) 24 manipulated multiple species of megafauna, we analyzed megafauna functional trait summaries at 25 a community level. We did this by multiplying species trait values by their relative biomass in 26 their community (0-1) and then calculating the maximum and mean of these traits (henceforth 27 'community-weighted'). Mean trait values reflect overall community tendencies, while the 28 possibility that ecological outcomes may be shaped more by extremes (while accounting for 29 relative biomass) is captured by maximum trait values.

Traits were extracted from HerbiTraits (54) and included body mass, proportion of megafauna biomass with hindgut fermentation [which has distinct effects on ecosystems relative to foregut fermentation, (278)], and dietary preference for graminoids (grasses and allies). Note that while our meta-analysis focused on megafauna \geq 45 kg, some studies excluded smaller herbivores as well. These herbivores were included in trait summaries if \geq 10 kg in mass, for which trait data was available.

Browse and graminoid (grass and allies) consumption are the two primary axes of dietary differentiation in herbivores. Browse and graminoid consumption were available from HerbiTraits as two non-exclusive variables ranging from 0 (avoided) to 3 (highly preferred). To synthesize these variables into a single measure, we relativized each species' graminoid consumption value by multiplying it by their relative biomass (0-1) within their community. We then divided this value by the sum of relativized browse and graminoid consumption (Eq. 2). This variable was

42 used in conjunction with the plant growth form of each response, categorized as forb, woody, or

graminoid. Species-level plant growth forms were derived from the World Checklist of Vascular
 Plants and from the 'growthform' package (279).

3

4 5

6

	CW spacies level argminoid proference -	Gr * rel.biomass				
	CW species level grunthold prejerence –	$= \frac{Gr * rel.biomass}{(Gr * rel.biomass) + (Br * rel.biomass)}$ $ference = \frac{\sum CW \text{ species level gram. pref}}{N \text{ megafauna species}}$				
	Maan CW community land graminoid pro	$\sum CW$ species level gram.pref.				
	Mean CW commanity level grammola prej	N megafauna species				

Figure 7 Equation 2. Calculation of community weighted (CW) graminoid preference to synthesize graminoid ('Gr') and browse consumption ('Br.') values into a single value across a community (see Fig. S6), while accounting for relative biomass ('rel. biomass') per species. Relative biomass ranged from 0-1 and graminoid and browse consumption were 0-3 ordinal variables respectively.

11

12 Muzzle widths were extracted from (280, 281). Species-level muzzle widths were absent for 42 species of 114 herbivore species in our dataset (36.8%). We used genus-level averages for 13 14 the 25 of these species for which genus-level data was available. A remaining 17 species without genus-level estimates were minor members (median 13% relative biomass) of speciose herbivore 15 16 communities in 40 observations (4 studies). For these observations, we excluded these particular 17 species, calculating muzzle width summaries with the other species present only. Elephants 18 (Loxodonta africana and Elephas maximus), on the other hand, were important components (by 19 biomass) of 154 data points (10 studies). Muzzle width is a poor proxy for dietary selectivity in 20 elephants since these animals use their trunk to forage and can both be selective and consume large 21 quantities of biomass. We thus assigned elephants the same muzzle width as black rhinos (Diceros 22 bicornis) because of their similar body mass and diet. All muzzle width analyses were conducted 23 with and without data containing elephants, producing similar results (without elephants, 24 maximum muzzle width slope=0.27 [0.10, 0.45], p=0.002, Table S1). The final dataset included 25 community weighted muzzle width estimates for all but 56 abundance responses (1.7%) and 13 26 diversity responses (1.7%), which were excluded from analysis.

Finally, we assigned each megafauna into functional groups to evaluate whether functional group richness shaped megafauna impacts. Functional groups were based on combinations of body mass bins (10-45 kg, 45-100 kg, 100-1,000 kg, \geq 1,000 kg), dietary guilds (browser, mixed feeder, grazer), and fermentation type (foregut, hindgut, and simple gut).

31

32 Influence of functional traits and environmental and methodological variables

33 We formulated 24 hypotheses regarding environmental and functional variables that could explain 34 megafauna impacts on plant diversity and abundance. These variables included communityweighted megafauna functional traits (body mass, muzzle width, the interaction of plant growth 35 36 form with graminoid consumption, proportion of megafauna that were hindgut fermenters, 37 megafauna biomass per hectare), environmental variables (maximum annual temperature and precipitation, net primary productivity, absolute latitude, the human footprint index, and landform 38 39 type), as well as methodological variables (treatment duration, scale of measurement). Some 40 variables were treated with interaction terms (e.g., treatment duration with net primary 41 productivity, Table S2). All continuous variables were scaled prior to analysis. See Table S2 for a full list of model formulas and model comparisons. 42

1 While we suspected that predator presence/protection status would influence megafauna 2 impacts, we lacked confidence in reconstructing predator communities from IUCN distribution 3 data (282) given the broad temporal range of studies and because of significant heterogeneity (e.g., 4 landscape of fear) within the range of a predator-prey pair [e.g., (44)].

5 For each variable we constructed three models: an intercept-only null model, a model 6 containing the factor(s) of interest, and a model containing the factor of interest(s) as well as 7 megafauna nativeness (Table S2). We used likelihood ratio tests to compare the factors of interest 8 to the null model, and to test if adding megafauna nativeness improved model quality. We also 9 tested for significant differences between native and introduced megafauna within each of these 10 final candidate models with planned contrast tests with the function 'glht' in the package 11 'multcomp' (version 1.4-20). Each model and model comparison, and corresponding sample size 12 of the dataset, is presented in Table S2.

2 Fig. S1.

- 3 Map of study locations showing bias towards North America, Europe, and Australia. The meta-
- 4 analysis data consisted of 170 distinct study locations (considered distinct if >100 km apart).

5

3 Fig. S2.

Nativeness does not shape the effects of megafauna on plant diversity (A) or abundance (B) when
controlling for species identity, for those species with studies in their native and introduced ranges.
Nativeness did not improve model quality (LR=[0.5, 3.49], p-values=0.75–0.97) and there was no
significant difference between native and introduced megafauna (contrast: z=[-1.89, 0.62], p-values=0.30–0.94, Table S2).

3

Fig. S3.

Community-weighted mean muzzle width shaped megafauna effects on plant diversity (g=0.20,

- CIs=[0.05, 0.36], p-value=0.01, Table S1) and improved model quality relative to an intercept-
- 9 only null model (LR=5.8, p-value=0.02, Table S2).

1

3 Fig. S4.

4 Community-weighted mean megafauna body mass also had a positive relationship with impacts 5 6 on plant diversity (slope=0.20, CIs=[0.03, 0.38], p-value=0.02, Table S1) and improved model quality relative to an intercept-only null model (LR=4.6, p-value=0.03, Table S2).

- 9

1

3 Fig. S5.

4 Megafauna biomass (kg), relativized by net primary productivity, did not influence megafauna effects on native plant diversity (slope=0.10, CIs=[-0.06, 0.26], p-value=0.21, Table S1) and did 5 6 7 8 9 not improve model quality relative to an intercept-only null model (LR=1.3, p-value=0.26, Table S2).

Megafauna nativeness

Introduced
Native

1 2

4 Fig. S6.

5 Megafauna dietary preference for graminoids interacts with plant growth forms to shape 6 megafauna impacts on (A) plant diversity (interaction p-values=0.02–0.03) and (B) abundance (p-7 values=0.02–0.001). See Table S1 for all coefficient estimates. Dietary preference was weighted 8 by relative biomass of each species (see Eq. 2). This model significantly improved model quality 9 relative to intercept-only model (diversity: LR=15.1, p-value=0.01, abundance: LR=16.3, p-10 value=0.006, Table S2).

- 12
- 13

4 Fig. S7

5 There was no evidence that megafauna community species (A, C) and functional group (B, D) 6 richness shaped impacts on native plant diversity (A, B) or plant abundance (C, D) (p-values=0.08-7 0.50, Table S1). Likewise, these measures of megafauna diversity did not improve model quality 8 relative to an intercept-only null model (LR=[0.46, 3.0], p-values=0.08-0.50, Table S2) 9

Submitted Manuscript: Confidential Template revised November 2022

2 Fig. S8

Megafauna species richness (A) and functional group richness (B) had a significant but weak negative relationship with introduced plant abundance (bottom row, p-values=0.005–0.007, Table S1). These factors improved model quality relative to an intercept-only null model (LR=[14.9, 15.3], p-values=0.0005, Table S2)

4

1 2 3

5 Fig. S9

- 6 The interaction between megafauna body mass and plant nativeness improved model quality in 7 explaining impacts on plant abundance (LR=15.4, p-value=0.0005, Table S2) with a non-8 significant positive interaction with introduced plants (p-value=0.09, Table S1).
- 9
- 10

Megafauna nativeness Native 0 Introduced 0

1

3 **Fig. S10**

4 Measurement scale significantly improved model quality (LR=[4.5, 5.9], p-values=0.01-0.03,

5 Table S2) relative to intercept-only models. Measurement scale was estimated both as plot area

6 (A), which excluded transect-based measurements and as maximum measurement length (B),

7 which included transect length, the hypotenuse of rectangular and square plots and the diameter of circular plots. Both had a negative relationship with plant diversity impacts (p-values=0.01-0.03,

8 9 Table S1).

3

4 Fig. S11

5 PRISMA diagram (58) indicating systematic literature review process. The left pathway indicates 6 the total number of studies identified from Web of Science, the number removed through title 7 screening, the number unavailable, and the number excluded due to ineligibility. On the right, the 8 diagram indicates the number of additional studies identified from Google Scholar, bibliographies,

9 and other meta-analyses, with the number excluded due to ineligibility.

10

11

Submitted Manuscript: Confidential Template revised November 2022

3 Fig. S12.

4 Distributions of environmental variables were similar between native and introduced megafauna 5 communities. Each plot shows environmental distributions for studies reporting on plant 6 abundance responses (left) and diversity responses (right), with native distributions in brown and

- 7 introduced in blue.
- 8

2

Submitted Manuscript: Confidential Template revised November 2022

3 Fig. S13.

4 Distributions of megafauna species richness and trait distributions were roughly similar between 5 native and introduced megafauna communities. Each plot shows trait distributions for studies 6 reporting on plant abundance responses (left) and diversity responses (right), with native 7 distributions in brown and introduced in blue.

1

2 **Fig. S14**

3 Main results selecting only the final time point in time series, or the largest measurement scale in 4 experiments that reported time series or multiple scales from the same site / species led to the same 5 results as controlling for non-independence with random effects. Nativeness did not improve 6 model quality (p-values=0.06-0.38, Table S2) and there was no difference between native and 7 introduced megafauna (p-values=0.07-0.65, Table S1). Muzzle width still significantly affected 8 impacts on plant diversity (slope=0.24, 95% CIs=[0.04, 0.44], p=0.02, Table S1) and improved 9 model quality (LR=5.4, p=0.02, Table S2). See Table S1 and Table S2 for additional models that 10 also evaluated only the final time point / measurement scale. 11

2

1

3 Fig. S15

4 There was no difference between the impacts of native and introduced megafauna on plant

5 abundance across landforms when only considering species-level responses (for which plant

6 nativeness was more certain, z=[-0.9, 0.68], p-values=0.84–0.99, Table S1). Nor did megafauna

7 nativeness improve model quality (LR=0.7, p-value=0.7, Table S2).

2

1

3 Fig. S16

Funnel plot of megafauna impacts on native and introduced plant abundance. Model estimate (e.g., pooled effect size) for each group is shown with a vertical dashed line. Larger values on y axis (e.g., lower sampling variance) have higher weight in model and should be closer to model estimate. Low-sample size publication bias should result in asymmetrical funnel plots due the non-publication of non-significant results (high sampling variance, low position on y axis). While the funnel plot suggests some evidence of low small size publication bias, these make our conclusions more conservative to prevailing views.

Submitted Manuscript: Confidential Template revised November 2022

1

3 Fig. S17

Funnel plot of megafauna impacts on native plant diversity. Model estimate (e.g., pooled effect size) for each group is shown with a vertical dashed line. Larger values on y axis (e.g., lower sampling variance) have higher weight in model and should be closer to model estimate. Lowsample size publication bias should result in asymmetrical funnel plots due the non-publication of non-significant results (high sampling variance, low position on y axis). While the funnel plot suggests some evidence of small sample size publication bias (introduced megafauna on offshore islands and oceanic islands), these make our conclusions more conservative.

Submitted Manuscript: Confidential Template revised November 2022

4 Fig. S18

5 Effects of megafauna on plant abundance when only considered pure-nativeness megafauna 6 communities, which involved excluding one study. As with main text results, there was no 7 significant difference between native and introduced megafauna (z=[-0.84, 1.65], p=[0.25, 0.98], 8 Table S1).

Submitted Manuscript: Confidential Template revised November 2022

3 Fig. S19

4 Effects of megafauna on plant diversity with plants of unspecified nativeness excluded. As with

5 main text results (Figs. 1, 3), there was no significant difference between native and introduced 6 megafauna (z=[-1.05, 1.01], p=[0.69, 0.98], Table S1)

1

3 Fig. S20

Effects of megafauna on plant diversity, showing responses reported as native, unspecified plant diversity responses (treated as 'native' in main text), mixed plant responses (excluded from main text), and introduced plant responses (Fig 3B). As in main text analysis, there was no difference between the impacts of native and introduced megafauna (z=[-1.4, 0.7], p=[0.51, 0.93]) and nativeness did not improve model quality (LR=4.30, p=0.37, Table S2). See Fig. S19 for analyses

9 with unspecified nativeness plants excluded.

1

3 Fig. S21.

4 Megafauna functional space derived from key traits that control the effects of megafauna on the 5 environment. Functional traits are derived from (54). Points indicate species, colored by their 6 status (indicating introduced species in the meta-analytic dataset). Overlaid arrows and text 7 indicate relationship between traits and principal coordinate analysis axes.

Table S1

Main effects of all models for main text results ('Primary Analyses') as well as sensitivity analyses. Model formulas and sample sizes are given per model as are the model estimates, standard error of the estimates ('SE'), lower and upper 95% confidence intervals ('Lower CI', 'Upper CI'), t-statistic, and p-value. Sample sizes are given following each formula, with number of individual responses followed by number of studies in parentheses. Note that the t-statistics and p-values are testing if the coefficient is significantly different from zero. See Table S2 for planned contrast test results comparing native and introduced megafauna impacts. Note that interactions between categorical variables were formulated as single concatenated variables, leading to identical but more interpretable results. Finally, we removed intercepts from models containing categorical variables. Sensitivity analyses include: 'Simple Random'=models do not include a temporal autocorrelation term; 'Final in Time Series / Largest Scale Measure Only'=the last time point and the largest scale measurement from each experiment were selected, instead of being controlled for with random effects; 'Species-level Responses Only'=collective plant abundance responses omitted, only species-level abundances include; 'Pure Megafauna Nativeness'=data from studies with more than one nativeness of manipulated megafauna were excluded (1 study); and 'Unspecified Nativeness Plants Excluded'=plants of unspecified nativeness were excluded from diversity analyses.

Primary Analyses

Responses to Native and Introduced Megafauna

Abundance ~ Megafauna Nativeness * Plant Nativeness * Landform Evo. History, N=2974(196)								
Term	Estimate	SE	Lower CI	Upper Cl	t-statistic	p-value		
Introduced-Introduced-absent	-0.2636	0.1521	-0.562	0.0348	-1.7335	0.0833		
Introduced-Introduced-present	0.1905	0.1646	-0.1323	0.5134	1.1574	0.2472		
Introduced-Native-absent	-0.246	0.0936	-0.4297	-0.0622	-2.6271	0.0087		
Introduced-Native-present	-0.3903	0.0702	-0.528	-0.2526	-5.5581	<0.0001		
Native-Introduced-present	-0.1114	0.0961	-0.3	0.0771	-1.1591	0.2465		
Native-Native-present	-0.338	0.0359	-0.4084	-0.2676	-9.4125	<0.0001		
Abundance ~ Megafauna Nativeness * Landform Evo. History, N=2974	(196)							
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value		
Introduced-absent	-0.2536	0.0914	-0.4342	-0.0729	-2.7742	0.0062		
Introduced-present	-0.3328	0.0698	-0.4707	-0.1948	-4.7662	<0.0001		
Native-present	-0.3306	0.0364	-0.4025	-0.2586	-9.0806	<0.0001		
Diversity ~ Megafauna Nativeness * Landform Evo. History * Island, N=591(73)								
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value		
Introduced-absent-yes	-0.6869	0.3815	-1.4488	0.075	-1.8006	0.0764		
Introduced-present-no	-0.1659	0.2326	-0.6304	0.2986	-0.7133	0.4782		
Introduced-present-yes	-0.2651	0.2864	-0.837	0.3068	-0.9257	0.358		
Native-present-no	0.0401	0.1147	-0.1891	0.2692	0.3491	0.7281		
Native-present-yes	-0.8339	0.3767	-1.5862	-0.0816	-2.2137	0.0304		
Diversity ~ Invasive, N=591(73)								
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value		
100 Worst	0.0602	0.2813	-0.5011	0.6215	0.2139	0.8312		
Other	-0.1437	0.1037	-0.3506	0.0633	-1.3855	0.1704		
Abundance ~ Invasive, $N=2743(188)$								
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value		
100 Worst	-0.2429	0.0869	-0.4148	-0.0711	-2.7944	0.0059		
Other	-0.3797	0.0354	-0.4498	-0.3097	-10.7147	< 0.0001		
Diversity ~ Feral, N=591(73)								
Term	Estimate	SE	Lower CI	Upper Cl	t-statistic	p-value		
Feral	-0.2136	0.2041	-0.6208	0.1937	-1.0464	0.2991		
Non Feral	-0.0976	0.1076	-0.3123	0.1172	-0.9065	0.3679		

Abundance ~ Feral, N=2743(188)

Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Feral	-0.3089	0.072	-0.4512	-0.1666	-4.2907	< 0.0001
Non Feral	-0.3751	0.037	-0.4482	-0.3019	-10.1402	< 0.0001
Diversity ~ Megafauna Nativeness * Plant Nativeness, N=638(74)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Introduced-Introduced	0.2578	0.254	-0.2417	0.7574	1.0151	0.3108
Introduced-Native	-0.3145	0.1633	-0.6357	0.0066	-1.9262	0.0549
Native-Introduced	0.1329	0.2158	-0.2915	0.5572	0.6158	0.5384
Native-Native	-0.0366	0.11	-0.2529	0.1798	-0.3323	0.7398
Abundance ~ Megafauna Nativeness * Plant Nativeness, N=2974(196)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Introduced-Introduced	-0.0747	0.1115	-0.2934	0.144	-0.6699	0.503
Introduced-Native	-0.3358	0.0564	-0.4465	-0.2251	-5.9492	<0.0001
Native-Introduced	-0.121	0.0964	-0.31	0.0681	-1.2547	0.2098
Native-Native	-0.339	0.0361	-0.4098	-0.2683	-9.3942	<0.0001
Primary Analyses						
Coevolutionary History and Novelty						
Abundance ~ Plant-Megafauna Coev., N=1247(76)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
No	-0.1983	0.0781	-0.3517	-0.045	-2.5397	0.0113
Yes	-0.2964	0.0536	-0.4017	-0.1912	-5.5336	<0.0001
Abundance ~ Plant-Megafauna Phylogenetic Novelty (CWM), N=115(17	7)					
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1573	0.1086	-0.3889	0.0743	-1.4479	0.1682
Plant-Megafauna Phylogenetic Novelty (CWM)	0.1403	0.1171	-0.092	0.3727	1.1985	0.2336
Abundance ~ Plant-Megafauna Functional Noveltv (CWM). N=115(17)		-				
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1469	0.1091	-0.3794	0.0856	-1.3465	0.1981
Plant-Megafauna Functional Novelty (CWM)	0.1009	0.1087	-0.1147	0.3166	0.9288	0.3553
Diversity ~ Coevolved Biome. $N=591(73)$						
Term	Estimate	SF	l ower Cl	Upper Cl	t-statistic	p-value
No	-0.0092	0.2978	-0.6034	0.5849	-0.031	0.9754
Yes	-0.1326	0.1032	-0.3386	0.0733	-1.2853	0.2031
Diversity ~ Megafauna Phylogenetic Novelty (CWM) N=162(15)		0.1002		0.01.00		
Term	Estimate	SF	Lower CI	Upper Cl	t-statistic	n-value
intercept	-0.1459	0.3418	-0.8981	0.6063	-0.4268	0.6777
Megafauna Phylogenetic Novelty (CWM)	0 1913	0 2859	-0 438	0.8206	0.6691	0.5172
Diversity ~ Megafauna Functional Novelty (CWM) N=162(15)	0.1010	0.2000	0.100	0.0200	0.0001	0.0112
	Estimate	SF	Lower CI	Upper Cl	t-statistic	n-value
intercent	-0 2343	0 3942	_1 1019	0 6333	-0 5945	0 5642
Megafauna Functional Novelty (CWM)	-0.0033	0.3456	-0 7641	0.7575	-0.0095	0.9926
Primary Analyses	0.0000	0.0100	0.7041	0.1010	0.0000	0.0020
Functional Traits						
Abundance ~ Max Muzzle Width (CM/M) N=2102(152)						
Term	Fetimata	SE	Lower Cl	Linner Cl	t_etatietio	n_value
intercent		0 0270				P-value
Max, Muzzle Width (CWM)	-0.3710	0.03/9	-0.4407	-0.2900	-9.0001	~0.000 I
$\frac{1}{10000000000000000000000000000000000$	0.0100	0.0340	-0.0499	0.0000	0.0001	0.0901
Diversity $\sim ividx$. $ividzzie vvid(1) (GVVIV), iv=407(00)$	Ectimete	сг.	Lower Cl	Linner Ci	t atatistic	n volue
	Estimate	SE		Opper CI	เ-รเลแรแต	p-value

intercept	-0.1896	0.0838	-0.3576	-0.0216	-2.2633	0.0277
Max. Muzzle Width (CWM)	0.2597	0.069	0.1237	0.3956	3.7625	2.00E-04
Abundance ~ Mean Muzzle Width (CWM), N=2103(152)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.3712	0.0377	-0.4459	-0.2964	-9.8335	<0.0001
Mean Muzzle Width (CWM)	0.0515	0.0319	-0.011	0.114	1.6157	0.1064
Diversity ~ Mean Muzzle Width (CWM), N=407(60)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1577	0.1001	-0.3583	0.043	-1.5757	0.121
Mean Muzzle Width (CWM)	0.2018	0.0782	0.0477	0.3558	2.5802	0.0105
Abundance ~ Mean Body Mass (CWM), N=2135(154)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.3736	0.0373	-0.4475	-0.2997	-10.0157	<0.0001
Mean Body Mass (CWM)	0.0349	0.03	-0.024	0.0938	1.1633	0.2449
Diversity ~ Mean Body Mass (CWM), N=420(62)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1915	0.102	-0.3957	0.0126	-1.878	0.0654
Mean Body Mass (CWM)	0.2031	0.0885	0.0288	0.3774	2.295	0.0225
Abundance ~ Max. Body Mass (CWM), N=2135(154)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.3716	0.0375	-0.4458	-0.2975	-9.9226	<0.0001
Max. Body Mass (CWM)	0.0127	0.0309	-0.0478	0.0732	0.4119	0.6804
Diversity ~ Max. Body Mass (CWM), N=420(62)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.196	0.1046	-0.4053	0.0133	-1.8745	0.0659
Max. Body Mass (CWM)	0.1756	0.087	0.0043	0.3469	2.0181	0.0446
Abundance ~ Megafauna Biomass / NPP, N=1638(112)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.3276	0.0403	-0.4078	-0.2475	-8.1255	<0.0001
Megafauna Biomass / NPP	-0.04	0.0259	-0.0908	0.0107	-1.5467	0.1221
Diversity ~ Megafauna Biomass / NPP, N=317(44)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.141	0.1256	-0.3949	0.1128	-1.1228	0.2682
Megafauna Biomass / NPP	0.101	0.0804	-0.0573	0.2593	1.2553	0.2103
Abundance ~ Plant Growth Form * Graminoid Preference (CWM),	N=1730(120)					
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1579	0.0583	-0.2736	-0.0422	-2.7109	0.008
Plant Growth FormGraminoid	-0.0701	0.0889	-0.2447	0.1045	-0.7878	0.4311
Plant Growth FormWoody	-0.1951	0.0664	-0.3254	-0.0648	-2.9389	0.0034
Graminoid Preference (CWM)	0.1385	0.0593	0.0222	0.2549	2.3352	0.0197
Plant Growth FormGraminoid:Graminoid Preference (CWM)	-0.2553	0.0787	-0.4096	-0.1009	-3.2437	0.0012
Plant Growth FormWoody:Graminoid Preference (CWM)	-0.1247	0.0704	-0.2628	0.0133	-1.7727	0.0765
Diversity ~ Plant Growth Form * Graminoid Preference (CWM), N=	:167(27)					
Term	Estimate	SE	Lower CI	Upper Cl	t-statistic	p-value
intercept	0.1185	0.1971	-0.2914	0.5285	0.6012	0.5541
Plant Growth FormGraminoid	-0.2066	0.2769	-0.7634	0.3502	-0.7459	0.4594
Plant Growth FormWoody	-0.2325	0.2197	-0.6743	0.2093	-1.058	0.2954
Graminoid Preference (CWM)	0.3874	0.1705	0.0338	0.7411	2.2724	0.0332
Plant Growth FormGraminoid:Graminoid Preference (CWM)	-0.6075	0.2462	-1.0952	-0.1198	-2.4674	0.0151

Plant Growth FormWoody:Graminoid Preference (CWM)	-0.1186	0.1948	-0.5045	0.2673	-0.6087	0.5439
Abundance ~ Max. Body Mass (CWM) * Plant Nativeness, N=2306(161)					
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Max. Body Mass (CWM)	0.1098	0.1138	-0.1134	0.3331	0.9651	0.3346
Plant NativenessIntroduced	-0.0102	0.0908	-0.1884	0.168	-0.1124	0.9106
Plant NativenessNative	-0.3479	0.0349	-0.4165	-0.2793	-9.9553	<0.0001
Max. Body Mass (CWM):Plant NativenessNative	-0.1023	0.1136	-0.325	0.1205	-0.9004	0.368
Diversity ~ Max. Body Mass (CWM) * Plant Nativeness, N=460(63)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Max. Body Mass (CWM)	-0.0279	0.3077	-0.6336	0.5778	-0.0907	0.9278
Plant NativenessIntroduced	0.1805	0.2106	-0.2364	0.5973	0.857	0.3931
Plant NativenessNative	-0.1861	0.1059	-0.3958	0.0235	-1.7574	0.0814
Max. Body Mass (CWM):Plant NativenessNative	0.2005	0.3046	-0.399	0.8	0.6582	0.5109
Abundance ~ Mean Body Mass (CWM) * Plant Nativeness, N=2306(16	1)					
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Mean Body Mass (CWM)	0.1992	0.1183	-0.0327	0.4312	1.6847	0.0922
Plant NativenessIntroduced	-9.00E-04	0.0885	-0.1747	0.1729	-0.0099	0.9921
Plant NativenessNative	-0.3502	0.0348	-0.4185	-0.282	-10.0728	<0.0001
Mean Body Mass (CWM):Plant NativenessNative	-0.1694	0.1179	-0.4007	0.0619	-1.4367	0.151
Diversity ~ Mean Body Mass (CWM) * Plant Nativeness, N=460(63)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Mean Body Mass (CWM)	-0.1267	0.4044	-0.9228	0.6693	-0.3134	0.7542
Plant NativenessIntroduced	0.2172	0.2208	-0.2198	0.6543	0.9841	0.327
Plant NativenessNative	-0.1815	0.1044	-0.3882	0.0252	-1.7383	0.0847
Mean Body Mass (CWM):Plant NativenessNative	0.321	0.4015	-0.4692	1.1112	0.7995	0.4247
Abundance ~ Proportion Hindgut (CWM), N=2135(154)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.3726	0.0375	-0.4469	-0.2983	-9.9306	<0.0001
Proportion Hindgut (CWM)	0.0179	0.0329	-0.0466	0.0823	0.5433	0.587
Diversity ~ Proportion Hindgut (CWM), N=420(62)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1784	0.1105	-0.3997	0.0428	-1.6141	0.1119
Proportion Hindgut (CWM)	0.0454	0.0904	-0.1327	0.2236	0.5025	0.6157
Primary Analyses						
Environmental Factors						
Abundance ~ Max. Annual Precip., N=2743(188)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.3647	0.033	-0.4299	-0.2994	-11.0465	<0.0001
Max. Annual Precip.	-0.0445	0.0365	-0.116	0.0271	-1.219	0.223
Diversity ~ Max. Annual Precip., N=591(73)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.0963	0.0927	-0.2812	0.0886	-1.0393	0.3024
Max. Annual Precip.	-0.1586	0.0849	-0.3256	0.0083	-1.8693	0.0625
Abundance ~ Max. Annual Temp., N=2743(188)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.3553	0.0333	-0.4213	-0.2894	-10.6564	<0.0001
Max. Annual Temp.	0.0213	0.0331	-0.0436	0.0863	0.6447	0.5192
Diversity ~ Max. Annual Temp., N=591(73)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
				••		•

intercept	-0.1055	0.0972	-0.2994	0.0884	-1.0857	0.2814
Max. Annual Temp.	0.0912	0.0984	-0.1024	0.2849	0.927	0.3546
Abundance ~ Net Primary Productivity, N=2743(188)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.3618	0.0328	-0.4266	-0.2969	-11.0273	<0.0001
Net Primary Productivity	-0.0427	0.0318	-0.105	0.0196	-1.3435	0.1793
Diversity ~ Net Primary Productivity, N=591(73)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1092	0.0989	-0.3066	0.0883	-1.1035	0.2737
Net Primary Productivity	-0.0398	0.0735	-0.1844	0.1048	-0.5421	0.5881
Abundance ~ Human Footprint Index, N=2743(188)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.3599	0.033	-0.4251	-0.2948	-10.9228	<0.0001
Human Footprint Index	0.005	0.0344	-0.0624	0.0724	0.1463	0.8837
Diversity ~ Human Footprint Index, N=591(73)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1406	0.1029	-0.3459	0.0647	-1.3663	0.1763
Human Footprint Index	0.0425	0.0647	-0.0849	0.1698	0.6563	0.5121
Abundance ~ Island, N=2743(188)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
no	-0.3604	0.0377	-0.435	-0.2859	-9.5595	<0.0001
yes	-0.3604	0.0672	-0.4932	-0.2276	-5.3644	<0.0001
Diversity ~ Island, N=591(73)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
no	0.0076	0.1048	-0.2015	0.2168	0.0729	0.9421
yes	-0.5213	0.19	-0.9003	-0.1422	-2.7441	0.0078
Primary Analyses						
Megafauna Diversity						
Abundance ~ Number of Megafauna Species, N=2743(188)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.3606	0.0327	-0.4252	-0.2959	-11.0302	<0.0001
Number of Megafauna Species	-0.0433	0.0249	-0.0921	0.0056	-1.7382	0.0823
Diversity ~ Number of Megafauna Species, N=591(73)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1144	0.0976	-0.3091	0.0804	-1.1717	0.2454
Number of Megafauna Species	0.0329	0.0414	-0.0485	0.1144	0.7958	0.4267
Abundance ~ Number of Megafauna Functional Groups, N=2743(188)						
Term	Estimate	0E		Linner Cl	t_statistic	p-value
intercept		SE	LOWEI CI	Opper Cr	1-314113110	
Number of Megafauna Functional Groups	-0.3624	S⊑ 0.0329	-0.4274	-0.2975	-11.0315	<0.0001
	-0.3624 -0.0405	0.0329 0.026	-0.4274 -0.0914	-0.2975 0.0104	-11.0315 -1.5619	<0.0001 0.1185
Diversity ~ Number of Megafauna Functional Groups, N=591(73)	-0.3624 -0.0405	0.0329 0.026	-0.4274 -0.0914	-0.2975 0.0104	-11.0315 -1.5619	<0.0001 0.1185
Diversity ~ Number of Megafauna Functional Groups, N=591(73) Term	-0.3624 -0.0405 Estimate	0.0329 0.026 SE	-0.4274 -0.0914	-0.2975 0.0104 Upper Cl	-11.0315 -1.5619 t-statistic	<0.0001 0.1185 p-value
Diversity ~ Number of Megafauna Functional Groups, N=591(73) Term intercept	-0.3624 -0.0405 Estimate -0.1137	0.0329 0.026 SE 0.0979	-0.4274 -0.0914 Lower CI -0.3091	-0.2975 0.0104 Upper Cl 0.0817	-11.0315 -1.5619 t-statistic -1.1611	<0.0001 0.1185 p-value 0.2496
Diversity ~ Number of Megafauna Functional Groups, N=591(73) Term intercept Number of Megafauna Functional Groups	-0.3624 -0.0405 Estimate -0.1137 0.0286	0.0329 0.026 SE 0.0979 0.0419	-0.4274 -0.0914 Lower Cl -0.3091 -0.0539	-0.2975 0.0104 Upper Cl 0.0817 0.111	-11.0315 -1.5619 t-statistic -1.1611 0.682	<0.0001 0.1185 p-value 0.2496 0.4958
Diversity ~ Number of Megafauna Functional Groups, N=591(73) Term intercept Number of Megafauna Functional Groups Abundance ~ Number of Megafauna Species * Plant Nativeness, N=29	-0.3624 -0.0405 Estimate -0.1137 0.0286 74(196)	0.0329 0.026 SE 0.0979 0.0419	-0.4274 -0.0914 Lower Cl -0.3091 -0.0539	Upper Cl 0.0104 Upper Cl 0.0817 0.111	-11.0315 -1.5619 t-statistic -1.1611 0.682	<0.0001 0.1185 p-value 0.2496 0.4958
Diversity ~ Number of Megafauna Functional Groups, N=591(73) Term intercept Number of Megafauna Functional Groups Abundance ~ Number of Megafauna Species * Plant Nativeness, N=29 Term	-0.3624 -0.0405 Estimate -0.1137 0.0286 74(196) Estimate	0.0329 0.026 SE 0.0979 0.0419 SE	-0.4274 -0.0914 Lower Cl -0.3091 -0.0539 Lower Cl	-0.2975 0.0104 Upper Cl 0.0817 0.111 Upper Cl	-11.0315 -1.5619 t-statistic -1.1611 0.682 t-statistic	<0.0001 0.1185 p-value 0.2496 0.4958 p-value
Diversity ~ Number of Megafauna Functional Groups, N=591(73) Term intercept Number of Megafauna Functional Groups Abundance ~ Number of Megafauna Species * Plant Nativeness, N=29 Term Number of Megafauna Species	-0.3624 -0.0405 Estimate -0.1137 0.0286 74(196) Estimate -0.322	SE 0.0329 0.026 SE 0.0979 0.0419 SE 0.1156	-0.4274 -0.0914 Lower CI -0.3091 -0.0539 Lower CI -0.5488	-0.2975 0.0104 Upper CI 0.0817 0.111 Upper CI -0.0952	-11.0315 -1.5619 t-statistic -1.1611 0.682 t-statistic -2.7841	<0.0001 0.1185 p-value 0.2496 0.4958 p-value 0.0054
Diversity ~ Number of Megafauna Functional Groups, N=591(73) Term intercept Number of Megafauna Functional Groups Abundance ~ Number of Megafauna Species * Plant Nativeness, N=29 Term Number of Megafauna Species Plant NativenessIntroduced	-0.3624 -0.0405 Estimate -0.1137 0.0286 74(196) Estimate -0.322 -0.182	SE 0.0329 0.026 SE 0.0979 0.0419 SE 0.1156 0.08	-0.4274 -0.0914 Lower Cl -0.3091 -0.0539 Lower Cl -0.5488 -0.339	Upper Cl 0.0104 Upper Cl 0.0817 0.111 Upper Cl -0.0952 -0.025	-11.0315 -1.5619 t-statistic -1.1611 0.682 t-statistic -2.7841 -2.2752	<0.0001 0.1185 p-value 0.2496 0.4958 p-value 0.0054 0.0231

Number of Megafauna Species:Plant NativenessNative	0.277	0.1159	0.0498	0.5043	2.3914	0.0169
Diversity ~ Number of Megafauna Species * Plant Nativeness, N=638(7	74)					
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Number of Megafauna Species	-0.2172	0.2718	-0.7517	0.3172	-0.7994	0.4246
Plant NativenessIntroduced	0.1045	0.2112	-0.3132	0.5222	0.4948	0.6216
Plant NativenessNative	-0.1072	0.0954	-0.2959	0.0815	-1.1237	0.2632
Number of Megafauna Species:Plant NativenessNative	0.2495	0.272	-0.2855	0.7845	0.9173	0.3596
Abundance ~ Number of Megafauna Functional Groups * Plant Nativen	ess, N=297	4(196)				
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Number of Megafauna Functional Groups	-0.2866	0.1061	-0.4946	-0.0786	-2.7018	0.007
Plant NativenessIntroduced	-0.1719	0.0787	-0.3264	-0.0175	-2.184	0.0292
Plant NativenessNative	-0.3434	0.0309	-0.404	-0.2828	-11.1211	<0.0001
Number of Megafauna Functional Groups:Plant NativenessNative	0.2445	0.1062	0.0362	0.4527	2.3025	0.0214
Diversity ~ Number of Megafauna Functional Groups * Plant Nativeness	s, N=638(74	ı)				
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Number of Megafauna Functional Groups	-0.2606	0.2952	-0.8412	0.3201	-0.8826	0.3781
Plant NativenessIntroduced	0.0845	0.2192	-0.3491	0.5181	0.3853	0.7006
Plant NativenessNative	-0.1061	0.0954	-0.2948	0.0827	-1.1112	0.2685
Number of Megafauna Functional Groups:Plant NativenessNative	0.2881	0.2952	-0.2924	0.8687	0.9762	0.3296
Primary Analyses						
Methodological Factors						
Diversity ~ Measurement Area (m2), N=567(66)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.0508	0.0954	-0.2415	0.1399	-0.5322	0.5965
Measurement Area (m2)	-0.1402	0.0632	-0.2644	-0.0159	-2.2193	0.0272
Diversity ~ Max. Measurement Length (m), N=573(69)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.046	0.0898	-0.2253	0.1334	-0.512	0.6104
Max. Measurement Length (m)	-0.1582	0.0611	-0.2785	-0.0379	-2.5874	0.0101
Abundance ~ Treatment Duration / NPP, N=2535(173)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.3705	0.0355	-0.4408	-0.3001	-10.4261	<0.0001
Treatment Duration / NPP	0.0071	0.0269	-0.0457	0.0599	0.2634	0.7923
Diversity ~ Treatment Duration / NPP, N=576(68)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1035	0.1026	-0.3086	0.1017	-1.0084	0.3172
Treatment Duration / NPP	-0.0355	0.0501	-0.1338	0.0629	-0.7079	0.4793
Abundance ~ Treatment Duration, N=2535(173)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.371	0.0359	-0.442	-0.3	-10.34	<0.0001
Treatment Duration	-0.0201	0.0172	-0.0538	0.0137	-1.1651	0.2441
Diversity ~ Treatment Duration, N=576(68)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1055	0.1025	-0.3103	0.0994	-1.0293	0.3073
Treatment Duration	-0.0208	0.0345	-0.0886	0.047	-0.6019	0.5475
Abundance ~ Treatment Duration * Net Primary Productivity, N=2535(1)	73)					
Term	Estimate	SE	Lower CI	Upper Cl	t-statistic	p-value
intercept	-0.3732	0.0355	-0.4436	-0.3029	-10.5006	<0.0001
Treatment Duration	-0.0107	0.0177	-0.0453	0.024	-0.6048	0.5454
Net Primary Productivity	-0.0415	0.0341	-0.1084	0.0254	-1.2177	0.2235
---	---------------	----------	----------	----------	-------------	----------
Treatment Duration:Net Primary Productivity	-0.0313	0.0136	-0.0581	-0.0045	-2.294	0.0219
Diversity ~ Treatment Duration * Net Primary Productivity, N=576(68)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1171	0.106	-0.3291	0.0949	-1.1052	0.2735
Treatment Duration	-0.0306	0.0348	-0.0989	0.0377	-0.8798	0.3794
Net Primary Productivity	0.024	0.0817	-0.1367	0.1847	0.2938	0.7691
Treatment Duration:Net Primary Productivity	-0.1169	0.0582	-0.2312	-0.0026	-2.0089	0.0451
Simple Random Responses to Native and Introduced Megafauna						
Abundance ~ Megafauna Nativeness * Plant Nativeness * Landform Ev	o. Historv. N	1=2974(1	96)			
Term	Estimate	SE	Lower Cl	Upper CI	t-statistic	p-value
Introduced-Introduced-absent	-0.2691	0.1461	-0.5557	0.0175	-1.8422	0.0657
Introduced-Introduced-present	0.2545	0.1543	-0.048	0.557	1.6493	0.0992
Introduced-Native-absent	-0.2404	0.0907	-0.4184	-0.0624	-2.6497	0.0082
Introduced-Native-present	-0.3461	0.069	-0.4813	-0.2109	-5.0195	<0.0001
Native-Introduced-present	-0.1365	0.0923	-0.3175	0.0445	-1.4785	0.1394
Native-Native-present	-0.3355	0.0355	-0.4052	-0.2658	-9.4426	<0.0001
Diversity ~ Megafauna Nativeness * Landform Evo. History * Island, N=	591(73)					
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Introduced-absent-yes	-0.702	0.385	-1.4709	0.0669	-1.8234	0.0728
Introduced-present-no	-0.302	0.2212	-0.7438	0.1397	-1.3655	0.1768
Introduced-present-yes	-0.2222	0.2935	-0.8082	0.3639	-0.757	0.4518
Native-present-no	0.0545	0.1158	-0.1768	0.2858	0.4709	0.6393
Native-present-yes	-0.7778	0.3807	-1.5382	-0.0174	-2.0428	0.0451
Diversity ~ Invasive, N=591(73)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
100 Worst	0.0412	0.2816	-0.5207	0.603	0.1462	0.8842
Other	-0.1416	0.1044	-0.3498	0.0667	-1.3567	0.1794
Abundance ~ Invasive, N=2743(188)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
100 Worst	-0.2321	0.0838	-0.3978	-0.0663	-2.768	0.0064
Other	-0.3642	0.0347	-0.4328	-0.2956	-10.4999	<0.0001
Diversity ~ Feral, N=591(73)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Feral	-0.3168	0.1962	-0.7084	0.0748	-1.6142	0.1111
Non Feral	-0.0743	0.1076	-0.2891	0.1404	-0.6907	0.4921
Abundance ~ Feral, N=2743(188)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Feral	-0.284	0.0693	-0.421	-0.1469	-4.0964	1.00E-04
Non Feral	-0.363	0.0362	-0.4345	-0.2915	-10.0397	<0.0001
Diversity ~ Megafauna Nativeness * Plant Nativeness, N=638(74)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Introduced-Introduced	0.2586	0.2414	-0.2154	0.7326	1.0713	0.2844
Introduced-Native	-0.3712	0.1564	-0.6784	-0.0641	-2.3732	0.0179
Native-Introduced	0.1305	0.2116	-0.285	0.546	0.6167	0.5376
Native-Native	-0.0153	0.1078	-0.2271	0.1964	-0.1423	0.8869
Simple Random						
Coevolutionary History and Novelty						

Abundance ~ Plant-Megafauna Coev., N=1247(76)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
No	-0.1918	0.0751	-0.3394	-0.0443	-2.5531	0.0109
Yes	-0.2862	0.0527	-0.3897	-0.1827	-5.4296	<0.0001
Abundance ~ Plant-Megafauna Phylogenetic Novelty (CWM), N=115(1	7)					
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1266	0.0864	-0.3107	0.0575	-1.4653	0.1635
Plant-Megafauna Phylogenetic Novelty (CWM)	0.1937	0.1092	-0.0226	0.41	1.7746	0.0787
Abundance ~ Plant-Megafauna Functional Novelty (CWM), N=115(17)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1046	0.0857	-0.2873	0.0782	-1.2197	0.2414
Plant-Megafauna Functional Novelty (CWM)	0.134	0.087	-0.0383	0.3063	1.5411	0.1261
Diversity ~ Coevolved Biome, N=591(73)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
No	-0.0295	0.2979	-0.6239	0.5649	-0.0991	0.9214
Yes	-0.1305	0.1038	-0.3377	0.0766	-1.2575	0.2129
Diversity ~ Megafauna Phylogenetic Novelty (CWM), N=162(15)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1484	0.3377	-0.8917	0.595	-0.4393	0.669
Megafauna Phylogenetic Novelty (CWM)	0.188	0.2709	-0.4084	0.7843	0.6938	0.5022
Diversity ~ Megafauna Functional Novelty (CWM), N=162(15)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.212	0.3673	-1.0205	0.5965	-0.5772	0.5755
Megafauna Functional Novelty (CWM)	0.0256	0.2796	-0.5897	0.6409	0.0917	0.9286
Simple Random						
Functional Traita						
Functional Traits						
Abundance ~ Max. Muzzle Width (CWM), N=2103(152)						
Abundance ~ Max. Muzzle Width (CWM), N=2103(152) Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Abundance ~ Max. Muzzle Width (CWM), N=2103(152) Term intercept	Estimate -0.3525	SE 0.0365	Lower CI -0.4247	Upper Cl -0.2802	t-statistic -9.6659	p-value <0.0001
Abundance ~ Max. Muzzle Width (CWM), N=2103(152) Term intercept Max. Muzzle Width (CWM)	Estimate -0.3525 0.0143	SE 0.0365 0.0284	Lower Cl -0.4247 -0.0414	Upper Cl -0.2802 0.0701	t-statistic -9.6659 0.505	p-value <0.0001 0.6136
Abundance ~ Max. Muzzle Width (CWM), N=2103(152) Term intercept Max. Muzzle Width (CWM) Diversity ~ Max. Muzzle Width (CWM), N=407(60)	Estimate -0.3525 0.0143	SE 0.0365 0.0284	Lower Cl -0.4247 -0.0414	Upper Cl -0.2802 0.0701	t-statistic -9.6659 0.505	p-value <0.0001 0.6136
Abundance ~ Max. Muzzle Width (CWM), N=2103(152) Term intercept Max. Muzzle Width (CWM) Diversity ~ Max. Muzzle Width (CWM), N=407(60) Term	Estimate -0.3525 0.0143 Estimate	SE 0.0365 0.0284 SE	Lower CI -0.4247 -0.0414 Lower CI	Upper CI -0.2802 0.0701 Upper CI	t-statistic -9.6659 0.505 t-statistic	p-value <0.0001 0.6136 p-value
Abundance ~ Max. Muzzle Width (CWM), N=2103(152) Term intercept Max. Muzzle Width (CWM) Diversity ~ Max. Muzzle Width (CWM), N=407(60) Term intercept	Estimate -0.3525 0.0143 Estimate -0.1798	SE 0.0365 0.0284 SE 0.0838	Lower Cl -0.4247 -0.0414 Lower Cl -0.3479	Upper CI -0.2802 0.0701 Upper CI -0.0117	t-statistic -9.6659 0.505 t-statistic -2.1456	p-value <0.0001 0.6136 p-value 0.0365
Abundance ~ Max. Muzzle Width (CWM), N=2103(152) Term intercept Max. Muzzle Width (CWM) Diversity ~ Max. Muzzle Width (CWM), N=407(60) Term intercept Max. Muzzle Width (CWM)	Estimate -0.3525 0.0143 Estimate -0.1798 0.2596	SE 0.0365 0.0284 SE 0.0838 0.0692	Lower CI -0.4247 -0.0414 Lower CI -0.3479 0.1237	Upper CI -0.2802 0.0701 Upper CI -0.0117 0.3956	t-statistic -9.6659 0.505 t-statistic -2.1456 3.7542	p-value <0.0001 0.6136 p-value 0.0365 2.00E-04
Abundance ~ Max. Muzzle Width (CWM), N=2103(152) Term intercept Max. Muzzle Width (CWM) Diversity ~ Max. Muzzle Width (CWM), N=407(60) Term intercept Max. Muzzle Width (CWM) Abundance ~ Mean Muzzle Width (CWM), N=2103(152)	Estimate -0.3525 0.0143 Estimate -0.1798 0.2596	SE 0.0365 0.0284 SE 0.0838 0.0692	Lower CI -0.4247 -0.0414 Lower CI -0.3479 0.1237	Upper CI -0.2802 0.0701 Upper CI -0.0117 0.3956	t-statistic -9.6659 0.505 t-statistic -2.1456 3.7542	p-value <0.0001 0.6136 p-value 0.0365 2.00E-04
Abundance ~ Max. Muzzle Width (CWM), N=2103(152) Term intercept Max. Muzzle Width (CWM) Diversity ~ Max. Muzzle Width (CWM), N=407(60) Term intercept Max. Muzzle Width (CWM) Abundance ~ Mean Muzzle Width (CWM), N=2103(152) Term	Estimate -0.3525 0.0143 Estimate -0.1798 0.2596 Estimate	SE 0.0365 0.0284 SE 0.0838 0.0692 SE	Lower Cl -0.4247 -0.0414 Lower Cl -0.3479 0.1237 Lower Cl	Upper CI -0.2802 0.0701 Upper CI -0.0117 0.3956 Upper CI	t-statistic -9.6659 0.505 t-statistic -2.1456 3.7542 t-statistic	p-value <0.0001 0.6136 p-value 0.0365 2.00E-04 p-value
Abundance ~ Max. Muzzle Width (CWM), N=2103(152) Term intercept Max. Muzzle Width (CWM) Diversity ~ Max. Muzzle Width (CWM), N=407(60) Term intercept Max. Muzzle Width (CWM) Abundance ~ Mean Muzzle Width (CWM), N=2103(152) Term intercept	Estimate -0.3525 0.0143 Estimate -0.1798 0.2596 Estimate -0.3527	SE 0.0365 0.0284 SE 0.0838 0.0692 SE 0.0363	Lower CI -0.4247 -0.0414 Lower CI -0.3479 0.1237 Lower CI -0.4246	Upper CI -0.2802 0.0701 Upper CI -0.0117 0.3956 Upper CI -0.2807	t-statistic -9.6659 0.505 t-statistic -2.1456 3.7542 t-statistic -9.7035	p-value <0.0001 0.6136 p-value 0.0365 2.00E-04 p-value <0.0001
Abundance ~ Max. Muzzle Width (CWM), N=2103(152) Term intercept Max. Muzzle Width (CWM) Diversity ~ Max. Muzzle Width (CWM), N=407(60) Term intercept Max. Muzzle Width (CWM) Abundance ~ Mean Muzzle Width (CWM), N=2103(152) Term intercept Max. Muzzle Width (CWM) Abundance ~ Mean Muzzle Width (CWM), N=2103(152) Term intercept Mean Muzzle Width (CWM)	Estimate -0.3525 0.0143 Estimate -0.1798 0.2596 Estimate -0.3527 0.0526	SE 0.0365 0.0284 SE 0.0838 0.0692 SE 0.0363 0.0253	Lower CI -0.4247 -0.0414 Lower CI -0.3479 0.1237 Lower CI -0.4246 0.003	Upper CI -0.2802 0.0701 Upper CI -0.0117 0.3956 Upper CI -0.2807 0.1022	t-statistic -9.6659 0.505 t-statistic -2.1456 3.7542 t-statistic -9.7035 2.0783	p-value <0.0001 0.6136 p-value 0.0365 2.00E-04 p-value <0.0001 0.0378
Abundance ~ Max. Muzzle Width (CWM), N=2103(152) Term intercept Max. Muzzle Width (CWM) Diversity ~ Max. Muzzle Width (CWM), N=407(60) Term intercept Max. Muzzle Width (CWM) Abundance ~ Mean Muzzle Width (CWM), N=2103(152) Term intercept Mean Muzzle Width (CWM) Diversity ~ Mean Muzzle Width (CWM), N=407(60)	Estimate -0.3525 0.0143 Estimate -0.1798 0.2596 Estimate -0.3527 0.0526	SE 0.0365 0.0284 SE 0.0838 0.0692 SE 0.0363 0.0253	Lower CI -0.4247 -0.0414 Lower CI -0.3479 0.1237 Lower CI -0.4246 0.003	Upper CI -0.2802 0.0701 Upper CI -0.0117 0.3956 Upper CI -0.2807 0.1022	t-statistic -9.6659 0.505 t-statistic -2.1456 3.7542 t-statistic -9.7035 2.0783	p-value <0.0001 0.6136 p-value 0.0365 2.00E-04 p-value <0.0001 0.0378
Abundance ~ Max. Muzzle Width (CWM), N=2103(152) Term intercept Max. Muzzle Width (CWM) Diversity ~ Max. Muzzle Width (CWM), N=407(60) Term intercept Max. Muzzle Width (CWM) Abundance ~ Mean Muzzle Width (CWM), N=2103(152) Term intercept Max. Muzzle Width (CWM) Abundance ~ Mean Muzzle Width (CWM), N=2103(152) Term intercept Mean Muzzle Width (CWM) Diversity ~ Mean Muzzle Width (CWM), N=407(60) Term	Estimate -0.3525 0.0143 Estimate -0.1798 0.2596 Estimate -0.3527 0.0526 Estimate	SE 0.0365 0.0284 SE 0.0838 0.0692 SE 0.0363 0.0253 SE	Lower CI -0.4247 -0.0414 Lower CI -0.3479 0.1237 Lower CI -0.4246 0.003 Lower CI	Upper Cl -0.2802 0.0701 Upper Cl -0.0117 0.3956 Upper Cl -0.2807 0.1022 Upper Cl	t-statistic -9.6659 0.505 t-statistic -2.1456 3.7542 t-statistic -9.7035 2.0783 t-statistic	p-value <0.0001 0.6136 p-value 0.0365 2.00E-04 p-value <0.0001 0.0378
Abundance ~ Max. Muzzle Width (CWM), N=2103(152) Term intercept Max. Muzzle Width (CWM) Diversity ~ Max. Muzzle Width (CWM), N=407(60) Term intercept Max. Muzzle Width (CWM) Abundance ~ Mean Muzzle Width (CWM), N=2103(152) Term intercept Mean Muzzle Width (CWM) Diversity ~ Mean Muzzle Width (CWM), N=407(60) Term intercept Mean Muzzle Width (CWM)	Estimate -0.3525 0.0143 Estimate -0.1798 0.2596 Estimate -0.3527 0.0526 Estimate -0.1529	SE 0.0365 0.0284 SE 0.0838 0.0692 SE 0.0363 0.0253 SE 0.0961	Lower CI -0.4247 -0.0414 Lower CI -0.3479 0.1237 Lower CI -0.4246 0.003 Lower CI -0.3456	Upper CI -0.2802 0.0701 Upper CI -0.0117 0.3956 Upper CI -0.2807 0.1022 Upper CI 0.0399	t-statistic -9.6659 0.505 t-statistic -2.1456 3.7542 t-statistic -9.7035 2.0783 t-statistic -1.591	p-value <0.0001 0.6136 p-value 0.0365 2.00E-04 p-value <0.0001 0.0378 p-value 0.1176
Abundance ~ Max. Muzzle Width (CWM), N=2103(152) Term intercept Max. Muzzle Width (CWM) Diversity ~ Max. Muzzle Width (CWM), N=407(60) Term intercept Max. Muzzle Width (CWM) Abundance ~ Mean Muzzle Width (CWM), N=2103(152) Term intercept Mean Muzzle Width (CWM) Diversity ~ Mean Muzzle Width (CWM), N=407(60) Term intercept Mean Muzzle Width (CWM) Max Muzzle Width (CWM)	Estimate -0.3525 0.0143 Estimate -0.1798 0.2596 Estimate -0.3527 0.0526 Estimate -0.1529 0.1947	SE 0.0365 0.0284 SE 0.0838 0.0692 SE 0.0363 0.0253 SE 0.0961 0.0734	Lower CI -0.4247 -0.0414 Lower CI -0.3479 0.1237 Lower CI -0.4246 0.003 Lower CI -0.3456 0.0503	Upper CI -0.2802 0.0701 Upper CI -0.0117 0.3956 Upper CI -0.2807 0.1022 Upper CI 0.0399 0.339	t-statistic -9.6659 0.505 t-statistic -2.1456 3.7542 t-statistic -9.7035 2.0783 t-statistic -1.591 2.6516	p-value <0.0001 0.6136 p-value 0.0365 2.00E-04 p-value <0.0001 0.0378 p-value 0.1176 0.0083
Abundance ~ Max. Muzzle Width (CWM), N=2103(152) Term intercept Max. Muzzle Width (CWM) Diversity ~ Max. Muzzle Width (CWM), N=407(60) Term intercept Max. Muzzle Width (CWM) Abundance ~ Mean Muzzle Width (CWM), N=2103(152) Term intercept Mean Muzzle Width (CWM) Diversity ~ Mean Muzzle Width (CWM), N=407(60) Term intercept Mean Muzzle Width (CWM) Diversity ~ Mean Muzzle Width (CWM), N=407(60) Term intercept Mean Muzzle Width (CWM) Abundance ~ Mean Body Mass (CWM), N=2135(154) <td>Estimate -0.3525 0.0143 Estimate -0.1798 0.2596 Estimate -0.3527 0.0526 Estimate -0.1529 0.1947</td> <td>SE 0.0365 0.0284 SE 0.0838 0.0692 SE 0.0363 0.0253 SE 0.0961 0.0734</td> <td>Lower CI -0.4247 -0.0414 Lower CI -0.3479 0.1237 Lower CI -0.4246 0.003 Lower CI -0.3456 0.0503</td> <td>Upper Cl -0.2802 0.0701 Upper Cl -0.0117 0.3956 Upper Cl -0.2807 0.1022 Upper Cl 0.0399 0.339</td> <td>t-statistic -9.6659 0.505 t-statistic -2.1456 3.7542 t-statistic -9.7035 2.0783 t-statistic -1.591 2.6516</td> <td>p-value <0.0001 0.6136 p-value 0.0365 2.00E-04 p-value <0.0001 0.0378 p-value 0.1176 0.0083</td>	Estimate -0.3525 0.0143 Estimate -0.1798 0.2596 Estimate -0.3527 0.0526 Estimate -0.1529 0.1947	SE 0.0365 0.0284 SE 0.0838 0.0692 SE 0.0363 0.0253 SE 0.0961 0.0734	Lower CI -0.4247 -0.0414 Lower CI -0.3479 0.1237 Lower CI -0.4246 0.003 Lower CI -0.3456 0.0503	Upper Cl -0.2802 0.0701 Upper Cl -0.0117 0.3956 Upper Cl -0.2807 0.1022 Upper Cl 0.0399 0.339	t-statistic -9.6659 0.505 t-statistic -2.1456 3.7542 t-statistic -9.7035 2.0783 t-statistic -1.591 2.6516	p-value <0.0001 0.6136 p-value 0.0365 2.00E-04 p-value <0.0001 0.0378 p-value 0.1176 0.0083
Abundance ~ Max. Muzzle Width (CWM), N=2103(152) Term intercept Max. Muzzle Width (CWM) Diversity ~ Max. Muzzle Width (CWM), N=407(60) Term intercept Max. Muzzle Width (CWM) Abundance ~ Mean Muzzle Width (CWM), N=2103(152) Term intercept Mean Muzzle Width (CWM) Diversity ~ Mean Muzzle Width (CWM), N=407(60) Term intercept Mean Muzzle Width (CWM) Diversity ~ Mean Muzzle Width (CWM), N=407(60) Term intercept Mean Muzzle Width (CWM) Abundance ~ Mean Body Mass (CWM), N=2135(154) Term	Estimate -0.3525 0.0143 Estimate -0.1798 0.2596 Estimate -0.3527 0.0526 Estimate -0.1529 0.1947 Estimate	SE 0.0365 0.0284 SE 0.0838 0.0692 SE 0.0363 0.0253 SE 0.0961 0.0734 SE	Lower CI -0.4247 -0.0414 Lower CI -0.3479 0.1237 Lower CI -0.4246 0.003 Lower CI -0.3456 0.0503 Lower CI	Upper CI -0.2802 0.0701 Upper CI -0.0117 0.3956 Upper CI -0.2807 0.1022 Upper CI 0.0399 0.339	t-statistic -9.6659 0.505 t-statistic -2.1456 3.7542 t-statistic -9.7035 2.0783 t-statistic -1.591 2.6516 t-statistic	p-value <0.0001 0.6136 p-value 0.0365 2.00E-04 p-value <0.0001 0.0378 p-value 0.1176 0.0083
Abundance ~ Max. Muzzle Width (CWM), N=2103(152) Term intercept Max. Muzzle Width (CWM) Diversity ~ Max. Muzzle Width (CWM), N=407(60) Term intercept Max. Muzzle Width (CWM) Abundance ~ Mean Muzzle Width (CWM), N=2103(152) Term intercept Mean Muzzle Width (CWM) Diversity ~ Mean Muzzle Width (CWM), N=407(60) Term intercept Mean Muzzle Width (CWM) Diversity ~ Mean Muzzle Width (CWM), N=407(60) Term intercept Mean Muzzle Width (CWM) Abundance ~ Mean Body Mass (CWM), N=2135(154) Term intercept	Estimate -0.3525 0.0143 Estimate -0.1798 0.2596 Estimate -0.3527 0.0526 Estimate -0.1529 0.1947 Estimate -0.3524	SE 0.0365 0.0284 SE 0.0838 0.0692 SE 0.0363 0.0253 SE 0.0961 0.0734 SE 0.0359	Lower CI -0.4247 -0.0414 Lower CI -0.3479 0.1237 Lower CI -0.4246 0.003 Lower CI -0.3456 0.0503 Lower CI -0.4236	Upper CI -0.2802 0.0701 Upper CI -0.0117 0.3956 Upper CI -0.2807 0.1022 Upper CI 0.0399 0.339 Upper CI -0.2813	t-statistic -9.6659 0.505 t-statistic -2.1456 3.7542 t-statistic -9.7035 2.0783 t-statistic -1.591 2.6516 t-statistic -9.813	p-value <0.0001 0.6136 p-value 0.0365 2.00E-04 p-value <0.0001 0.0378 p-value 0.1176 0.0083 p-value <0.0001
Abundance ~ Max. Muzzle Width (CWM), N=2103(152) Term intercept Max. Muzzle Width (CWM) Diversity ~ Max. Muzzle Width (CWM), N=407(60) Term intercept Max. Muzzle Width (CWM) Abundance ~ Mean Muzzle Width (CWM), N=2103(152) Term intercept Mean Muzzle Width (CWM) Diversity ~ Mean Muzzle Width (CWM), N=407(60) Term intercept Mean Muzzle Width (CWM) Diversity ~ Mean Muzzle Width (CWM), N=407(60) Term intercept Mean Muzzle Width (CWM) Abundance ~ Mean Body Mass (CWM), N=2135(154) Term intercept Mean Body Mass (CWM)	Estimate -0.3525 0.0143 Estimate -0.1798 0.2596 Estimate -0.3527 0.0526 Estimate -0.1529 0.1947 Estimate -0.3524 0.0131	SE 0.0365 0.0284 SE 0.0838 0.0692 SE 0.0363 0.0253 SE 0.0961 0.0734 SE 0.0359 0.0216	Lower CI -0.4247 -0.0414 Lower CI -0.3479 0.1237 Lower CI -0.4246 0.003 Lower CI -0.3456 0.0503 Lower CI -0.4236 -0.4236 -0.0292	Upper CI -0.2802 0.0701 Upper CI -0.0117 0.3956 Upper CI -0.2807 0.1022 Upper CI 0.0399 0.339 Upper CI -0.2813 0.0554	t-statistic -9.6659 0.505 t-statistic -2.1456 3.7542 t-statistic -9.7035 2.0783 t-statistic -1.591 2.6516 t-statistic -9.813 0.6069	p-value <0.0001 0.6136 p-value 0.0365 2.00E-04 p-value <0.0001 0.0378 p-value 0.1176 0.0083 p-value <0.0001 0.544
Abundance ~ Max. Muzzle Width (CWM), N=2103(152) Term intercept Max. Muzzle Width (CWM) Diversity ~ Max. Muzzle Width (CWM), N=407(60) Term intercept Max. Muzzle Width (CWM) Abundance ~ Mean Muzzle Width (CWM), N=2103(152) Term intercept Max Muzzle Width (CWM) Abundance ~ Mean Muzzle Width (CWM), N=2103(152) Term intercept Mean Muzzle Width (CWM) Diversity ~ Mean Muzzle Width (CWM), N=407(60) Term intercept Mean Muzzle Width (CWM) Abundance ~ Mean Body Mass (CWM), N=2135(154) Term intercept Mean Body Mass (CWM) Diversity ~ Mean Body Mass (CWM), N=420(62)	Estimate -0.3525 0.0143 Estimate -0.1798 0.2596 Estimate -0.3527 0.0526 Estimate -0.1529 0.1947 Estimate -0.3524 0.0131	SE 0.0365 0.0284 SE 0.0838 0.0692 SE 0.0363 0.0253 SE 0.0961 0.0734 SE 0.0359 0.0216	Lower CI -0.4247 -0.0414 Lower CI -0.3479 0.1237 Lower CI -0.4246 0.003 Lower CI -0.3456 0.0503 Lower CI -0.4236 -0.4236 -0.0292	Upper CI -0.2802 0.0701 Upper CI -0.0117 0.3956 Upper CI -0.2807 0.1022 Upper CI 0.0399 0.339 Upper CI -0.2813 0.0554	t-statistic -9.6659 0.505 t-statistic -2.1456 3.7542 t-statistic -9.7035 2.0783 t-statistic -1.591 2.6516 t-statistic -9.813 0.6069	p-value <0.0001 0.6136 p-value 0.0365 2.00E-04 p-value <0.0001 0.0378 p-value 0.1176 0.0083 p-value <0.0001 0.544
Abundance ~ Max. Muzzle Width (CWM), N=2103(152) Term intercept Max. Muzzle Width (CWM) Diversity ~ Max. Muzzle Width (CWM), N=407(60) Term intercept Max. Muzzle Width (CWM) Abundance ~ Mean Muzzle Width (CWM), N=2103(152) Term intercept Mean Muzzle Width (CWM) Diversity ~ Mean Muzzle Width (CWM), N=2103(152) Term intercept Mean Muzzle Width (CWM) Diversity ~ Mean Muzzle Width (CWM), N=407(60) Term intercept Mean Muzzle Width (CWM) Abundance ~ Mean Body Mass (CWM), N=2135(154) Term intercept Mean Body Mass (CWM) Diversity ~ Mean Body Mass (CWM), N=420(62) Term	Estimate -0.3525 0.0143 Estimate -0.1798 0.2596 Estimate -0.3527 0.0526 Estimate -0.1529 0.1947 Estimate -0.3524 0.0131	SE 0.0365 0.0284 SE 0.0838 0.0692 SE 0.0363 0.0253 SE 0.0961 0.0734 SE 0.0359 0.0216 SE	Lower CI -0.4247 -0.0414 Lower CI -0.3479 0.1237 Lower CI -0.4246 0.003 Lower CI -0.3456 0.0503 Lower CI -0.4236 -0.0292 Lower CI	Upper CI -0.2802 0.0701 Upper CI -0.0117 0.3956 Upper CI -0.2807 0.1022 Upper CI 0.0399 0.339 Upper CI -0.2813 0.0554	t-statistic -9.6659 0.505 t-statistic -2.1456 3.7542 t-statistic -9.7035 2.0783 t-statistic -1.591 2.6516 t-statistic -9.813 0.6069	p-value <0.0001 0.6136 p-value 0.0365 2.00E-04 p-value <0.0001 0.0378 p-value 0.1176 0.0083 p-value <0.0001 0.544
Abundance ~ Max. Muzzle Width (CWM), N=2103(152) Term intercept Max. Muzzle Width (CWM) Diversity ~ Max. Muzzle Width (CWM), N=407(60) Term intercept Max. Muzzle Width (CWM) Abundance ~ Mean Muzzle Width (CWM), N=2103(152) Term intercept Mean Muzzle Width (CWM) Diversity ~ Mean Muzzle Width (CWM), N=2103(152) Term intercept Mean Muzzle Width (CWM) Diversity ~ Mean Muzzle Width (CWM), N=407(60) Term intercept Mean Muzzle Width (CWM) Abundance ~ Mean Body Mass (CWM), N=2135(154) Term intercept Mean Body Mass (CWM) Diversity ~ Mean Body Mass (CWM), N=420(62) Term intercept Mean Body Mass (CWM), N=420(62) Term intercept	Estimate -0.3525 0.0143 Estimate -0.1798 0.2596 Estimate -0.3527 0.0526 Estimate -0.1529 0.1947 Estimate -0.3524 0.0131 Estimate -0.1864	SE 0.0365 0.0284 SE 0.0838 0.0692 SE 0.0363 0.0253 SE 0.0961 0.0734 SE 0.0359 0.0216 SE 0.0216	Lower CI -0.4247 -0.0414 Lower CI -0.3479 0.1237 Lower CI -0.4246 0.003 Lower CI -0.3456 0.0503 Lower CI -0.4236 -0.4236 -0.0292 Lower CI -0.3867	Upper CI -0.2802 0.0701 Upper CI -0.0117 0.3956 Upper CI -0.2807 0.1022 Upper CI 0.0399 0.339 Upper CI -0.2813 0.0554 Upper CI 0.0138	t-statistic -9.6659 0.505 t-statistic -2.1456 3.7542 t-statistic -9.7035 2.0783 t-statistic -1.591 2.6516 t-statistic -9.813 0.6069 t-statistic -1.8635	p-value <0.0001 0.6136 p-value 0.0365 2.00E-04 p-value <0.0001 0.0378 p-value 0.1176 0.0083 p-value <0.0001 0.544 p-value

Mean Body Mass (CWM)	0.1912	0.0855	0.0231	0.3593	2.2353	0.0259
Abundance ~ Max. Body Mass (CWM), N=2135(154)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.3515	0.0362	-0.4231	-0.2798	-9.7192	<0.0001
Max. Body Mass (CWM)	-0.0076	0.0232	-0.0531	0.0378	-0.33	0.7414
Diversity ~ Max. Body Mass (CWM), N=420(62)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1907	0.1026	-0.3962	0.0147	-1.8581	0.0682
Max. Body Mass (CWM)	0.1632	0.084	-0.0019	0.3283	1.943	0.0527
Abundance ~ Megafauna Biomass / NPP, N=1638(112)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.3172	0.039	-0.3948	-0.2395	-8.1221	<0.0001
Megafauna Biomass / NPP	-0.0465	0.0174	-0.0806	-0.0124	-2.6747	0.0076
Diversity ~ Megafauna Biomass / NPP, N=317(44)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1281	0.1225	-0.3756	0.1194	-1.0461	0.3018
Megafauna Biomass / NPP	0.0993	0.0783	-0.0548	0.2534	1.2677	0.2058
Abundance ~ Plant Growth Form * Graminoid Preference (CWM), N=17	30(120)				<u> </u>	
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1675	0.0582	-0.283	-0.0519	-2.8776	0.005
Plant Growth FormGraminoid	-0.0547	0.0866	-0.2247	0.1153	-0.6317	0.5278
Plant Growth FormWoody	-0.1836	0.0655	-0.3121	-0.0551	-2.8047	0.0052
Graminoid Preference (CWM)	0.1468	0.0593	0.0306	0.2631	2.4772	0.0133
Plant Growth FormGraminoid:Graminoid Preference (CWM)	-0.2419	0.0768	-0.3925	-0.0913	-3.1508	0.0017
Plant Growth FormWoody:Graminoid Preference (CWM)	-0.1102	0.0694	-0.2463	0.0259	-1.588	0.1125
Diversity ~ Plant Growth Form * Graminoid Preference (CWM). N=167()	27)					
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	0.1137	0.2008	-0.3039	0.5312	0.5661	0.5773
Plant Growth FormGraminoid	-0.177	0.2796	-0.7392	0.3853	-0.6329	0.5298
Plant Growth FormWoody	-0.2225	0.2217	-0.6682	0.2232	-1.0037	0.3205
Graminoid Preference (CWM)	0 4029	0 1732	0.0436	0 7621	2 3255	0.0297
Plant Growth FormGraminoid Graminoid Preference (CWM)	-0.6367	0.2463	-1.1232	-0.1503	-2.5848	0.0106
Plant Growth FormWoody:Graminoid Preference (CWM)	-0.1199	0.1948	-0.5045	0.2647	-0.6157	0.5389
Abundance ~ Max Body Mass (CWM) * Plant Nativeness N=2306/161)	0.1010	0.0010	0.2011		
	/ Estimate	SE	Lower CI	Upper Cl	t-statistic	n-value
Max Body Mass (CWM)	0 102	0 1082	-0 1102	0.3142	0 9424	0.3461
Plant NativenessIntroduced	-0.0131	0.0879	-0 1857	0.1595	-0 1484	0.882
	-0 3316	0.0341	-0 3985	-0 2648	-9 734	<0.002
Max Body Mass (CWM):Plant NativenessNative	-0 1116	0.108	-0 3234	0.1002	-1 033	0 3017
Diversity ~ Max. Body Mass (CWM) * Plant Nativeness N=460/63)	0.1110	0.100	0.0201	0.1002	1.000	0.0017
	Estimate	SE	Lower CI	Upper Cl	t-statistic	n-value
Max Body Mass (CWM)	-0 0148	0 3091	-0.6221	0 5925	-0 0479	0 9618
Plant NativenessIntroduced	0.0140	0.2121	-0 2377	0.0020	0.0470	0.3010
	0.1022	0.2121	0.2011	0.002	1 7568	0.0921
Max. Rody Mass. (CWM):Plant NativenessNative	0.1029	0.1041	-0 /21	0.0202	0 5603	0.5756
Abundance ~ Mean Rody Mass (CM/M) * Diant Nativanass, N=2206(16)	1)	0.0000	-0. 4 31	0.7740	0.0000	0.0700
Term	'/ Estimata	SE			t etatiatia	n volue
		0 111E			1 6014	
Nicali Douy Mass (OWW)	0.10/4	0.1115	0.1745	0.400	0.0445	0.0920
riant inalivenessintroduced	-0.0038	0.0854	-0.1715	0.1639	-0.0445	0.9045

Plant NativenessNative	-0.3329	0.0338	-0.3991	-0.2666	-9.8574	< 0.000
Mean Body Mass (CWM): Plant NativenessNative	-0.1759	0.1112	-0.394	0.0422	-1.5816	0.1139
Diversity ~ Mean Body Mass (CWM) * Plant Nativeness, N=460(63)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Mean Body Mass (CWM)	-0.1158	0.4035	-0.9087	0.6771	-0.287	0.7742
Plant NativenessIntroduced	0.2201	0.223	-0.2213	0.6615	0.9873	0.3255
Plant NativenessNative	-0.179	0.1026	-0.3822	0.0242	-1.7442	0.0837
Mean Body Mass (CWM):Plant NativenessNative	0.2962	0.4009	-0.4916	1.0841	0.739	0.4603
Abundance ~ Proportion Hindgut (CWM), N=2135(154)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.3526	0.0361	-0.424	-0.2812	-9.779	<0.000
Proportion Hindgut (CWM)	0.0088	0.0275	-0.0452	0.0628	0.3186	0.7501
Diversity ~ Proportion Hindgut (CWM), N=420(62)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1729	0.1091	-0.3913	0.0456	-1.5842	0.1186
Proportion Hindgut (CWM)	0.0176	0.0843	-0.1481	0.1834	0.209	0.8346
Simple Random						
Megafauna Diversity						
Abundance ~ Number of Megafauna Species, N=2743(188)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.3471	0.032	-0.4104	-0.2838	-10.8459	<0.000
Number of Megafauna Species	-0.0555	0.019	-0.0928	-0.0182	-2.9167	0.0036
Diversity ~ Number of Megafauna Species, N=591(73)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1127	0.0978	-0.308	0.0825	-1.152	0.2533
Number of Megafauna Species	0.0436	0.0315	-0.0184	0.1055	1.3806	0.1679
Abundance ~ Number of Megafauna Functional Groups, N=2743(188)						
Term	Estimate	SE	Lower CI	Upper Cl	t-statistic	p-value
intercept	-0.3498	0.0322	-0.4135	-0.2861	-10.8555	<0.000
Number of Megafauna Functional Groups	-0.0555	0.0195	-0.0937	-0.0172	-2 8424	0.0045
Diversity ~ Number of Megafauna Functional Groups, $N=591(73)$	0.0000	0.0.00		0.0		0.0010
Term	Estimate	SF	Lower Cl	Upper Cl	t-statistic	p-value
intercept	-0.1115	0.0982	-0.3074	0.0845	-1.1349	0.2604
Number of Megafauna Eunctional Groups	0.0401	0.0319	-0.0225	0.1026	1.2582	0.2088
Final in Time Series / Largest Scale Measure Only						
Responses to Native and Introduced Megafauna						
Abundance ~ Megafauna Nativeness * Plant Nativeness * Landform Ev	o History I	V=1909(1	(96)			
	Estimate	SE	Lower CL	Linner Cl	t-statistic	n-value
Introduced-Introduced-absent		0 1784	-0 5002	0 1101	-1 3/51	0 1780
Introduced-Introduced-present	-0.2 4 0.2813	0.1704	-0.0568	0.1101	1 6316	0.1703
Introduced-Introduced-present	-0.3016	0.1724	-0.0000	-0.082	-2 6051	0.1023
Introduced Native present	0.2015	0.0821	0.4525	0.1304	3 5485	
Native_Introduced_present	-0.2910	0.0021	-01323	0.1304	-1 5294	00E-0
Native Native present	-0.10/4	0.1004	-0.314	0.0090	- 1.0004 g 0270	~0.000
Ivalive-Ivalive-pieseill Diversity - Megefound Netivonoon * Landform File, Llister (* Island, Me	-0.3000	0.0425	-0.4339	-0.207	-0.23/3	<u><u></u> </u>
Diversity ~ Megalauria ivaliveriess " Landform Evo. History ^ ISland, N=	-300(13)	05	Laws- Cl	Linner O'	1 a1a1'a1'a	
			Lower CI	opper Cl		p-value
Introduced-absent-yes	-0.593	0.4456	-1.483	0.297	-1.3307	0.1879
Introduced-present-no	-0.0209	0.2887	-0.5975	0.5557	-0.0724	0.9425
Introduced-present-yes	-0.3248	0.3267	-0.9772	0.3276	-0.9941	0.3238

Native-present-no	0.0224	0.1313	-0.2398	0.2847	0.1707	0.865
Native-present-yes	-1.0669	0.4206	-1.9068	-0.227	-2.5368	0.0136
Diversity ~ Invasive, N=306(73)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
100 Worst	0.1145	0.327	-0.5381	0.767	0.35	0.7274
Other	-0.1584	0.1179	-0.3937	0.0768	-1.3439	0.1834
Abundance ~ Invasive, N=1754(188)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
100 Worst	-0.3068	0.1034	-0.5112	-0.1024	-2.9677	0.0035
Other	-0.3616	0.0417	-0.444	-0.2791	-8.6709	<0.0001
Diversity ~ Feral, N=306(73)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Feral	-0.1003	0.2455	-0.5902	0.3896	-0.4085	0.6842
Non Feral	-0.1334	0.1224	-0.3775	0.1108	-1.0901	0.2795
Abundance ~ Feral, N=1754(188)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Feral	-0.2476	0.0832	-0.4121	-0.0831	-2.9759	0.0034
Non Feral	-0.3823	0.0432	-0.4677	-0.2969	-8.851	<0.0001
Diversity ~ Megafauna Nativeness * Plant Nativeness. N=344(74)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Introduced-Introduced	0.2944	0.311	-0.3173	0.9061	0.9465	0.3445
Introduced-Native	-0.263	0.1936	-0.6439	0.1178	-1.3584	0.1752
Native-Introduced	0.1207	0.2445	-0.3603	0.6017	0.4935	0.622
Native-Native	-0.0737	0.1257	-0.3209	0.1735	-0.5863	0.5581
Final in Time Series / Largest Scale Measure Only						
Coevolutionary History and Novelty						
Abundance ~ Plant-Megafauna Coev., N=959(76)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
No	-0.186	0.0728	-0.3288	-0.0431	-2.5562	0.0108
Yes	-0 249	0.0493	-0.3458	-0 1522	-5 0512	<0.0001
Abundance ~ Plant-Megafauna Phylogenetic Novelty (CWM), N=93(17)	0.2.0	0.0.00	0.0.00		0.0012	
Term	Estimate	SF	l ower Cl	Upper Cl	t-statistic	p-value
intercept	-0.0912	0.091	-0 2853	0 1028	-1 002	0.3322
Plant-Megafauna Phylogenetic Novelty (CWM)	0 1817	0 1062	-0.0293	0.3927	1 7108	0.0905
Abundance ~ Plant-Megafauna Functional Novelty (CWM) N=93(17)	0.1011	0.1002	0.0200	0.0021	1.1.100	
	Estimate	SE	Lower CI	Linner Cl	t-statistic	n-value
intercent	-0.0965	0 0013	-0 2912	0 09901 01	-1 0569	0 3073
Plant-Megafauna Functional Novelty (CWM)	0.0000	0.0010	0.2012	0.0002	1.0000	0.0070
Diversity ~ Coevolved Biome. $N=306(73)$	0 1245	0 0944	-0.0631	0 3121	1 3186	0 1906
	0.1245	0.0944	-0.0631	0.3121	1.3186	0.1906
Term	0.1245	0.0944 SE	-0.0631	0.3121	1.3186	0.1906
Term	0.1245 Estimate	0.0944 SE	-0.0631 Lower Cl	0.3121 Upper CI	1.3186 t-statistic	0.1906 p-value
Term No Ves	0.1245 Estimate 0.0468	0.0944 SE 0.3477 0.1173	-0.0631 Lower Cl -0.647	0.3121 Upper Cl 0.7406	1.3186 t-statistic 0.1346	0.1906 p-value 0.8933 0.2147
Term No Yes Diversity ~ Megafauna Phylogenetic Novelty (CWM) N=78(15)	0.1245 Estimate 0.0468 -0.1469	0.0944 SE 0.3477 0.1173	-0.0631 Lower CI -0.647 -0.3811	0.3121 Upper Cl 0.7406 0.0872	1.3186 t-statistic 0.1346 -1.2525	0.1906 p-value 0.8933 0.2147
Term No Yes Diversity ~ Megafauna Phylogenetic Novelty (CWM), N=78(15)	0.1245 Estimate 0.0468 -0.1469	0.0944 SE 0.3477 0.1173	-0.0631 Lower CI -0.647 -0.3811	0.3121 Upper CI 0.7406 0.0872	1.3186 t-statistic 0.1346 -1.2525	0.1906 p-value 0.8933 0.2147
Term No Yes Diversity ~ Megafauna Phylogenetic Novelty (CWM), N=78(15) Term	0.1245 Estimate 0.0468 -0.1469 Estimate	0.0944 SE 0.3477 0.1173 SE	-0.0631 Lower CI -0.647 -0.3811 Lower CI	0.3121 Upper Cl 0.7406 0.0872 Upper Cl 0.6422	1.3186 t-statistic 0.1346 -1.2525 t-statistic	0.1906 p-value 0.8933 0.2147 p-value
Term No Yes Diversity ~ Megafauna Phylogenetic Novelty (CWM), N=78(15) Term intercept	0.1245 Estimate 0.0468 -0.1469 Estimate -0.1457	0.0944 SE 0.3477 0.1173 SE 0.3583	-0.0631 Lower CI -0.647 -0.3811 Lower CI -0.9342	0.3121 Upper Cl 0.7406 0.0872 Upper Cl 0.6428	1.3186 t-statistic 0.1346 -1.2525 t-statistic -0.4067	0.1906 p-value 0.8933 0.2147 p-value 0.692
Term No Yes Diversity ~ Megafauna Phylogenetic Novelty (CWM), N=78(15) Term intercept Megafauna Phylogenetic Novelty (CWM) Diversity - Megafauna Functional Neuralty (CMM)	0.1245 Estimate 0.0468 -0.1469 Estimate -0.1457 0.1581	0.0944 SE 0.3477 0.1173 SE 0.3583 0.2947	-0.0631 Lower Cl -0.647 -0.3811 Lower Cl -0.9342 -0.4904	0.3121 Upper Cl 0.7406 0.0872 Upper Cl 0.6428 0.8067	1.3186 t-statistic 0.1346 -1.2525 t-statistic -0.4067 0.5367	0.1906 p-value 0.8933 0.2147 p-value 0.692 0.6022
Term No Yes Diversity ~ Megafauna Phylogenetic Novelty (CWM), N=78(15) Term intercept Megafauna Phylogenetic Novelty (CWM) Diversity ~ Megafauna Functional Novelty (CWM), N=78(15)	0.1245 Estimate 0.0468 -0.1469 Estimate -0.1457 0.1581	0.0944 SE 0.3477 0.1173 SE 0.3583 0.2947	-0.0631 Lower CI -0.647 -0.3811 Lower CI -0.9342 -0.4904	0.3121 Upper CI 0.7406 0.0872 Upper CI 0.6428 0.8067	1.3186 t-statistic 0.1346 -1.2525 t-statistic -0.4067 0.5367	0.1906 p-value 0.8933 0.2147 p-value 0.692 0.6022
Term No Yes Diversity ~ Megafauna Phylogenetic Novelty (CWM), N=78(15) Term intercept Megafauna Phylogenetic Novelty (CWM) Diversity ~ Megafauna Functional Novelty (CWM), N=78(15) Term	0.1245 Estimate 0.0468 -0.1469 Estimate -0.1457 0.1581 Estimate	0.0944 SE 0.3477 0.1173 SE 0.3583 0.2947 SE	-0.0631 Lower Cl -0.647 -0.3811 Lower Cl -0.9342 -0.4904	0.3121 Upper Cl 0.7406 0.0872 Upper Cl 0.6428 0.8067 Upper Cl	1.3186 t-statistic 0.1346 -1.2525 t-statistic -0.4067 0.5367 t-statistic	0.1906 p-value 0.8933 0.2147 p-value 0.692 0.6022 p-value

Megafauna Functional Novelty (CWM)	0.0245	0.2516	-0.5293	0.5783	0.0974	0.9241
Final in Time Series / Largest Scale Measure Only						
Functional Traits						
Abundance ~ Max. Muzzle Width (CWM), N=1500(152)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.3516	0.0431	-0.4369	-0.2663	-8.1604	<0.0001
Max. Muzzle Width (CWM)	0.0243	0.0317	-0.0378	0.0864	0.7675	0.4429
Diversity ~ Max. Muzzle Width (CWM), N=238(60)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1787	0.1169	-0.4132	0.0557	-1.529	0.1322
Max. Muzzle Width (CWM)	0.2371	0.1002	0.0397	0.4345	2.3663	0.0188
Abundance ~ Mean Muzzle Width (CWM), N=1500(152)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.3487	0.0429	-0.4337	-0.2637	-8.128	<0.0001
Mean Muzzle Width (CWM)	0.0567	0.0261	0.0055	0.1079	2.174	0.0299
Diversity ~ Mean Muzzle Width (CWM), N=238(60)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1453	0.1198	-0.3855	0.095	-1.2126	0.2307
Mean Muzzle Width (CWM)	0.2264	0.0928	0.0436	0.4092	2.4395	0.0154
Abundance ~ Mean Body Mass (CWM), N=1532(154)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.3518	0.0426	-0.4362	-0.2675	-8.2576	< 0.0001
Mean Body Mass (CWM)	0.0166	0.0241	-0.0306	0.0638	0.6902	0.4902
Diversity ~ Mean Body Mass (CWM), N=251(62)						
Term	Estimate	SF	l ower Cl	Upper Cl	t-statistic	p-value
intercent	-0 1916	0.12	-0 4318	0.0486	-1 5968	0 1158
Mean Body Mass (CWM)	0 1814	0.1123	-0.0399	0 4027	1 6147	0 1077
Abundance ~ Max. Body Mass (CW/M) N=1532(154)	0.1011	0.1120	0.0000	0.1027		0.1011
	Estimate	SE	Lower CI	Linner Cl	t-statistic	n-value
intercent	_0 3510	0.043	-0 /360		-8 1028	
Max Body Mass (CWM)	-0.0048	0.045	-0.4503	0.0457	-0.1320	0.8500
Diversity ~ Max. Body Mass (CW/M) $N=251/62$	-0.00+0	0.0230	-0.000-	0.0407	-0.100	0.0000
	Estimato	SE	Lower Cl	Linner Cl	t_etatistic	n_value
intercent	_0 1022	0 1222	-0 4360	0.0524	-1 5728	0 1212
Max Body Mass (CWM)	0.1922	0.1222	0.0057	0.0324	1.0778	0.1212
Abundance ~ Megafauna Biomass / NPP N=1142(112)	0.1157	0.1074	-0.0957	0.5272	1.0770	0.2022
Term	Estimato	SE	Lower Cl	Linner Cl	t etatietic	n value
intercont		0.0496	0 4142	0 2212	6 5427	p-value ∠0.0001
Magafauna Piamaga / NPD	-0.3177	0.0400	-0.4143	-0.2212	1 70427	
	-0.0297	0.0174	-0.0039	0.0045	-1.7042	0.0000
Diversity ~ Megalauna Diomass / NFP, N=105(44)	Fotimoto	SE.		Linner Cl	t atatiatia	n voluo
intercent		SE				p-value
Magafauna Diamaga (NDD	-0.1020	0.1470	-0.4014	0.1302	-1.0990	0.2701
Megalauna Biomass / NPP	0.0898	0.1103	-0.128	0.3076	0.8142	0.4107
Abunuarice ~ Plant Growth Form * Graminold Preference (CWM), N=13	501(120)	05		Linner Ol	t ototioti-	n volue
i enni				Opper Cl		p-value
Intercept	-0.161	0.0602	-0.2807	-0.0414	-2.6/29	0.0089
Plant Growth FormGraminoid	-0.0448	0.0897	-0.2208	0.1312	-0.5	0.6172
Plant Growth FormWoody	-0.1998	0.0687	-0.3347	-0.0648	-2.9069	0.0038
Graminoid Preference (CWM)	0.1519	0.0631	0.028	0.2758	2.4052	0.0163

Plant Growth FormGraminoid:Graminoid Preference (CWM)	-0.2502	0.0825	-0.4121	-0.0883	-3.031	0.0025
Plant Growth FormWoody:Graminoid Preference (CWM)	-0.1368	0.0748	-0.2837	0.01	-1.8283	0.0677
Diversity ~ Plant Growth Form * Graminoid Preference (CWM), N=121(27)					
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	0.1449	0.2075	-0.2866	0.5763	0.6982	0.4927
Plant Growth FormGraminoid	-0.2656	0.2835	-0.8356	0.3044	-0.9369	0.3535
Plant Growth FormWoody	-0.2578	0.2275	-0.7152	0.1995	-1.1335	0.2626
Graminoid Preference (CWM)	0.4603	0.1882	0.07	0.8505	2.4457	0.0229
Plant Growth FormGraminoid:Graminoid Preference (CWM)	-0.6762	0.263	-1.1971	-0.1552	-2.5709	0.0114
Plant Growth FormWoody:Graminoid Preference (CWM)	-0.1547	0.2064	-0.5636	0.2542	-0.7494	0.4551
Abundance ~ Max. Body Mass (CWM) * Plant Nativeness, N=1661(161)					
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Max. Body Mass (CWM)	0.1049	0.1257	-0.1418	0.3515	0.834	0.4044
Plant NativenessIntroduced	-0.0018	0.1015	-0.2009	0.1974	-0.0175	0.986
Plant NativenessNative	-0.3273	0.0397	-0.4052	-0.2493	-8.2392	<0.0001
Max. Body Mass (CWM):Plant NativenessNative	-0.1109	0.1254	-0.3569	0.1351	-0.8842	0.3767
Diversity ~ Max. Body Mass (CWM) * Plant Nativeness, N=284(63)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Max. Body Mass (CWM)	-0.3121	0.3445	-0.9902	0.366	-0.9059	0.3658
Plant NativenessIntroduced	0.2054	0.2205	-0.2311	0.6418	0.9315	0.3535
Plant NativenessNative	-0.1824	0.122	-0.4238	0.0591	-1.4954	0.1374
Max. Body Mass (CWM):Plant NativenessNative	0.4252	0.3388	-0.2417	1.0921	1.2549	0.2105
Abundance ~ Mean Body Mass (CWM) * Plant Nativeness, N=1661(16	1)					
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Mean Body Mass (CWM)	0.1989	0.1301	-0.0563	0.4542	1.5285	0.1266
Plant NativenessIntroduced	0.0152	0.0994	-0.1799	0.2102	0.1525	0.8788
Plant NativenessNative	-0.3275	0.0393	-0.4046	-0.2503	-8.3295	<0.0001
Mean Body Mass (CWM):Plant NativenessNative	-0.1834	0.1298	-0.4379	0.0712	-1.413	0.1579
Diversity ~ Mean Body Mass (CWM) * Plant Nativeness, N=284(63)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Mean Body Mass (CWM)	-0.4118	0.4649	-1.3269	0.5033	-0.8858	0.3765
Plant NativenessIntroduced	0.2341	0.226	-0.2134	0.6816	1.0357	0.3024
Plant NativenessNative	-0.1815	0.1203	-0.4197	0.0566	-1.5089	0.1339
Mean Body Mass (CWM):Plant NativenessNative	0.5839	0.4597	-0.321	1.4887	1.2702	0.2051
Abundance ~ Proportion Hindgut (CWM), N=1532(154)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.3528	0.0427	-0.4374	-0.2683	-8.2663	<0.0001
Proportion Hindgut (CWM)	0.0244	0.0309	-0.0362	0.0849	0.7887	0.4304
Diversity ~ Proportion Hindgut (CWM), N=251(62)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1859	0.1242	-0.4344	0.0627	-1.4967	0.1399
Proportion Hindgut (CWM)	0.073	0.1098	-0.1433	0.2894	0.665	0.5067
Final in Time Series / Largest Scale Measure Only						
Megafauna Diversity						
Abundance ~ Number of Megafauna Species, N=1754(188)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.3501	0.0384	-0.426	-0.2742	-9.1131	<0.0001
Number of Megafauna Species	-0.0358	0.0217	-0.0784	0.0067	-1.651	0.0989

Diversity ~ Number of Megafauna Species, N=306(73)

Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1255	0.1109	-0.3468	0.0957	-1.1324	0.2615
Number of Megafauna Species	0.0588	0.0364	-0.0128	0.1305	1.616	0.1071
Abundance ~ Number of Megafauna Functional Groups, N=1754(188)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.3512	0.0385	-0.4274	-0.275	-9.1113	<0.0001
Number of Megafauna Functional Groups	-0.0315	0.0224	-0.0753	0.0124	-1.4059	0.1599
Diversity ~ Number of Megafauna Functional Groups, N=306(73)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1243	0.1111	-0.346	0.0974	-1.1187	0.2672
Number of Megafauna Functional Groups	0.061	0.0361	-0.01	0.132	1.6906	0.0919
Species-level Responses Only						
Responses to Native and Introduced Megafauna						
Abundance ~ Megafauna Nativeness * Plant Nativeness * Landform Ev	o. History, N	l=1262(7	6)			
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Introduced-Introduced-absent	-0.428	0.2182	-0.8566	5.00E-04	-1.9615	0.0503
Introduced-Introduced-present	-0.0485	0.2126	-0.466	0.3691	-0.2279	0.8198
Introduced-Native-absent	-0.2571	0.1335	-0.5192	0.0051	-1.9258	0.0546
Introduced-Native-present	-0.3029	0.1198	-0.5382	-0.0676	-2.5283	0.0117
Native-Introduced-present	-0.2127	0.1138	-0.4361	0.0108	-1.8694	0.0621
Native-Native-present	-0.2735	0.0598	-0.3908	-0.1561	-4.5755	<0.0001
Abundance ~ Invasive, N=1145(67)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
100 Worst	-0.1679	0.1265	-0.4211	0.0852	-1.3274	0.1895
Other	-0.2999	0.054	-0.4079	-0.1919	-5.5569	<0.0001
Abundance ~ Feral, N=1145(67)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Feral	-0.2505	0.106	-0.4626	-0.0385	-2.3639	0.0214
Non Feral	-0.2906	0.0571	-0.4049	-0.1764	-5.0891	<0.0001
Pure Megafauna Nativeness						
Responses to Native and Introduced Megafauna						
Abundance ~ Megafauna Nativeness * Plant Nativeness * Landform Ev	o. History, N	l=2945(1	95)			
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Introduced-Introduced-absent	-0.2649	0.1523	-0.5638	0.0341	-1.7386	0.0824
Introduced-Introduced-present	0.1932	0.1648	-0.13	0.5164	1.1723	0.2412
Introduced-Native-absent	-0.2467	0.0941	-0.4314	-0.0621	-2.6224	0.0089
Introduced-Native-present	-0.3797	0.0728	-0.5224	-0.2369	-5.217	<0.0001
Native-Introduced-present	-0.1128	0.0962	-0.3014	0.0758	-1.1725	0.2411
Native-Native-present	-0.3392	0.0361	-0.41	-0.2685	-9.4047	<0.0001
Abundance ~ Invasive, N=2714(187)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
100 Worst	-0.2436	0.0873	-0.4162	-0.071	-2.7901	0.006
Other	-0.3786	0.0358	-0.4494	-0.3078	-10.5712	<0.0001
Abundance ~ Feral, N=2714(187)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Feral	-0.2949	0.0741	-0.4414	-0.1485	-3.9813	1.00E-04
Non Feral	-0.3757	0.037	-0.4489	-0.3024	-10.143	<0.0001
Pure Megafauna Nativeness						
Coevolutionary History and Novelty						

Abundance ~ Plant-Megafauna Coev., N=1247(76)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
No	-0.2009	0.0816	-0.361	-0.0407	-2.4629	0.0141
Yes	-0.2988	0.0552	-0.4072	-0.1905	-5.4174	<0.0001
Abundance ~ Plant-Megafauna Phylogenetic Novelty (CWM), N=105(16	5)					
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1612	0.1154	-0.4087	0.0863	-1.3972	0.1841
Plant-Megafauna Phylogenetic Novelty (CWM)	0.2384	0.1241	-0.0081	0.485	1.9219	0.0578
Abundance ~ Plant-Megafauna Functional Novelty (CWM), N=105(16)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	-0.1369	0.1183	-0.3907	0.1168	-1.1573	0.2665
Plant-Megafauna Functional Novelty (CWM)	0.124	0.1174	-0.1094	0.3573	1.0559	0.2939
Unspecified Nativeness Plants Excluded						
Responses to Native and Introduced Megafauna						
Diversity ~ Megafauna Nativeness * Reported Plant Nativeness, N=771	(92)					
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Introduced-Introduced	0.3174	0.2287	-0.1321	0.7669	1.388	0.1659
Introduced-Mixed	-0.1021	0.2158	-0.5263	0.322	-0.4733	0.6363
Introduced-Native	-0.0862	0.159	-0.3987	0.2262	-0.5425	0.5877
Introduced-Unspecified	-0.752	0.2491	-1.244	-0.26	-3.019	0.003
Native-Introduced	0.1853	0.2	-0.2077	0.5784	0.9268	0.3546
Native-Mixed	-0.0105	0.1855	-0.3751	0.3542	-0.0563	0.9551
Native-Native	0.0367	0.1039	-0.1676	0.241	0.3526	0.7245
Native-Unspecified	-0.2763	0.2113	-0.6966	0.144	-1.3075	0.1946
Diversity ~ Megafauna Nativeness * Landform Evo. History * Island, N=	433(56)					
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Introduced-absent-yes	-0.2494	0.2744	-0.801	0.3023	-0.9088	0.368
Introduced-present-no	0.2602	0.2013	-0.1445	0.6649	1.2929	0.2022
Introduced-present-yes	-0.2677	0.2432	-0.7567	0.2212	-1.1009	0.2764
Native-present-no	0.0556	0.0863	-0.118	0.2292	0.6439	0.5227
Native-present-yes	-0.0819	0.2857	-0.6563	0.4924	-0.2869	0.7754
Diversity ~ Invasive, N=433(56)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
100 Worst	0.0703	0.1923	-0.3157	0.4564	0.3658	0.7161
Other	0.0129	0.083	-0.1537	0.1794	0.1549	0.8775
Diversity ~ Feral, N=433(56)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
Feral	0.0759	0.161	-0.2473	0.399	0.4712	0.6395
Non Feral	0.0079	0.0843	-0.1613	0.1772	0.0941	0.9254
Unspecified Nativeness Plants Excluded						
Coevolutionary History and Novelty						
Diversity ~ Coevolved Biome, N=433(56)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
No	0.0071	0.2026	-0.3996	0.4139	0.0352	0.9721
Yes	0.0243	0.0823	-0.141	0.1896	0.2952	0.769
Diversity ~ Megafauna Phylogenetic Novelty (CWM), N=66(10)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	0.1391	0.284	-0.5559	0.8342	0.4899	0.6416

Diversity ~ Megafauna Functional Novelty (CWM), N=66(10)						
Term	Estimate	SE	Lower CI	Upper CI	t-statistic	p-value
intercept	0.1366	0.284	-0.5584	0.8316	0.4809	0.6476
Megafauna Functional Novelty (CWM)	-0.0238	0.2922	-0.7389	0.6912	-0.0816	0.9376

Table S2.

Model comparison table indicating model formulas per each comparison, sample size, likelihood ratio test results, and nativeness planned contrast test results. Each row is a model comparison series consisting of a null model, a base model, and a nativeness model, each with increasing level of complexity and all trained on the same data. Note that some analyses (e.g., 'Invasive' and Feral) lack a null model. Sample sizes for each analysis are indicated with number of responses and number of studies in parentheses for native megafauna and introdued megafauna respectively. Likelihood ratio test results for the base model compared to the null model ("Base LRT") and the nativeness model compared to the base model ("Nativeness LRT") are indicated with likelihood ratios (LR) and p-values. Planned contrast tests compare native and introduced megafauna impacts. In models with more than one contrast between native and introduced megafauna impacts (e.g., per plant nativeness level or landform type), the minimum and maximum of test statistics and p values are given within square brackets. Main text analyses ('Primary Analyses') are followed by sensitivity analyses, which include: 'Simple Random'=models do not include a temporal autocorrelation term; 'Final in Time Series / Largest Scale Measure Only'=the last time point and the largest scale measurement from each experiment were selected, instead of being controlled for with random effects; 'Species-level Responses Only'=collective plant abundance responses omitted, only species-level abundances included; 'Pure Megafauna Nativeness'=data from studies with more than one nativeness of manipulated megafauna were excluded (1 study); and 'Unspecified Nativeness Plants Excluded'=plants of unspecified nativeness were excluded from diversity analysis.

Models	Sample Size	Base LRT (LR, p-value)	Nativeness LRT (LR, p-value)	Planned contrast (z, p-value ranges)
Primary Analyses Responses to Native and Introduced Megafauna				
Null: Abundance ~ Landform Evo. History Base: Abundance ~ Plant Nativeness * Landform Evo. History Nativeness: Abundance ~ Megafauna Nativeness * Plant Nativeness * Landform Evo. History	2,241(141) 733(56)	13.01, 0.001***	3.52, 0.172	[-0.85, 1.63], [0.347, 0.936]
Null: Abundance ~ 1 Base: Abundance ~ Landform Evo. History Nativeness: Abundance ~ Megafauna Nativeness * Landform Evo. History	2,241(141) 733(56)	0.64, 0.425	0, 0.978	[-0.03, 0.78], [0.676, 0.999]
Null: Diversity ~ Island Base: Diversity ~ Landform Evo. History * Island Nativeness: Diversity ~ Megafauna Nativeness * Landform Evo. History * Island	401(53) 190(21)	0.23, 0.63	2, 0.368	[-1.82, 1.2], [0.218, 0.996]
Null: Base: Diversity ~ 1 Nativeness: Diversity ~ Invasive	401(53) 190(21)		0.46, 0.497	0.68, 0.497
Null: Base: Abundance ~ 1 Nativeness: Abundance ~ Invasive	2,129(137) 614(52)		2.12, 0.145	1.46, 0.145
Null: Base: Diversity ~ 1 Nativeness: Diversity ~ Feral	401(53) 190(21)		0.25, 0.617	-0.52, 0.601
Null: Base: Abundance ~ 1 Nativeness: Abundance ~ Feral	2,129(137) 614(52)		0.67, 0.413	0.82, 0.412
Null: Diversity ~ 1 Base: Diversity ~ Plant Nativeness Nativeness: Diversity ~ Megafauna Nativeness * Plant Nativeness	430(53) 208(22)	3.15, 0.076	3.04, 0.219	[-1.49, 0.43], [0.249, 0.884]
Null: Abundance ~ 1 Base: Abundance ~ Plant Nativeness Nativeness: Abundance ~ Megafauna Nativeness * Plant Nativeness	2,241(141) 733(56)	9.98, 0.002***	0.1, 0.95	[0.05, 0.32], [0.936, 0.998]
Coevolutionary History and Novelty				
Null: Base: Abundance ~ 1 Nativeness: Abundance ~ Plant-Megafauna Coev.	932(52) 315(24)		1.37, 0.241	1.17, 0.24
Null: Base: Abundance ~ 1 Nativeness: Abundance ~ Plant-Megafauna Phylogenetic Novelty (CWM)	41(9) 74(8)		1.38, 0.24	
Null: Base: Abundance ~ 1 Nativeness: Abundance ~ Plant-Megafauna Functional Novelty (CWM)	41(9) 74(8)		0.85, 0.358	
Null: Base: Diversity ~ 1 Nativeness: Diversity ~ Coevolved Biome	401(53) 190(21)		0.15, 0.696	0.39, 0.695
Null: Base: Diversity ~ 1 Nativeness: Diversity ~ Megafauna Phylogenetic Novelty (CWM)	162(15)		0.44, 0.508	
Null: Base: Diversity ~ 1 Nativeness: Diversity ~ Megafauna Functional Novelty (CWM)	162(15)		0, 0.992	
Functional Traits				
Null: Abundance ~ 1 Base: Abundance ~ Max. Muzzle Width (CWM) Nativeness: Abundance ~ Megafauna Nativeness + Max. Muzzle Width (CWM)	1,650(112) 453(41)	0.28, 0.597	0.72, 0.396	-0.86, 0.389
Null: Diversity ~ 1 Base: Diversity ~ Max. Muzzle Width (CWM) Nativeness: Diversity ~ Megafauna Nativeness + Max. Muzzle Width (CWM)	223(43) 184(18)	9.3, 0.002***	0.83, 0.362	-0.92, 0.359
Null: Abundance ~ 1 Base: Abundance ~ Mean Muzzle Width (CWM) Nativeness: Abundance ~ Megafauna Nativeness + Mean Muzzle Width (CWM)	1,650(112) 453(41)	2.6, 0.107	0.86, 0.353	-0.94, 0.347
Null: Diversity ~ 1 Base: Diversity ~ Mean Muzzle Width (CWM) Nativeness: Diversity ~ Megafauna Nativeness + Mean Muzzle Width (CWM)	223(43) 184(18)	5.77, 0.016*	1.26, 0.261	-1.17, 0.242
Null: Abundance ~ 1 Base: Abundance ~ Mean Body Mass (CWM) Nativeness: Abundance ~ Megafauna Nativeness + Mean Body Mass (CWM)	1,682(114) 453(41)	1.35, 0.245	0.62, 0.432	-0.8, 0.424
Null: Diversity ~ 1 Base: Diversity ~ Mean Body Mass (CWM) Nativeness: Diversity ~ Megafauna Nativeness + Mean Body Mass (CWM)	236(45) 184(18)	4.59, 0.032*	0.47, 0.491	-0.7, 0.483

Null: Abundance ~ 1 Base: Abundance ~ Max. Body Mass (CWM) Nativeness: Abundance ~ Megafauna Nativeness + Max. Body Mass (CWM)	1,682(114) 453(41)	0.17, 0.681	0.69, 0.406	-0.84, 0.398
Null: Diversity ~ 1 Base: Diversity ~ Max. Body Mass (CWM) Nativeness: Diversity ~ Megafauna Nativeness + Max. Body Mass (CWM)	236(45) 184(18)	3.52, 0.061	0.32, 0.573	-0.57, 0.569
Null: Abundance ~ 1 Base: Abundance ~ Megafauna Biomass / NPP Nativeness: Abundance ~ Megafauna Nativeness + Megafauna Biomass / NPP	1,268(82) 370(30)	2.37, 0.123	2.27, 0.132	-1.53, 0.126
Null: Diversity ~ 1 Base: Diversity ~ Megafauna Biomass / NPP Nativeness: Diversity ~ Megafauna Nativeness + Megafauna Biomass / NPP	156(31) 161(13)	1.25, 0.263	1.46, 0.228	-1.23, 0.218
Null: Abundance ~ 1 Base: Abundance ~ Plant Growth Form * Graminoid Preference (CWM) Nativeness: Abundance ~ Megafauna Nativeness + Plant Growth Form * Graminoid Preference (CWM)	1,407(92) 323(28)	16.29, 0.006***	0.01, 0.939	0.08, 0.937
Null: Diversity ~ 1 Base: Diversity ~ Plant Growth Form * Graminoid Preference (CWM) Nativeness: Diversity ~ Megafauna Nativeness + Plant Growth Form * Graminoid Preference (CWM)	133(22) 34(5)	15.09, 0.01***	0.15, 0.701	-0.39, 0.7
Null: Abundance ~ Max. Body Mass (CWM) Base: Abundance ~ Max. Body Mass (CWM) * Plant Nativeness Nativeness: Abundance ~ Max. Body Mass (CWM) * Megafauna Nativeness * Plant Nativeness	1,789(118) 517(44)	13.81, 0.001***	2.43, 0.658	[-1.01, 0.54], [0.521, 0.827]
Null: Diversity ~ Max. Body Mass (CWM) Base: Diversity ~ Max. Body Mass (CWM) * Plant Nativeness Nativeness: Diversity ~ Max. Body Mass (CWM) * Megafauna Nativeness * Plant Nativeness	261(45) 199(19)	3.47, 0.177	2.23, 0.694	[-0.46, 0.74], [0.696, 0.866]
Null: Abundance ~ Mean Body Mass (CWM) Base: Abundance ~ Mean Body Mass (CWM) * Plant Nativeness Nativeness: Abundance ~ Mean Body Mass (CWM) * Megafauna Nativeness * Plant Nativeness	1,789(118) 517(44)	15.4, 0**	5.36, 0.252	[-1, 0.17], [0.533, 0.982]
Null: Diversity ~ Mean Body Mass (CWM) Base: Diversity ~ Mean Body Mass (CWM) * Plant Nativeness Nativeness: Diversity ~ Mean Body Mass (CWM) * Megafauna Nativeness * Plant Nativeness	261(45) 199(19)	3.67, 0.16	1.95, 0.745	[-0.55, 0.47], [0.817, 0.864]
Null: Abundance ~ 1 Base: Abundance ~ Proportion Hindgut (CWM) Nativeness: Abundance ~ Megafauna Nativeness + Proportion Hindgut (CWM)	1,682(114) 453(41)	0.29, 0.587	1.28, 0.257	-1.16, 0.248
Null: Diversity ~ 1 Base: Diversity ~ Proportion Hindgut (CWM) Nativeness: Diversity ~ Megafauna Nativeness + Proportion Hindgut (CWM)	236(45) 184(18)	0.24, 0.626	0.9, 0.343	-0.96, 0.335
Environmental Factors				
Null: Abundance ~ 1 Base: Abundance ~ Max. Annual Precip. Nativeness: Abundance ~ Megafauna Nativeness + Max. Annual Precip.	2,129(137) 614(52)	1.48, 0.224	0.34, 0.562	0.58, 0.561
Null: Luversity ~ 1 Base: Diversity ~ Max. Annual Precip. Nativeness: Diversity ~ Megafauna Nativeness + Max. Annual Precip.	401(53) 190(21)	3.2, 0.074	0.27, 0.604	-0.54, 0.586
Null: Abundance ~ Max. Annual Temp. Nativeness: Abundance ~ Megafauna Nativeness + Max. Annual Temp.	2,129(137) 614(52)	0.41, 0.521	0.02, 0.876	0.16, 0.876
Ruin, Diversity ~ 1 Base: Diversity ~ Max. Annual Temp. Nativeness: Diversity ~ Megafauna Nativeness + Max. Annual Temp.	401(53) 190(21)	0.82, 0.365	1.45, 0.229	-1.23, 0.219
Null: Abundance ~ I Base: Abundance ~ Net Primary Productivity Nativeness: Abundance ~ Megafauna Nativeness + Net Primary Productivity	2,129(137) 614(52)	1.8, 0.179	0.25, 0.619	0.5, 0.618
Ruin, Diversity ~ 1 Base: Diversity ~ Net Primary Productivity Nativeness: Diversity ~ Megafauna Nativeness + Net Primary Productivity	401(53) 190(21)	0.29, 0.591	1.59, 0.207	-1.29, 0.197
Null: Abundance ~ Human Footprint Index Base: Abundance ~ Mugafauna Nativeness + Human Footprint Index Nativeness: Abundance ~ Megafauna Nativeness + Human Footprint Index	2,129(137) 614(52)	0.02, 0.884	0, 0.968	0.04, 0.968
inuii. Diversity ~ 1 Base: Diversity ~ Human Footprint Index Nativeness: Diversity ~ Megafauna Nativeness + Human Footprint Index	401(53) 190(21)	0.42, 0.518	1.42, 0.234	-1.23, 0.217
Null: Abundance ~ I Base: Abundance ~ Island Nativeness: Abundance ~ Megafauna Nativeness * Island	2,129(137) 614(52)	0, 1	0.42, 0.81	[-0.52, 0.39], [0.841, 0.91]
inuii: uriversity ~ 1 Base: Diversity ~ Island Nativeness: Diversity ~ Megafauna Nativeness * Island	401(53) 190(21)	5.59, 0.018*	1.46, 0.483	[-0.83, 0.94], [0.575, 0.645]
Megafauna Diversity				
Null: Abundance ~ 1 Base: Abundance ~ Number of Megafauna Species Nativeness: Abundance ~ Megafauna Nativeness + Number of Megafauna Species	2,129(137) 614(52)	3.01, 0.083	0, 0.965	-0.04, 0.965
Null: Diversity ~ 1 Base: Diversity ~ Number of Megafauna Species Nativeness: Diversity ~ Megafauna Nativeness + Number of Megafauna Species	401(53) 190(21)	0.63, 0.427	1.57, 0.211	-1.28, 0.201
Null: Abundance ~ 1 Base: Abundance ~ Number of Megafauna Functional Groups Nativeness: Abundance ~ Megafauna Nativeness + Number of Megafauna Species	2,129(137) 614(52)	2.43, 0.119	0.58, 0.448	-0.04, 0.965
Null: Diversity ~ 1 Base: Diversity ~ Number of Megafauna Functional Groups Nativeness: Diversity ~ Megafauna Nativeness + Number of Megafauna Species	401(53) 190(21)	0.46, 0.496	1.73, 0.188	-1.28, 0.201
Null: Abundance ~ Number of Megafauna Species Base: Abundance ~ Number of Megafauna Species * Plant Nativeness Nativeness: Abundance ~ Number of Megafauna Species * Megafauna Nativeness * Plant Nativeness	2,241(141) 733(56)	15.28, 0**	3.13, 0.536	[0.01, 1.11], [0.462, 1]
Null: Diversity ~ Number of Megafauna Species Base: Diversity ~ Number of Megafauna Species * Plant Nativeness Nativeness: Diversity ~ Number of Megafauna Species * Megafauna Nativeness * Plant Nativeness	430(53) 208(22)	4, 0.135	3.09, 0.543	[-0.88, 0.46], [0.593, 0.865]
Null: Abundance ~ Number of Megafauna Functional Groups Base: Abundance ~ Number of Megafauna Functional Groups * Plant Nativeness Nativeness: Abundance ~ Number of Megafauna Functional Groups * Megafauna Nativeness * Plant Nativeness	2,241(141) 733(56)	14.92, 0.001**	4.19, 0.381	[0.08, 1.47], [0.264, 0.996]

Null: Diversity ~ Number of Megafauna Functional Groups Base: Diversity ~ Number of Megafauna Functional Groups * Plant Nativeness Nativeness: Diversity ~ Number of Megafauna Functional Groups * Megafauna Nativeness * Plant Nativeness	430(53) 208(22)	4.11, 0.128	3.98, 0.408	[-1.09, 0.89], [0.461, 0.592]
Methodological Factors				
Null: Diversity ~ 1 Base: Diversity ~ Measurement Area (m2) Nativeness: Diversity ~ Megafauna Nativeness + Measurement Area (m2)	396(50) 171(17)	4.44, 0.035*	1.16, 0.282	-1.11, 0.269
Null: Diversity ~ 1 Base: Diversity ~ Max. Measurement Length (m) Nativeness: Diversity ~ Megafauna Nativeness + Max. Measurement Length (m)	400(52) 173(18)	5.86, 0.015*	0.85, 0.356	-0.95, 0.343
Null: Abundance ~ 1 Base: Abundance ~ Treatment Duration / NPP Nativeness: Abundance ~ Megafauna Nativeness + Treatment Duration / NPP	1,934(125) 601(49)	0.07, 0.796	0, 0.959	-0.05, 0.959
Null: Diversity ~ 1 Base: Diversity ~ Treatment Duration / NPP Nativeness: Diversity ~ Megafauna Nativeness + Treatment Duration / NPP	393(49) 183(20)	0.5, 0.481	2.61, 0.106	-1.66, 0.097
Null: Abundance ~ 1 Base: Abundance ~ Treatment Duration Nativeness: Abundance ~ Megafauna Nativeness + Treatment Duration	1,934(125) 601(49)	1.18, 0.278	0.01, 0.916	-0.11, 0.916
Null: Diversity ~ 1 Base: Diversity ~ Treatment Duration Nativeness: Diversity ~ Megafauna Nativeness + Treatment Duration	393(49) 183(20)	0.36, 0.549	2.72, 0.099	-1.7, 0.089
Null: Abundance ~ 1 Base: Abundance ~ Treatment Duration * Net Primary Productivity Nativeness: Abundance ~ Megafauna Nativeness + Treatment Duration * Net Primary Productivity	1,934(125) 601(49)	7.8, 0.05	0.18, 0.669	0.43, 0.669
Null: Diversity ~ 1 Base: Diversity ~ Treatment Duration * Net Primary Productivity Nativeness: Diversity ~ Megafauna Nativeness + Treatment Duration * Net Primary Productivity	393(49) 183(20)	4.47, 0.215	2.24, 0.135	-1.53, 0.125
Simple Random Responses to Native and Introduced Megafauna				
Null: Abundance ~ Landform Evo. History Base: Abundance ~ Plant Nativeness * Landform Evo. History Nativeness: Abundance ~ Megafauna Nativeness * Plant Nativeness * Landform Evo. History	2,241(141) 733(56)	12.34, 0.002***	5.51, 0.064	[-0.77, 2.3], [0.082, 1]
Null: Diversity ~ Island Base: Diversity ~ Landform Evo. History * Island Nativeness: Diversity ~ Megafauna Nativeness * Landform Evo. History * Island	401(53) 190(21)	0.4, 0.528	3.28, 0.194	[-1.88, 1.16], [0.195, 1]
Null: Base: Diversity ~ 1 Nativeness: Diversity ~ Invasive	401(53) 190(21)		0.37, 0.543	0.61, 0.543
Null: Base: Abundance ~ 1 Nativeness: Abundance ~ Invasive	2,129(137) 614(52)		2.12, 0.146	1.46, 0.145
Null: Base: Diversity ~ 1 Nativeness: Diversity ~ Feral	401(53) 190(21)		1.14, 0.286	-1.16, 0.248
Null: Base: Abundance ~ 1 Nativeness: Abundance ~ Feral	2,129(137) 614(52)		1.03, 0.31	1.02, 0.309
Null: Diversity ~ 1 Base: Diversity ~ Plant Nativeness Nativeness: Diversity ~ Megafauna Nativeness * Plant Nativeness	430(53) 208(22)	3.05, 0.081	5.42, 0.067	[-2.03, 0.51], [0.082, 0.843]
Coevolutionary History and Novelty				
Null: Base: Abundance ~ 1 Nativeness: Abundance ~ Plant-Megafauna Coev.	932(52) 315(24)		1.41, 0.236	1.19, 0.235
Null: Base: Abundance ~ 1 Nativeness: Abundance ~ Plant-Megafauna Phylogenetic Novelty (CWM)	41(9) 74(8)		2.86, 0.091	
Null: Base: Abundance ~ 1 Nativeness: Abundance ~ Plant-Megafauna Functional Novelty (CWM)	41(9) 74(8)		2.09, 0.148	
Null: Base: Diversity ~ 1 Nativeness: Diversity ~ Coevolved Biome	401(53) 190(21)		0.1, 0.749	0.32, 0.749
Null: Base: Diversity ~ 1 Nativeness: Diversity ~ Megafauna Phylogenetic Novelty (CWM)	162(15)		0.47, 0.491	
Nuil: Base: Diversity ~ 1 Nativeness: Diversity ~ Megafauna Functional Novelty (CWM)	162(15)		0.01, 0.927	
Functional Traits				
Null: Abundance ~ 1 Base: Abundance ~ Max. Muzzle Width (CWM) Nativeness: Abundance ~ Megafauna Nativeness + Max. Muzzle Width (CWM)	1,650(112) 453(41)	0.25, 0.615	0.26, 0.609	-0.52, 0.604
Null: Diversity ~ 1 Base: Diversity ~ Max. Muzzle Width (CWM) Nativeness: Diversity ~ Megafauna Nativeness + Max. Muzzle Width (CWM)	223(43) 184(18)	10.21, 0.001***	0.74, 0.389	-0.87, 0.386
Null: Abundance ~ 1 Base: Abundance ~ Mean Muzzle Width (CWM) Nativeness: Abundance ~ Megafauna Nativeness + Mean Muzzle Width (CWM)	1,650(112) 453(41)	4.32, 0.038*	0.35, 0.557	-0.59, 0.552
Null: Diversity ~ 1 Base: Diversity ~ Mean Muzzle Width (CWM) Nativeness: Diversity ~ Megafauna Nativeness + Mean Muzzle Width (CWM)	223(43) 184(18)	5.88, 0.015*	1.77, 0.183	-1.38, 0.169
Null: Abundance ~ 1 Base: Abundance ~ Mean Body Mass (CWM) Nativeness: Abundance ~ Megafauna Nativeness + Mean Body Mass (CWM)	1,682(114) 453(41)	0.37, 0.545	0.26, 0.611	-0.52, 0.606
Null: Diversity ~ 1 Base: Diversity ~ Mean Body Mass (CWM) Nativeness: Diversity ~ Megafauna Nativeness + Mean Body Mass (CWM)	236(45) 184(18)	4.37, 0.037*	0.82, 0.366	-0.92, 0.357

Null: Abundance ~ 1 Base: Abundance ~ Max. Body Mass (CWM) Nativeness: Abundance ~ Megafauna Nativeness + Max. Body Mass (CWM)	1,682(114) 453(41)	0.11, 0.742	0.31, 0.577	-0.57, 0.571
Null: Diversity ~ 1 Base: Diversity ~ Max. Body Mass (CWM) Nativeness: Diversity ~ Megafauna Nativeness + Max. Body Mass (CWM)	236(45) 184(18)	3.31, 0.069	0.59, 0.444	-0.78, 0.438
Null: Abundance ~ 1 Base: Abundance ~ Megafauna Biomass / NPP Nativeness: Abundance ~ Megafauna Nativeness + Megafauna Biomass / NPP	1,268(82) 370(30)	7.14, 0.008***	1.82, 0.177	-1.37, 0.17
Null: Diversity ~ 1 Base: Diversity ~ Megafauna Biomass / NPP Nativeness: Diversity ~ Megafauna Nativeness + Megafauna Biomass / NPP	156(31) 161(13)	1.37, 0.241	1.14, 0.285	-1.09, 0.277
Null: Abundance ~ 1 Base: Abundance ~ Plant Growth Form * Graminoid Preference (CWM) Nativeness: Abundance ~ Megafauna Nativeness + Plant Growth Form * Graminoid Preference (CWM)	1,407(92) 323(28)	15.81, 0.007***	0.05, 0.815	0.24, 0.811
Null: Diversity ~ 1 Base: Diversity ~ Plant Growth Form * Graminoid Preference (CWM) Nativeness: Diversity ~ Megafauna Nativeness + Plant Growth Form * Graminoid Preference (CWM)	133(22) 34(5)	15.51, 0.008***	0.15, 0.697	-0.39, 0.696
Null: Abundance ~ Max. Body Mass (CWM) Base: Abundance ~ Max. Body Mass (CWM) * Plant Nativeness Nativeness: Abundance ~ Max. Body Mass (CWM) * Megafauna Nativeness * Plant Nativeness	1,789(118) 517(44)	13.06, 0.001***	3.03, 0.553	[-0.7, 0.65], [0.729, 0.76]
Null: Diversity ~ Max. Body Mass (CWM) Base: Diversity ~ Max. Body Mass (CWM) * Plant Nativeness Nativeness: Diversity ~ Max. Body Mass (CWM) * Megafauna Nativeness * Plant Nativeness	261(45) 199(19)	3.33, 0.189	2.35, 0.672	[-0.58, 0.54], [0.798, 0.821]
Null: Abundance ~ Mean Body Mass (CWM) Base: Abundance ~ Mean Body Mass (CWM) * Plant Nativeness Nativeness: Abundance ~ Mean Body Mass (CWM) * Megafauna Nativeness * Plant Nativeness	1,789(118) 517(44)	14.84, 0.001**	6.58, 0.16	[-0.73, 0.16], [0.71, 0.984]
Null: Diversity ~ Mean Body Mass (CWM) Base: Diversity ~ Mean Body Mass (CWM) * Plant Nativeness Nativeness: Diversity ~ Mean Body Mass (CWM) * Megafauna Nativeness * Plant Nativeness	261(45) 199(19)	3.55, 0.169	2.32, 0.676	[-0.64, 0.29], [0.761, 0.946]
Null: Abundance ~ 1 Base: Abundance ~ Proportion Hindgut (CWM) Nativeness: Abundance ~ Megafauna Nativeness + Proportion Hindgut (CWM)	1,682(114) 453(41)	0.1, 0.75	0.46, 0.496	-0.69, 0.488
Null: Diversity ~ 1 Base: Diversity ~ Proportion Hindgut (CWM) Nativeness: Diversity ~ Megafauna Nativeness + Proportion Hindgut (CWM)	236(45) 184(18)	0.04, 0.841	1.17, 0.278	-1.1, 0.27
Megafauna Diversity				
Null: Abundance ~ 1 Base: Abundance ~ Number of Megafauna Species Nativeness: Abundance ~ Megafauna Nativeness + Number of Megafauna Species	2,129(137) 614(52)	8.5, 0.004***	0.11, 0.743	0.33, 0.743
Null: Diversity ~ 1 Base: Diversity ~ Number of Megafauna Species Nativeness: Diversity ~ Megafauna Nativeness + Number of Megafauna Species	401(53) 190(21)	1.9, 0.168	2.67, 0.102	-1.72, 0.085
Null: Abundance ~ 1 Base: Abundance ~ Number of Megafauna Functional Groups Nativeness: Abundance ~ Megafauna Nativeness + Number of Megafauna Species	2,129(137) 614(52)	8.08, 0.004***	0.53, 0.467	0.33, 0.743
Null: Diversity ~ 1 Base: Diversity ~ Number of Megafauna Functional Groups Nativeness: Diversity ~ Megafauna Nativeness + Number of Megafauna Species	401(53) 190(21)	1.58, 0.209	2.99, 0.084	-1.72, 0.085
Final in Time Series / Largest Scale Measure Only Responses to Native and Introduced Megafauna				
Null: Abundance ~ Landform Evo. History Base: Abundance ~ Plant Nativeness * Landform Evo. History Nativeness: Abundance ~ Megafauna Nativeness * Plant Nativeness * Landform Evo. History	1,464(141) 445(56)	8.58, 0.014*	5.71, 0.058	[-0.35, 2.39], [0.065, 0.994]
Null: Diversity ~ Island Base: Diversity ~ Landform Evo. History * Island Nativeness: Diversity ~ Megafauna Nativeness * Landform Evo. History * Island	216(53) 90(21)	0, 0.985	1.93, 0.38	[-1.32, 1.39], [0.456, 1]
Null: Base: Diversity ~ 1 Nativeness: Diversity ~ Invasive	216(53) 90(21)		0.61, 0.433	0.79, 0.432
Null: Base: Abundance ~ 1 Nativeness: Abundance ~ Invasive	1,368(137) 386(52)		0.24, 0.623	0.49, 0.623
Null: Base: Diversity ~ 1 Nativeness: Diversity ~ Feral	216(53) 90(21)		0.01, 0.904	0.12, 0.902
Null: Base: Abundance ~ 1 Nativeness: Abundance ~ Feral	1,368(137) 386(52)		2.11, 0.147	1.45, 0.146
Null: Diversity ~ 1 Base: Diversity ~ Plant Nativeness Nativeness: Diversity ~ Megafauna Nativeness * Plant Nativeness	245(53) 99(22)	2.72, 0.099	1.35, 0.508	[-0.84, 0.46], [0.627, 0.865]
Coevolutionary History and Novelty				
Null: Base: Abundance ~ 1 Nativeness: Abundance ~ Plant-Megafauna Coev.	740(52) 219(24)		0.64, 0.425	0.8, 0.423
Null: Base: Abundance ~ 1 Nativeness: Abundance ~ Plant-Megafauna Phylogenetic Novelty (CWM)	36(9) 57(8)		2.79, 0.095	
Null: Base: Abundance ~ 1 Nativeness: Abundance ~ Plant-Megafauna Functional Novelty (CWM)	36(9) 57(8)		1.62, 0.203	
Null: Base: Diversity ~ 1 Nativeness: Diversity ~ Coevolved Biome	216(53) 90(21)		0.28, 0.598	0.53, 0.597
ivui: Base: Diversity ~ 1 Nativeness: Diversity ~ Megafauna Phylogenetic Novelty (CWM)	78(15)		0.29, 0.593	

Nativeness: Diversity ~ Megafauna Functional Novelty (CWM)	78(15)		0.01, 0.922	
Functional Traits				
Null: Abundance ~ 1 Base: Abundance ~ Max. Muzzle Width (CWM) Nativeness: Abundance ~ Megafauna Nativeness + Max. Muzzle Width (CWM)	1,183(112) 317(41)	0.58, 0.447	0.01, 0.922	-0.1, 0.921
Null: Diversity ~ 1 Base: Diversity ~ Max. Muzzle Width (CWM) Nativeness: Diversity ~ Megafauna Nativeness + Max. Muzzle Width (CWM)	151(43) 87(18)	4.92, 0.027*	0.04, 0.847	-0.19, 0.847
Null: Abundance ~ 1 Base: Abundance ~ Mean Muzzle Width (CWM) Nativeness: Abundance ~ Megafauna Nativeness + Mean Muzzle Width (CWM)	1,183(112) 317(41)	4.71, 0.03*	0.04, 0.847	-0.19, 0.846
Null: Diversity ~ 1 Base: Diversity ~ Mean Muzzle Width (CWM) Nativeness: Diversity ~ Megafauna Nativeness + Mean Muzzle Width (CWM)	151(43) 87(18)	5.54, 0.019*	0.26, 0.611	-0.51, 0.608
Null: Abundance ~ 1 Base: Abundance ~ Mean Body Mass (CWM) Nativeness: Abundance ~ Megafauna Nativeness + Mean Body Mass (CWM)	1,215(114) 317(41)	0.47, 0.492	0.01, 0.928	-0.09, 0.927
Null: Diversity ~ 1 Base: Diversity ~ Mean Body Mass (CWM) Nativeness: Diversity ~ Megafauna Nativeness + Mean Body Mass (CWM)	164(45) 87(18)	2.43, 0.119	0.02, 0.881	-0.15, 0.88
Null: Abundance ~ 1 Base: Abundance ~ Max. Body Mass (CWM) Nativeness: Abundance ~ Megafauna Nativeness + Max. Body Mass (CWM)	1,215(114) 317(41)	0.04, 0.851	0.02, 0.896	-0.13, 0.896
Null: Diversity ~ 1 Base: Diversity ~ Max. Body Mass (CWM) Nativeness: Diversity ~ Megafauna Nativeness + Max. Body Mass (CWM)	164(45) 87(18)	1.09, 0.296	0.01, 0.929	-0.09, 0.929
Null: Abundance ~ 1 Base: Abundance ~ Megafauna Biomass / NPP Nativeness: Abundance ~ Megafauna Nativeness + Megafauna Biomass / NPP	900(82) 242(30)	2.9, 0.088	0.49, 0.482	-0.71, 0.479
Null: Diversity ~ 1 Base: Diversity ~ Megafauna Biomass / NPP Nativeness: Diversity ~ Megafauna Nativeness + Megafauna Biomass / NPP	86(31) 79(13)	0.65, 0.419	0.54, 0.464	-0.74, 0.462
Null: Abundance ~ 1 Base: Abundance ~ Plant Growth Form * Graminoid Preference (CWM) Nativeness: Abundance ~ Megafauna Nativeness + Plant Growth Form * Graminoid Preference (CWM)	1,053(92) 248(28)	14.88, 0.011*	0.27, 0.607	-0.52, 0.601
Null: Diversity ~ 1 Base: Diversity ~ Plant Growth Form * Graminoid Preference (CWM) Nativeness: Diversity ~ Megafauna Nativeness + Plant Growth Form * Graminoid Preference (CWM)	97(22) 24(5)	15.82, 0.007***	0.12, 0.726	-0.35, 0.726
Null: Abundance ~ Max. Body Mass (CWM) Base: Abundance ~ Max. Body Mass (CWM) * Plant Nativeness Nativeness: Abundance ~ Max. Body Mass (CWM) * Megafauna Nativeness * Plant Nativeness	1,306(118) 355(44)	10.4, 0.006***	3.43, 0.488	[-0.2, 1.03], [0.513, 0.97
Null: Diversity ~ Max. Body Mass (CWM) Base: Diversity ~ Max. Body Mass (CWM) * Plant Nativeness Nativeness: Diversity ~ Max. Body Mass (CWM) * Megafauna Nativeness * Plant Nativeness	189(45) 95(19)	4.26, 0.119	1.76, 0.78	[-0.15, 0.85] [0.611, 0.98
Null: Abundance ~ Mean Body Mass (CWM) Base: Abundance ~ Mean Body Mass (CWM) * Plant Nativeness Nativeness: Abundance ~ Mean Body Mass (CWM) * Megafauna Nativeness * Plant Nativeness	1,306(118) 355(44)	11.87, 0.003***	5.59, 0.232	[-0.22, 0.63] [0.773, 0.96
Null: Diversity ~ Mean Body Mass (CWM) Base: Diversity ~ Mean Body Mass (CWM) * Plant Nativeness Nativeness: Diversity ~ Mean Body Mass (CWM) * Megafauna Nativeness * Plant Nativeness	189(45) 95(19)	4.26, 0.119	0.78, 0.941	[-0.2, 0.61], [0.776, 0.97
Null: Abundance ~ 1 Base: Abundance ~ Proportion Hindgut (CWM) Nativeness: Abundance ~ Megafauna Nativeness + Proportion Hindgut (CWM)	1,215(114) 317(41)	0.62, 0.431	0.16, 0.693	-0.4, 0.688
Null: Diversity ~ 1 Base: Diversity ~ Proportion Hindgut (CWM) Nativeness: Diversity ~ Megafauna Nativeness + Proportion Hindgut (CWM)	164(45) 87(18)	0.43, 0.512	0.24, 0.622	-0.5, 0.62
Megafauna Diversity				
Null: Abundance ~ 1 Base: Abundance ~ Number of Megafauna Species Nativeness: Abundance ~ Megafauna Nativeness + Number of Megafauna Species	1,368(137) 386(52)	2.72, 0.099	0.3, 0.586	0.55, 0.585
Null: Diversity ~ 1 Base: Diversity ~ Number of Megafauna Species Nativeness: Diversity ~ Megafauna Nativeness + Number of Megafauna Species	216(53) 90(21)	2.6, 0.107	0.34, 0.559	-0.59, 0.557
Null: Abundance ~ 1 Base: Abundance ~ Number of Megafauna Functional Groups Nativeness: Abundance ~ Megafauna Nativeness + Number of Megafauna Species	1,368(137) 386(52)	1.97, 0.16	1.04, 0.308	0.55, 0.585
Null: Diversity ~ 1 Base: Diversity ~ Number of Megafauna Functional Groups Nativeness: Diversity ~ Megafauna Nativeness + Number of Megafauna Species	216(53) 90(21)	2.85, 0.091	0.09, 0.765	-0.59, 0.557
Species-level Responses Only Responses to Native and Introduced Magafauna				
Null: Abundance ~ Landform Evo. History				
Base: Abundance ~ Plant Nativeness * Landform Evo. History Nativeness: Abundance ~ Megafauna Nativeness * Plant Nativeness * Landform Evo. History Null:	944(52) 318(24)	1.78, 0.41	0.7, 0.703	[-0.88, 0.68] [0.839, 1]
Base: Abundance ~ 1 Nativeness: Abundance ~ Invasive Null:	880(46) 265(21)		0.91, 0.339	0.96, 0.337
	880(46) 265(21)		0.11, 0.739	0.33, 0.739
Base: Abundance ~ 1 Nativeness: Abundance ~ Feral	、 /			
Base: Abundance ~ 1 Nativeness: Abundance ~ Feral Pure Megafauna Nativeness				
Base: Abundance ~ Mativeness * Landform Evo. History Nativeness: Abundance ~ Kathar Nativeness * Landform Evo. History Nativeness: Abundance ~ Megafauna Nativeness * Plant Nativeness * Landform Evo. History	2,241(141) 704(55)	12.9, 0.002***	3.33, 0.19	[-0.84, 1.65] [0.335, 0.97

Null: Base: Abundance ~ 1 Nativeness: Abundance ~ Feral	2,129(137) 585(51)		0.96, 0.328	0.98, 0.328
Coevolutionary History and Novelty				
Null: Base: Abundance ~ 1 Nativeness: Abundance ~ Plant-Megafauna Coev.	940(52) 307(24)		1.31, 0.252	1.15, 0.251
Null: Base: Abundance ~ 1 Nativeness: Abundance ~ Plant-Megafauna Phylogenetic Novelty (CWM)	41(9) 64(7)		3.4, 0.065	
Null: Base: Abundance ~ 1 Nativeness: Abundance ~ Plant-Megafauna Functional Novelty (CWM)	41(9) 64(7)		1.09, 0.297	
Unspecified Nativeness Plants Excluded Responses to Native and Introduced Megafauna				
Null: Diversity ~ 1 Base: Diversity ~ Reported Plant Nativeness Nativeness: Diversity ~ Megafauna Nativeness * Reported Plant Nativeness	519(65) 252(28)	10.67, 0.014*	2.74, 0.602	[-0.68, 0.49], [0.743, 0.853]
Null: Diversity ~ Island Base: Diversity ~ Landform Evo. History * Island Nativeness: Diversity ~ Megafauna Nativeness * Landform Evo. History * Island	351(42) 82(15)	0.04, 0.833	1.11, 0.574	[-1.06, 0.96], [0.688, 0.98]
Null: Base: Diversity ~ 1 Nativeness: Diversity ~ Invasive	351(42) 82(15)		0.08, 0.784	0.27, 0.784
Null: Base: Diversity ~ 1 Nativeness: Diversity ~ Feral	351(42) 82(15)		0.14, 0.705	0.38, 0.703
Coevolutionary History and Novelty				
Null: Base: Diversity ~ 1 Nativeness: Diversity ~ Coevolved Biome	351(42) 82(15)		0.01, 0.937	-0.08, 0.937
Null: Base: Diversity ~ 1 Nativeness: Diversity ~ Megafauna Phylogenetic Novelty (CWM)	66(10)		0.01, 0.943	
Null: Base: Diversity ~ 1 Nativeness: Diversity ~ Megafauna Functional Novelty (CWM)	66(10)		0.01, 0.937	

References and Notes

- Y. Malhi, C. E. Doughty, M. Galetti, F. A. Smith, J.-C. Svenning, J. W. Terborgh, Megafauna and ecosystem function from the Pleistocene to the Anthropocene. *Proc. Natl. Acad. Sci.* U.S.A. 113, 838–846 (2016). doi:10.1073/pnas.1502540113 Medline
- R. M. Pringle, J. O. Abraham, T. M. Anderson, T. C. Coverdale, A. B. Davies, C. L. Dutton, A. Gaylard, J. R. Goheen, R. M. Holdo, M. C. Hutchinson, D. M. Kimuyu, R. A. Long, A. L. Subalusky, M. P. Veldhuis, Impacts of large herbivores on terrestrial ecosystems. *Curr. Biol.* 33, R584–R610 (2023). doi:10.1016/j.cub.2023.04.024 Medline
- 3. O. Sanisidro, M. C. Mihlbachler, J. L. Cantalapiedra, A macroevolutionary pathway to megaherbivory. *Science* **380**, 616–618 (2023). <u>doi:10.1126/science.ade1833</u> <u>Medline</u>
- 4. E. J. Lundgren, D. Ramp, W. J. Ripple, A. D. Wallach, Introduced megafauna are rewilding the Anthropocene. *Ecography* **41**, 857–866 (2018). <u>doi:10.1111/ecog.03430</u>
- 5. E. J. Lundgren, D. Ramp, J. Rowan, O. Middleton, S. D. Schowanek, O. Sanisidro, S. P. Carroll, M. Davis, C. J. Sandom, J.-C. Svenning, A. D. Wallach, Introduced herbivores restore Late Pleistocene ecological functions. *Proc. Natl. Acad. Sci. U.S.A.* 117, 7871–7878 (2020). doi:10.1073/pnas.1915769117 Medline
- 6. C. P. Hedberg, S. K. Lyons, F. A. Smith, The hidden legacy of megafaunal extinction: Loss of functional diversity and resilience over the Late Quaternary at Hall's Cave. *Glob. Ecol. Biogeogr.* 31, 294–307 (2022). <u>doi:10.1111/geb.13428</u>
- 7. E. J. Lundgren, D. Ramp, J. C. Stromberg, J. Wu, N. C. Nieto, M. Sluk, K. T. Moeller, A. D. Wallach, Equids engineer desert water availability. *Science* 372, 491–495 (2021). doi:10.1126/science.abd6775 Medline
- P. A. Werner, Impact of feral water buffalo and fire on growth and survival of mature savanna trees: An experimental field study in Kakadu National Park, northern Australia. *Austral Ecol.* 30, 625–647 (2005). doi:10.1111/j.1442-9993.2005.01491.x
- 9. D. Spear, S. L. Chown, Non-indigenous ungulates as a threat to biodiversity. *J. Zool.* **279**, 1–17 (2009). doi:10.1111/j.1469-7998.2009.00604.x
- 10. T. M. Blackburn, F. Essl, T. Evans, P. E. Hulme, J. M. Jeschke, I. Kühn, S. Kumschick, Z. Marková, A. Mrugała, W. Nentwig, J. Pergl, P. Pyšek, W. Rabitsch, A. Ricciardi, D. M. Richardson, A. Sendek, M. Vilà, J. R. U. Wilson, M. Winter, P. Genovesi, S. Bacher, A unified classification of alien species based on the magnitude of their environmental impacts. *PLOS Biol.* **12**, e1001850 (2014). <u>doi:10.1371/journal.pbio.1001850</u> <u>Medline</u>
- A. D. Wallach, E. J. Lundgren, W. J. Ripple, D. Ramp, Invisible megafauna. *Conserv. Biol.* 32, 962–965 (2018). doi:10.1111/cobi.13116 Medline
- 12. M. Rejmánek, D. Simberloff, Origin matters. *Environ. Conserv.* 44, 97–99 (2017). doi:10.1017/S0376892916000333
- J. N. Price, J. Sitters, T. Ohlert, P. M. Tognetti, C. S. Brown, E. W. Seabloom, E. T. Borer, S. M. Prober, E. S. Bakker, A. S. MacDougall, L. Yahdjian, D. S. Gruner, H. Olde Venterink, I. C. Barrio, P. Graff, S. Bagchi, C. A. Arnillas, J. D. Bakker, D. M. Blumenthal, E.

H. Boughton, L. A. Brudvig, M. N. Bugalho, M. W. Cadotte, M. C. Caldeira, C. R. Dickman, I. Donohue, S. Grégory, Y. Hautier, I. S. Jónsdóttir, L. S. Lannes, R. L. McCulley, J. L. Moore, S. A. Power, A. C. Risch, M. Schütz, R. Standish, C. J. Stevens, G. F. Veen, R. Virtanen, G. M. Wardle, Evolutionary history of grazing and resources determine herbivore exclusion effects on plant diversity. *Nat. Ecol. Evol.* **6**, 1290–1298 (2022). doi:10.1038/s41559-022-01809-9 Medline

- M. E. Soulé, What is conservation biology? A new synthetic discipline addresses the dynamics and problems of perturbed species, communities, and ecosystems. *Bioscience* 35, 727–734 (1985). doi:10.2307/1310054
- 15. D. F. Owen, R. G. Wiegert, Mutualism between grasses and grazers: An evolutionary hypothesis. *Oikos* **36**, 376–378 (1981). <u>doi:10.2307/3544637</u>
- 16. U. Gélin, T. Charles-Dominique, T. J. Davies, J.-C. Svenning, W. J. Bond, K. W. Tomlinson, The evolutionary history of spines – a Cenozoic arms race with mammals. bioRxiv 2023.02.09.527903 [Preprint] (2023); <u>https://doi.org/10.1101/2023.02.09.527903</u>.
- S. J. O'Hanlon, A. Rieux, R. A. Farrer, G. M. Rosa, B. Waldman, A. Bataille, T. A. Kosch, K. A. Murray, B. Brankovics, M. Fumagalli, M. D. Martin, N. Wales, M. Alvarado-Rybak, K. A. Bates, L. Berger, S. Böll, L. Brookes, F. Clare, E. A. Courtois, A. A. Cunningham, T. M. Doherty-Bone, P. Ghosh, D. J. Gower, W. E. Hintz, J. Höglund, T. S. Jenkinson, C.-F. Lin, A. Laurila, A. Loyau, A. Martel, S. Meurling, C. Miaud, P. Minting, F. Pasmans, D. S. Schmeller, B. R. Schmidt, J. M. G. Shelton, L. F. Skerratt, F. Smith, C. Soto-Azat, M. Spagnoletti, G. Tessa, L. F. Toledo, A. Valenzuela-Sánchez, R. Verster, J. Vörös, R. J. Webb, C. Wierzbicki, E. Wombwell, K. R. Zamudio, D. M. Aanensen, T. Y. James, M. T. P. Gilbert, C. Weldon, J. Bosch, F. Balloux, T. W. J. Garner, M. C. Fisher, Recent Asian origin of chytrid fungi causing global amphibian declines. *Science* 360, 621–627 (2018). doi:10.1126/science.aar1965 Medline
- 18. Conference of Parties to the UN Convention on Biological Diversity, Kunming-Montreal Global Biodiversity Framework CBD/COP/15/L25 (2022); <u>https://www.cbd.int/conferences/2021-2022/cop-15/documents</u>.
- 19. Y. Rohwer, E. Marris, Ecosystem integrity is neither real nor valuable. *Conserv. Sci. Pract.* 3, e411 (2021). doi:10.1111/csp2.411
- 20. A. D. Wallach, E. Lundgren, C. Batavia, M. P. Nelson, E. Yanco, W. L. Linklater, S. P. Carroll, D. Celermajer, K. J. Brandis, J. Steer, D. Ramp, When all life counts in conservation. *Conserv. Biol.* 34, 997–1007 (2020). doi:10.1111/cobi.13447 Medline
- 21. D. H. Janzen, On ecological fitting. Oikos 45, 308–310 (1985). doi:10.2307/3565565
- 22. D. M. Wilkinson, The parable of Green Mountain: Ascension Island, ecosystem construction and ecological fitting. J. Biogeogr. 31, 1–4 (2004). <u>doi:10.1046/j.0305-</u>0270.2003.01010.x
- 23. M. Sagoff, Fact and value in invasion biology. *Conserv. Biol.* **34**, 581–588 (2020). doi:10.1111/cobi.13440 Medline
- 24. A. D. Wallach, W. J. Ripple, S. P. Carroll, Novel trophic cascades: Apex predators enable coexistence. *Trends Ecol. Evol.* **30**, 146–153 (2015). <u>doi:10.1016/j.tree.2015.01.003</u> <u>Medline</u>

- 25. E. J. Lundgren, J. Bergman, J. Trepel, E. le Roux, S. Monsarrat, J. A. Kristensen, R. Ø. Pedersen, P. Pereyra, M. Tietje, J.-C. Svenning, Functional traits—not nativeness—shape the effects of large mammalian herbivores on plant communities [Dataset], Dryad (2023); <u>https://doi.org/10.5061/dryad.b5mkkwhj9</u>.
- 26. Materials and methods are available as supplementary materials.
- 27. S. Lowe, M. Browne, S. Boudjelas, M. De Poorter, "100 of the world's worst invasive alien species: a selection from the global invasive species database" (The Invasive Species Specialist Group, 2000); <u>http://www.iucngisd.org/gisd/100_worst.php</u>.
- 28. S. Grange, P. Duncan, J.-M. Gaillard, Poor horse traders: Large mammals trade survival for reproduction during the process of feralization. *Proc. R. Soc. London Ser. B* 276, 1911– 1919 (2009). doi:10.1098/rspb.2008.1828 Medline
- 29. A. Zizka, R. E. Onstein, R. Rozzi, P. Weigelt, H. Kreft, M. J. Steinbauer, H. Bruelheide, F. Lens, The evolution of insular woodiness. *Proc. Natl. Acad. Sci. U.S.A.* 119, e2208629119 (2022). doi:10.1073/pnas.2208629119 Medline
- 30. D. Simberloff, B. Von Holle, Positive interactions of nonindigenous species: invasional meltdown? *Biol. Invasions* **1**, 21–32 (1999). <u>doi:10.1023/A:1010086329619</u>
- 31. J. Cubas, S. D. H. Irl, R. Villafuerte, V. Bello-Rodríguez, J. L. Rodríguez-Luengo, M. Del Arco, J. L. Martín-Esquivel, J. M. González-Mancebo, Endemic plant species are more palatable to introduced herbivores than non-endemics. *Proc. R. Soc. Lond. Ser. B* 286, 20190136 (2019). doi:10.1098/rspb.2019.0136 Medline
- 32. Plants of the World Online (POWO), Facilitated by the Royal Botanic Gardens, Kew; <u>http://www.plantsoftheworldonline.org/</u>.
- 33. S. Faurby, M. Davis, R. Ø. Pedersen, S. D. Schowanek, A. Antonelli, J.-C. Svenning, PHY-LACINE 1.2: The Phylogenetic Atlas of Mammal Macroecology. *Ecology* 99, 2626 (2018). doi:10.1002/ecy.2443 Medline
- 34. C. M. Janis, D. Ehrhardt, Correlation of relative muzzle width and relative incisor width with dietary preference in ungulates. *Zool. J. Linn. Soc.* 92, 267–284 (1988). doi:10.1111/j.1096-3642.1988.tb01513.x
- 35. A. Eskelinen, W. S. Harpole, M.-T. Jessen, R. Virtanen, Y. Hautier, Light competition drives herbivore and nutrient effects on plant diversity. *Nature* 611, 301–305 (2022). <u>doi:10.1038/s41586-022-05383-9</u> Medline
- 36. N. A. Mungi, Y. V. Jhala, Q. Qureshi, E. le Roux, J.-C. Svenning, Megaherbivores provide biotic resistance against alien plant dominance. *Nat. Ecol. Evol.* 7, 1645–1653 (2023). doi:10.1038/s41559-023-02181-y Medline
- J. Augustine, S. J. McNaughton, Ungulate effects on the functional species composition of plant communities: Herbivore selectivity and plant tolerance. *J. Wildl. Manage.* 62, 1165–1183 (1998). doi:10.2307/3801981
- R. Ø. Pedersen, S. Faurby, J.-C. Svenning, Late-Quaternary megafauna extinctions have strongly reduced mammalian vegetation consumption. *Glob. Ecol. Biogeogr.* 32, 1814– 1826 (2023). doi:10.1111/geb.13723

- 39. W. J. McShea, H. B. Underwood, J. H. Rappole, Eds., *The Science of Overabundance: Deer Ecology and Population Management* (Smithsonian Institution Press, 1997).
- 40. J.-C. Svenning, P. B. M. Pedersen, C. J. Donlan, R. Ejrnæs, S. Faurby, M. Galetti, D. M. Hansen, B. Sandel, C. J. Sandom, J. W. Terborgh, F. W. M. Vera, Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research. *Proc. Natl. Acad. Sci. U.S.A.* **113**, 898–906 (2016). <u>doi:10.1073/pnas.1502556112</u> <u>Medline</u>
- 41. E. le Roux, D. G. Marneweck, G. Clinning, D. J. Druce, G. I. H. Kerley, J. P. G. M. Cromsigt, Top–down limits on prey populations may be more severe in larger prey species, despite having fewer predators. *Ecography* 42, 1115–1123 (2019). <u>doi:10.1111/ecog.03791</u>
- D. Boltovskoy, N. M. Correa, L. E. Burlakova, A. Y. Karatayev, E. V. Thuesen, F. Sylvester, E. M. Paolucci, Traits and impacts of introduced species: A quantitative review of metaanalyses. *Hydrobiologia* 848, 2225–2258 (2021). doi:10.1007/s10750-020-04378-9
- 43. J. Trepel, E. le Roux, A. J. Abraham, J. Andrew, R. Buitenwerf, J. Kamp, J. A. Kristensen, M. Tietje, E. J. Lundgren, J.-C. Svenning, Meta-analysis shows that wild large herbivores shape ecosystem properties and promote spatial heterogeneity. *Nat. Ecol. Evol.* 10.1038/s41559-024-02327-6 (2024).
- 44. E. J. Lundgren, D. Ramp, O. S. Middleton, E. I. F. Wooster, E. Kusch, M. Balisi, W. J. Ripple, C. D. Hasselerharm, J. N. Sanchez, M. Mills, A. D. Wallach, A novel trophic cascade between cougars and feral donkeys shapes desert wetlands. *J. Anim. Ecol.* **91**, 2348–2357 (2022). doi:10.1111/1365-2656.13766 Medline
- 45. E. S. Bakker, J. L. Gill, C. N. Johnson, F. W. M. Vera, C. J. Sandom, G. P. Asner, J.-C. Svenning, Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. *Proc. Natl. Acad. Sci. U.S.A.* **113**, 847– 855 (2016). <u>doi:10.1073/pnas.1502545112</u> <u>Medline</u>
- 46. R. M. Cowling, A. Kamineth, M. Difford, E. E. Campbell, Contemporary and historical impacts of megaherbivores on the population structure of tree euphorbias in South African subtropical thicket. *Afr. J. Ecol.* 48, 135–145 (2010). <u>doi:10.1111/j.1365-2028.2009.01096.x</u>
- J. Eldridge, J. Ding, S. K. Travers, Feral horse activity reduces environmental quality in ecosystems globally. *Biol. Conserv.* 241, 108367 (2020). <u>doi:10.1016/j.bio-</u> <u>con.2019.108367</u>
- 48. F. Cardou, M. Vellend, Stealth advocacy in ecology and conservation biology. *Biol. Conserv.* 280, 109968 (2023). doi:10.1016/j.biocon.2023.109968
- 49. C. W. Habeck, A. K. Schultz, Community-level impacts of white-tailed deer on understorey plants in North American forests: A meta-analysis. *AoB Plants* **7**, plv119 (2015). doi:10.1093/aobpla/plv119 Medline
- 50. J.-L. Martin, S. A. Stockton, S. Allombert, A. J. Gaston, Top-down and bottom-up consequences of unchecked ungulate browsing on plant and animal diversity in temperate forests: Lessons from a deer introduction. *Biol. Invasions* 12, 353–371 (2010). doi:10.1007/s10530-009-9628-8

- 51. D. E. Wilson, R. A. Mittermeier, Eds., *Handbook of the Mammals of the World, Volume 2: Hoofed Mammals* (Lynx Edicions, 2011).
- 52. M. J. S. Hensel, B. R. Silliman, E. Hensel, J. E. K. Byrnes, Feral hogs control brackish marsh plant communities over time. *Ecology* 103, e03572 (2022). <u>doi:10.1002/ecy.3572</u> <u>Medline</u>
- 53. C. E. Burns, S. L. Collins, M. D. Smith, Plant community response to loss of large herbivores: Comparing consequences in a South African and a North American grassland. *Biodivers. Conserv.* 18, 2327–2342 (2009). <u>doi:10.1007/s10531-009-9590-x</u>
- 54. E. J. Lundgren, S. D. Schowanek, J. Rowan, O. Middleton, R. Ø. Pedersen, A. D. Wallach, D. Ramp, M. Davis, C. J. Sandom, J.-C. Svenning, Functional traits of the world's late Quaternary large-bodied avian and mammalian herbivores. *Sci. Data* 8, 17 (2021). <u>doi:10.1038/s41597-020-00788-5</u> <u>Medline</u>
- 55. M. J. Westgate, revtools: An R package to support article screening for evidence synthesis. *Res. Synth. Methods* **10**, 606–614 (2019). <u>doi:10.1002/jrsm.1374</u> <u>Medline</u>
- 56. G. Robertson, J. Wright, D. Brown, K. Yuen, D. Tongway, An assessment of feral horse impacts on treeless drainage lines in the Australian Alps. *Ecol. Manage. Restor.* 20, 21–30 (2019). doi:10.1111/emr.12359
- 57. J. H. Daskin, R. M. Pringle, Does primary productivity modulate the indirect effects of large herbivores? A global meta-analysis. J. Anim. Ecol. 85, 857–868 (2016). doi:10.1111/1365-2656.12522 Medline
- 58. M. J. Page, J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. Mulrow, L. Shamseer, J. M. Tetzlaff, E. A. Akl, S. E. Brennan, R. Chou, J. Glanville, J. M. Grimshaw, A. Hróbjartsson, M. M. Lalu, T. Li, E. W. Loder, E. Mayo-Wilson, S. McDonald, L. A. McGuinness, L. A. Stewart, J. Thomas, A. C. Tricco, V. A. Welch, P. Whiting, D. Moher, The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. *Rev. Esp. Cardiol. (Engl. Ed.)* 74, 790–799 (2021). <u>doi:10.1016/j.reccesp.2021.06.016 Medline</u>
- 59. N. A. McMillan, D. L. Hagan, K. E. Kunkel, D. S. Jachowski, Assessing large herbivore management strategies in the Northern Great Plains using rangeland health metrics. *Nat. Areas J.* 40, 273–280 (2020). doi:10.3375/043.040.0324
- 60. A. C. Risch, M. Schotz, M. L. Vandegehuchte, W. H. Van Der Putten, H. Duyts, U. Raschein, D. J. Gwiazdowicz, M. D. Busse, D. S. Page-dumroese, S. Zimmermann, Aboveground vertebrate and invertebrate herbivore impact on net N mineralization in subalpine grasslands. *Ecology* 96, 3312–3322 (2015). <u>doi:10.1890/15-0300.1</u> Medline
- D. Rearick, L. Kintz, K. L. Burke, T. S. Ransom, Effects of white-tailed deer on the native earthworm, *Eisenoides carolinensis*, in the southern Appalachian Mountains, USA. *Pedobiologia* 54, S173–S180 (2011). doi:10.1016/j.pedobi.2011.09.001
- 62. C. R. Kilheffer, H. B. Underwood, L. Ries, J. Raphael, D. J. Leopold, Effects of white-tailed deer (*Odocoileus virginianus*) exclusion on plant recovery in overwash fans after a severe coastal storm. *AoB Plants* **11**, plz059 (2019). <u>doi:10.1093/aobpla/plz059 Medline</u>

- 63. A. Roy, M. Suchocki, L. Gough, J. R. McLaren, Above-and belowground responses to longterm herbivore exclusion. Arct. Antarct. Alp. Res. 52, 109–119 (2020). doi:10.1080/15230430.2020.1733891
- 64. D. L. Taylor, L.-P. Leung, I. J. Gordon, The impact of feral pigs (*Sus scrofa*) on an Australian lowland tropical rainforest. *Wildl. Res.* **38**, 437–445 (2011). <u>doi:10.1071/WR08138</u>
- B. K. Pekin, M. J. Wisdom, C. G. Parks, B. A. Endress, B. J. Naylor, Response of native versus exotic plant guilds to cattle and elk herbivory in forested rangeland. *Appl. Veg. Sci.* 19, 31–39 (2016). doi:10.1111/avsc.12194
- 66. S. G. Weller, A. K. Sakai, M. Clark, D. H. Lorence, T. Flynn, W. Kishida, N. Tangalin, K. Wood, The effects of introduced ungulates on native and alien plant species in an island ecosystem: Implications for change in a diverse mesic forest in the Hawaiian Islands. *For. Ecol. Manage.* **409**, 518–526 (2018). <u>doi:10.1016/j.foreco.2017.11.023</u>
- 67. S. Kalisz, R. B. Spigler, C. C. Horvitz, In a long-term experimental demography study, excluding ungulates reversed invader's explosive population growth rate and restored natives. *Proc. Natl. Acad. Sci. U.S.A.* **111**, 4501–4506 (2014). doi:10.1073/pnas.1310121111 Medline
- 68. J.-P. Lessard, W. N. Reynolds, W. A. Bunn, M. A. Genung, M. A. Cregger, E. Felker-Quinn, M. N. Barrios-Garcia, M. L. Stevenson, R. M. Lawton, C. B. Brown, M. Patrick, J. H. Rock, M. A. Jenkins, J. K. Bailey, J. A. Schweitzer, Equivalence in the strength of deer herbivory on above and below ground communities. *Basic Appl. Ecol.* **13**, 59–66 (2012). doi:10.1016/j.baae.2011.11.001
- 69. S. M. Zalba, N. C. Cozzani, The impact of feral horses on grassland bird communities in Argentina. *Anim. Conserv.* **7**, 35–44 (2004). doi:10.1017/S1367943003001094
- 70. P. Pisanu, P. Bayne, R. Harden, A. Eggert, Feral goats (*Capra hircus* L.) in the Macleay River gorge system, north-eastern New South Wales, Australia. II. Impacts on rainforest vegetation. *Wildl. Res.* 32, 111–119 (2005). doi:10.1071/WR03085
- 71. A. Lorentzen Kolstad, G. Austrheim, E. J. Solberg, L. De Vriendt, J. D. M. Speed, Pervasive moose browsing in boreal forests alters successional trajectories by severely suppressing keystone species. *Ecosphere* 9, e02458 (2018). doi:10.1002/ecs2.2458
- 72. A. L. Kolstad, G. Austrheim, B. J. Graae, E. J. Solberg, G. R. Strimbeck, J. D. M. Speed, Moose effects on soil temperatures, tree canopies, and understory vegetation: A path analysis. *Ecosphere* 10, e02966 (2019). <u>doi:10.1002/ecs2.2966</u>
- 73. H. A. Parker, J. T. Larkin, D. Heggenstaller, J. Duchamp, M. C. Tyree, C. S. Rushing, E. Just Domoto, J. L. Larkin, Evaluating the impacts of white-tailed deer (*Odocoileus virginianus*) browsing on vegetation in fenced and unfenced timber harvests. For. Ecol. Manage. 473, 118326 (2020). <u>doi:10.1016/j.foreco.2020.118326</u>
- 74. T. P. Rooney, High white-tailed deer densities benefit graminoids and contribute to biotic homogenization of forest ground-layer vegetation. *Plant Ecol.* 202, 103–111 (2009). <u>doi:10.1007/s11258-008-9489-8</u>

- 75. P. F. McInnes, R. J. Naiman, J. Pastor, Y. Cohen, Effects of moose browsing on vegetation and litter of the boreal forest, Isle Royale, Michigan, USA. *Ecology* 73, 2059–2075 (1992). doi:10.2307/1941455
- 76. J. S. Ward, S. C. Williams, Influence of deer hunting and residual stand structure on tree regeneration in deciduous forests. *Wildl. Soc. Bull.* 44, 519–530 (2020). doi:10.1002/wsb.1120
- 77. A. A. Royo, R. Collins, M. B. Adams, C. Kirschbaum, W. P. Carson, Pervasive interactions between ungulate browsers and disturbance regimes promote temperate forest herbaceous diversity. *Ecology* 91, 93–105 (2010). doi:10.1890/08-1680.1 Medline
- 78. J. L. Mitchell, "Ecology and management of feral pigs (*Sus scrofa*) in rainforests," thesis, James Cook University (2002).
- 79. R. M. Pringle, T. P. Young, D. I. Rubenstein, D. J. McCauley, Herbivore-initiated interaction cascades and their modulation by productivity in an African savanna. *Proc. Natl. Acad. Sci. U.S.A.* **104**, 193–197 (2007). doi:10.1073/pnas.0609840104 Medline
- 80. S. G. Weller, R. J. Cabin, D. H. Lorence, S. Perlman, K. Wood, T. Flynn, A. K. Sakai, Alien plant invasions, introduced ungulates, and alternative states in a mesic forest in Hawaii. *Restor. Ecol.* **19**, 671–680 (2011). doi:10.1111/j.1526-100X.2009.00635.x
- 81. P. Okullo, S. R. Moe, Large herbivores maintain termite-caused differences in herbaceous species diversity patterns. *Ecology* 93, 2095–2103 (2012). <u>doi:10.1890/11-2011.1</u> <u>Medline</u>
- 82. A. C. Staver, W. J. Bond, Is there a "browse trap"? Dynamics of herbivore impacts on trees and grasses in an African savanna. J. Ecol. 102, 595–602 (2014). <u>doi:10.1111/1365-2745.12230</u>
- 83. M. A. Relva, M. A. Nunez, D. Simberloff, Introduced deer reduce native plant cover and facilitate invasion of non-native tree species: Evidence for invasional meltdown. *Biol. Invasions* 12, 303–311 (2010). <u>doi:10.1007/s10530-009-9623-0</u>
- 84. A. J. Tanentzap, D. R. Bazely, S. Koh, M. Timciska, E. G. Haggith, T. J. Carleton, D. A. Coomes, Seeing the forest for the deer: Do reductions in deer-disturbance lead to forest recovery? *Biol. Conserv.* 144, 376–382 (2011). doi:10.1016/j.biocon.2010.09.015
- 85. A. E. de Villalobos, L. Schwerdt, Feral horses and alien plants: Effects on the structure and function of the Pampean Mountain grasslands (Argentina). *Écoscience* 25, 49–60 (2018). doi:10.1080/11956860.2017.1409476
- 86. E. Shibata, M. Saito, M. Tanaka, Deer-proof fence prevents regeneration of *Picea jezoensis* var. *hondoensis* through seed predation by increased woodmouse populations. *J. For. Res.* 13, 89–95 (2008). doi:10.1007/s10310-007-0056-2
- 87. C. H. Mills, H. Waudby, G. Finlayson, D. Parker, M. Cameron, M. Letnic, Grazing by overabundant native herbivores jeopardizes conservation goals in semi-arid reserves. *Glob. Ecol. Conserv.* 24, e01384 (2020). <u>doi:10.1016/j.gecco.2020.e01384</u>
- 88. J. I. Ramirez, P. A. Jansen, J. den Ouden, L. Moktan, N. Herdoiza, L. Poorter, Above-and below-ground cascading effects of wild ungulates in temperate forests. *Ecosystems* 24, 153– 167 (2021). doi:10.1007/s10021-020-00509-4

- 89. A. Muñoz, R. Bonal, M. Díaz, Ungulates, rodents, shrubs: Interactions in a diverse Mediterranean ecosystem. *Basic Appl. Ecol.* **10**, 151–160 (2009). doi:10.1016/j.baae.2008.01.003
- 90. J. L. Maron, D. E. Pearson, Vertebrate predators have minimal cascading effects on plant production or seed predation in an intact grassland ecosystem. *Ecol. Lett.* 14, 661–669 (2011). doi:10.1111/j.1461-0248.2011.01633.x Medline
- 91. F. J. Singer, Effects of grazing by ungulates on upland bunchgrass communities of the northern winter range of Yellowstone National Park. *Northwest Sci.* **69**, 191–203 (1995).
- 92. P. M. Perrin, D. L. Kelly, F. J. G. Mitchell, Long-term deer exclusion in yew-wood and oakwood habitats in southwest Ireland: Natural regeneration and stand dynamics. *For. Ecol. Manage.* 236, 356–367 (2006). doi:10.1016/j.foreco.2006.09.025
- 93. T. Vowles, F. Lindwall, A. Ekblad, M. Bahram, B. R. Furneaux, M. Ryberg, R. G. Björk, Complex effects of mammalian grazing on extramatrical mycelial biomass in the Scandes forest-tundra ecotone. *Ecol. Evol.* 8, 1019–1030 (2017). doi:10.1002/ece3.3657 Medline
- 94. T. P. Young, T. M. Palmer, M. E. Gadd, Competition and compensation among cattle, zebras, and elephants in a semi-arid savanna in Laikipia, Kenya. *Biol. Conserv.* 122, 351–359 (2005). doi:10.1016/j.biocon.2004.08.007
- 95. D. Ward, D. Saltz, M. Rowen, I. Schmidt, Effects of grazing by re-introduced *Equus hemi-onus* on the vegetation in a Negev desert erosion cirque. J. Veg. Sci. 10, 579–586 (1999). doi:10.2307/3237192
- 96. G. Lagendijk, B. R. Page, R. Slotow, Short-term effects of single species browsing release by different-sized herbivores on sand forest vegetation community, South Africa. *Biotropica* 44, 63–72 (2012). doi:10.1111/j.1744-7429.2011.00776.x
- 97. S. Varriano, L. H. Lefler, K. Patel, C. Kirksey, A. Turner, M. D. Moran, The complementary relationship of bison grazing and arthropod herbivory in structuring a tallgrass prairie community. *Rangeland Ecol. Manag.* **73**, 491–500 (2020). <u>doi:10.1016/j.rama.2020.02.008</u>
- 98. M. A. Van Staalduinen, H. During, M. J. A. Werger, Impact of grazing regime on a Mongolian forest steppe. *Appl. Veg. Sci.* 10, 299–306 (2007). <u>doi:10.1111/j.1654-</u> <u>109X.2007.tb00428.x</u>
- 99. M. L. Vandegehuchte, M. Schütz, F. de Schaetzen, A. C. Risch, Mammal-induced trophic cascades in invertebrate food webs are modulated by grazing intensity in subalpine grass-land. J. Anim. Ecol. 86, 1434–1446 (2017). doi:10.1111/1365-2656.12744 Medline
- 100. A. R. Ramirez, R. B. Pratt, A. L. Jacobsen, S. D. Davis, Exotic deer diminish post-fire resilience of native shrub communities on Santa Catalina Island, southern California. *Plant Ecol.* 213, 1037–1047 (2012). doi:10.1007/s11258-012-0063-z
- 101. S. Lucas, "The effects of ungulates on species composition and nutrient cycles in central NZ forests," thesis, University of Otago (2010).
- 102. O. Suominen, K. Danell, J. P. Bryant, Indirect effects of mammalian browsers on vegetation and ground-dwelling insects in an Alaskan floodplain. *Écoscience* 6, 505–510 (1999). doi:10.1080/11956860.1999.11682554

- 103. A. E. de Villalobos, S. M. Zalba, D. V. Peláez, *Pinus halepensis* invasion in mountain pampean grassland: Effects of feral horses grazing on seedling establishment. *Environ. Res.* 111, 953–959 (2011). doi:10.1016/j.envres.2011.03.011 Medline
- 104. S. J. Murphy, L. S. Comita, Large mammalian herbivores contribute to conspecific negative density dependence in a temperate forest. J. Ecol. 109, 1194–1209 (2021). doi:10.1111/1365-2745.13545
- 105. J.-Y. Meyer, T. Laitame, J.-C. Gaertner, Short-term recovery of native vegetation and threatened species after restoration of a remnant forest in a small oceanic island of the South Pacific. *Plant Ecol. Divers.* **12**, 75–85 (2019). doi:10.1080/17550874.2019.1584651
- 106. M. Minoshima, M. B. Takada, N. Agetsuma, T. Hiura, Sika deer browsing differentially affects web-building spider densities in high and low productivity forest understories. *Écoscience* 20, 55–64 (2013). <u>doi:10.2980/20-1-3580</u>
- 107. J. R. Peebles-Spencer, D. L. Gorchov, T. O. Crist, Effects of an invasive shrub, *Lonicera maackii*, and a generalist herbivore, white-tailed deer, on forest floor plant community composition. *For. Ecol. Manage.* **402**, 204–212 (2017). <u>doi:10.1016/j.foreco.2017.05.053</u>
- 108. A. A. Royo, D. W. Kramer, K. V. Miller, N. P. Nibbelink, S. L. Stout, Spatio-temporal variation in foodscapes modifies deer browsing impact on vegetation. *Landsc. Ecol.* 32, 2281–2295 (2017). doi:10.1007/s10980-017-0568-x
- 109. G. W. Wood, M. T. Mengak, M. Murphy, Ecological importance of feral ungulates at Shackleford Banks, North Carolina. Am. Midl. Nat. 118, 236–244 (1987). doi:10.2307/2425780
- 110. A. Loydi, Effects of grazing exclusion on vegetation and seed bank composition in a mesic mountain grassland in Argentina. *Plant Ecol. Divers.* **12**, 127–138 (2019). doi:10.1080/17550874.2019.1593544
- 111. D. L. Ogada, M. E. Gadd, R. S. Ostfeld, T. P. Young, F. Keesing, Impacts of large herbivorous mammals on bird diversity and abundance in an African savanna. *Oecologia* 156, 387–397 (2008). doi:10.1007/s00442-008-0994-1 Medline
- 112. G. S. Masunga, S. R. Moe, B. Pelekekae, Fire and grazing change herbaceous species composition and reduce beta diversity in the Kalahari sand system. *Ecosystems* 16, 252–268 (2013). doi:10.1007/s10021-012-9611-6
- 113. D. J. McCauley, F. Keesing, T. P. Young, B. F. Allan, R. M. Pringle, Indirect effects of large herbivores on snakes in an African savanna. *Ecology* 87, 2657–2663 (2006). doi:10.1890/0012-9658(2006)87[2657:IEOLHO]2.0.CO;2 Medline
- 114. R. Perea, A. López-Sánchez, J. Pallarés, G. G. Gordaliza, I. González-Doncel, L. Gil, J. Rodríguez-Calcerrada, Tree recruitment in a drought-and herbivory-stressed oak-beech forest: Implications for future species coexistence. *For. Ecol. Manage.* 477, 118489 (2020). doi:10.1016/j.foreco.2020.118489
- 115. M. Meier, D. Stöhr, J. Walde, E. Tasser, Influence of ungulates on the vegetation composition and diversity of mixed deciduous and coniferous mountain forest in Austria. *Eur. J. Wildl. Res.* 63, 29 (2017). <u>doi:10.1007/s10344-017-1087-4</u>

- 116. R. A. Long, A. Wambua, J. R. Goheen, T. M. Palmer, R. M. Pringle, Climatic variation modulates the indirect effects of large herbivores on small-mammal habitat use. J. Anim. Ecol. 86, 739–748 (2017). doi:10.1111/1365-2656.12669 Medline
- 117. K. E. Veblen, T. P. Young, Contrasting effects of cattle and wildlife on the vegetation development of a savanna landscape mosaic. J. Ecol. 98, 993–1001 (2010). doi:10.1111/j.1365-2745.2010.01705.x
- 118. R. W. Lucas, R. Salguero-Gómez, D. B. Cobb, B. G. Waring, F. Anderson, W. J. McShea, B. B. Casper, White-tailed deer (*Odocoileus virginianus*) positively affect the growth of mature northern red oak (*Quercus rubra*) trees. *Ecosphere* 4, 84 (2013). doi:10.1890/ES13-00036.1
- 119. Y. Souza, N. Villar, V. Zipparro, S. Nazareth, M. Galetti, Large mammalian herbivores modulate plant growth form diversity in a tropical rainforest. *J. Ecol.* **110**, 845–859 (2022). <u>doi:10.1111/1365-2745.13846</u>
- 120. T. Lamperty, K. Zhu, J. R. Poulsen, A. E. Dunham, Defaunation of large mammals alters understory vegetation and functional importance of invertebrates in an Afrotropical forest. *Biol. Conserv.* 241, 108329 (2020). <u>doi:10.1016/j.biocon.2019.108329</u>
- 121. E. Siemann, J. A. Carrillo, C. A. Gabler, R. Zipp, W. E. Rogers, Experimental test of the impacts of feral hogs on forest dynamics and processes in the southeastern US. *For. Ecol. Manage.* 258, 546–553 (2009). doi:10.1016/j.foreco.2009.03.056
- 122. K. Tabuchi, D. T. Quiring, L. E. Flaherty, L. L. Pinault, K. Ozaki, Bottom-up trophic cascades caused by moose browsing on a natural enemy of a galling insect on balsam fir. *Basic Appl. Ecol.* 12, 523–531 (2011). doi:10.1016/j.baae.2011.06.007
- 123. J. J. Opperman, A. M. Merenlender, Deer herbivory as an ecological constraint to restoration of degraded riparian corridors. *Restor. Ecol.* 8, 41–47 (2000). <u>doi:10.1046/j.1526-100x.2000.80006.x</u>
- 124. J. B. Mosbacher, A. Michelsen, M. Stelvig, H. Hjermstad-Sollerud, N. M. Schmidt, Muskoxen modify plant abundance, phenology, and nitrogen dynamics in a High Arctic fen. *Ecosystems* 22, 1095–1107 (2019). <u>doi:10.1007/s10021-018-0323-4</u>
- 125. M. Sakai, Y. Natuhara, A. Imanishi, K. Imai, M. Kato, Indirect effects of excessive deer browsing through understory vegetation on stream insect assemblages. *Popul. Ecol.* 54, 65–74 (2012). doi:10.1007/s10144-011-0278-1
- 126. D. J. Wilson, W. A. Ruscoe, L. E. Burrows, L. M. McElrea, D. Choquenot, An experimental study of the impacts of understorey forest vegetation and herbivory by red deer and rodents on seedling establishment and species composition in Waitutu Forest, New Zealand. N. Z. J. Ecol. 30, 191–207 (2006).
- 127. B. J. Wigley, D. J. Augustine, C. Coetsee, J. Ratnam, M. Sankaran, Grasses continue to trump trees at soil carbon sequestration following herbivore exclusion in a semiarid African savanna. *Ecology* **101**, e03008 (2020). <u>doi:10.1002/ecy.3008 Medline</u>
- 128. A. E. de Villalobos, L. Schwerdt, Seasonality of feral horse grazing and invasion of *Pinus halepensis* in grasslands of the Austral Pampean Mountains (Argentina): Management considerations. *Biol. Invasions* 22, 2941–2955 (2020). doi:10.1007/s10530-020-02300-x

- 129. R. Perea, M. Girardello, A. San Miguel, Big game or big loss? High deer densities are threatening woody plant diversity and vegetation dynamics. *Biodivers. Conserv.* 23, 1303–1318 (2014). doi:10.1007/s10531-014-0666-x
- 130. G. M. Rogers, Kaimanawa feral horses and their environmental impacts. *N. Z. J. Ecol.* **15**, 49–64 (1991).
- 131. M. Swain, "Indirect impacts of a non-native ungulate browser on soil ecosystem function is variable across soil horizons in the boreal forests of Newfoundland, Canada," thesis, Memorial University of Newfoundland (2021).
- 132. M. L. Vandegehuchte, W. H. Van Der Putten, H. Duyts, M. Schütz, A. C. Risch, Aboveground mammal and invertebrate exclusions cause consistent changes in soil food webs of two subalpine grassland types, but mechanisms are system-specific. *Oikos* 126, oik.03341 (2017). doi:10.1111/oik.03341
- 133. T. J. Stohlgren, L. D. Schell, B. Vanden Heuvel, How grazing and soil quality affect native and exotic plant diversity in Rocky Mountain grasslands. *Ecol. Appl.* 9, 45–64 (1999). doi:10.1890/1051-0761(1999)009[0045:HGASQA]2.0.CO;2
- 134. O. Suominen, K. Danell, R. Bergström, Moose, trees, and ground-living invertebrates: Indirect interactions in Swedish pine forests. *Oikos* 84, 215–226 (1999). doi:10.2307/3546716
- 135. F. J. Singer, M. K. Harter, Comparative effects of elk herbivory and 1988 fires on northern Yellowstone National Park grasslands. *Ecol. Appl.* 6, 185–199 (1996). <u>doi:10.2307/2269563</u>
- 136. F. Riesch, B. Tonn, H. G. Stroh, M. Meißner, N. Balkenhol, J. Isselstein, Grazing by wild red deer maintains characteristic vegetation of semi-natural open habitats: Evidence from a three-year exclusion experiment. *Appl. Veg. Sci.* 23, 522–538 (2020). doi:10.1111/avsc.12505
- 137. M. G. Nafus, J. A. Savidge, A. A. Yackel Adams, M. T. Christy, R. N. Reed, Passive restoration following ungulate removal in a highly disturbed tropical wet forest devoid of native seed dispersers. *Restor. Ecol.* 26, 331–337 (2018). doi:10.1111/rec.12559
- 138. F. G. T. Radloff, L. Mucina, D. Snyman, The impact of native large herbivores and fire on the vegetation dynamics in the Cape renosterveld shrublands of South Africa: Insights from a six-yr field experiment. *Appl. Veg. Sci.* 17, 456–469 (2014). doi:10.1111/avsc.12086
- 139. M. A. Vinton, D. C. Hartnett, Effects of bison grazing on Andropogon gerardii and Panicum virgatum in burned and unburned tallgrass prairie. Oecologia 90, 374–382 (1992). doi:10.1007/BF00317694 Medline
- 140. F. K. Muthoni, T. A. Groen, A. K. Skidmore, P. van Oel, Ungulate herbivory overrides rainfall impacts on herbaceous regrowth and residual biomass in a key resource area. J. Arid Environ. 100–101, 9–17 (2014). doi:10.1016/j.jaridenv.2013.09.007
- 141. J. D. Rees, R. T. Kingsford, M. Letnic, In the absence of an apex predator, irruptive herbi-vores suppress grass seed production: Implications for small granivores. *Biol. Conserv.* 213, 13–18 (2017). doi:10.1016/j.biocon.2017.06.037

- 142. F. J. Singer, R. A. Renkin, Effects of browsing by native ungulates on the shrubs in big sagebrush communities in Yellowstone National Park. *Great Basin Nat.* 55, 201–212 (1995).
- 143. D. M. Seliskar, The response of Ammophila breviligulata and Spartina patens (Poaceae) to grazing by feral horses on a dynamic mid-Atlantic barrier island. Am. J. Bot. 90, 1038– 1044 (2003). doi:10.3732/ajb.90.7.1038 Medline
- 144. J. A. Morrison, Effects of white-tailed deer and invasive plants on the herb layer of suburban forests. *AoB Plants* **9**, plx058 (2017). <u>doi:10.1093/aobpla/plx058 Medline</u>
- 145. J. Sitters, D. M. Kimuyu, T. P. Young, P. Claeys, H. Olde Venterink, Negative effects of cattle on soil carbon and nutrient pools reversed by megaherbivores. *Nat. Sustain.* 3, 360– 366 (2020). doi:10.1038/s41893-020-0490-0
- 146. A. J. Tanentzap, L. E. Burrows, W. G. Lee, G. Nugent, J. M. Maxwell, D. A. Coomes, Landscape-level vegetation recovery from herbivory: Progress after four decades of invasive red deer control. J. Appl. Ecol. 46, 1064–1072 (2009). doi:10.1111/j.1365-2664.2009.01683.x
- 147. B. F. Tracy, D. A. Frank, Herbivore influence on soil microbial biomass and nitrogen mineralization in a northern grassland ecosystem: Yellowstone National Park. *Oecologia* 114, 556–562 (1998). doi:10.1007/s004420050480 Medline
- 148. A. C. Treydte, C. C. Grant, F. Jeltsch, Tree size and herbivory determine below-canopy grass quality and species composition in savannahs. *Biodivers. Conserv.* 18, 3989–4002 (2009). doi:10.1007/s10531-009-9694-3
- 149. L. P. Rutina, S. R. Moe, Elephant (*Loxodonta africana*) disturbance to riparian woodland: Effects on tree-species richness, diversity and functional redundancy. *Ecosystems* 17, 1384–1396 (2014). doi:10.1007/s10021-014-9801-5
- 150. L. M. Porensky, S. F. Bucher, K. E. Veblen, A. C. Treydte, T. P. Young, Megaherbivores and cattle alter edge effects around ecosystem hotspots in an African savanna. *J. Arid Environ.* **96**, 55–63 (2013). doi:10.1016/j.jaridenv.2013.04.003
- 151. P. A. Werner, I. D. Cowie, J. S. Cusack, Juvenile tree growth and demography in response to feral water buffalo in savannas of northern Australia: An experimental field study in Kakadu National Park. *Aust. J. Bot.* 54, 283–296 (2006). <u>doi:10.1071/BT04135</u>
- 152. T. Morris, M. Letnic, Removal of an apex predator initiates a trophic cascade that extends from herbivores to vegetation and the soil nutrient pool. *Proc. R. Soc. London Ser. B* 284, 20170111 (2017). doi:10.1098/rspb.2017.0111 Medline
- 153. E. J. Questad, A. Uowolo, S. Brooks, R. Fitch, S. Cordell, Resource availability, propagule supply, and effect of nonnative ungulate herbivores on *Senecio madagascariensis* Invasion. *Pac. Sci.* 72, 69–79 (2018). doi:10.2984/72.1.5
- 154. G. C. Stuart-Hill, Effects of elephants and goats on the Kaffrarian succulent thicket of the eastern Cape, South Africa. *J. Appl. Ecol.* **29**, 699–710 (1992). <u>doi:10.2307/2404479</u>
- 155. L. M. Qvarnemark, S. P. Sheldon, Moose grazing decreases aquatic plant diversity. J. *Freshwat. Ecol.* **19**, 407–410 (2004). <u>doi:10.1080/02705060.2004.9664913</u>

- 156. J. Mitchell, W. Dorney, R. Mayer, J. McIlroy, Ecological impacts of feral pig diggings in north Queensland rainforests. *Wildl. Res.* **34**, 603–608 (2007). <u>doi:10.1071/WR06065</u>
- 157. T. H. Pendergast IV, S. M. Hanlon, Z. M. Long, A. A. Royo, W. P. Carson, The legacy of deer overabundance: Long-term delays in herbaceous understory recovery. *Can. J. For. Res.* 46, 362–369 (2016). doi:10.1139/cjfr-2015-0280
- 158. J. Ward-Jones, I. Pulsford, R. Thackway, D. Bishwokarma, D. Freudenberger, Impacts of feral horses and deer on an endangered woodland of Kosciuszko National Park. *Ecol. Manage. Restor.* 20, 37–46 (2019). doi:10.1111/emr.12353
- 159. V. Nuzzo, A. Dávalos, B. Blossey, Assessing plant community composition fails to capture impacts of white-tailed deer on native and invasive plant species. *AoB Plants* 9, plx026 (2017). doi:10.1093/aobpla/plx026 Medline
- 160. E. Post, C. Pedersen, Opposing plant community responses to warming with and without herbivores. *Proc. Natl. Acad. Sci. U.S.A.* **105**, 12353–12358 (2008). doi:10.1073/pnas.0802421105 Medline
- 161. N. Nakahama, K. Uchida, A. Koyama, T. Iwasaki, M. Ozeki, T. Suka, Construction of deer fences restores the diversity of butterflies and bumblebees as well as flowering plants in semi-natural grassland. *Biodivers. Conserv.* 29, 2201–2215 (2020). doi:10.1007/s10531-020-01969-9
- 162. J. Rojas-Sandoval, E. J. Meléndez-Ackerman, J. Fumero-Cabán, M. García-Bermúdez, J. Sustache, S. Aragón, M. Morales-Vargas, G. Olivieri, D. S. Fernández, Long-term understory vegetation dynamics and responses to ungulate exclusion in the dry forest of Mona Island. *Caribb. Nat.* Special Issue No. 1, 138–156 (2016).
- 163. L. Alejandro, R. A. Distel, S. M. Zalba, Large herbivore grazing and non-native plant invasions in montane grasslands of central Argentina. *Nat. Areas J.* 30, 148–155 (2010). doi:10.3375/043.030.0203
- 164. B. D. Murray, C. R. Webster, M. A. Jenkins, M. R. Saunders, G. S. Haulton, Ungulate impacts on herbaceous-layer plant communities in even-aged and uneven-aged managed forests. *Ecosphere* 7, e01378 (2016). <u>doi:10.1002/ecs2.1378</u>
- 165. C. R. Webster, M. A. Jenkins, J. H. Rock, Long-term response of spring flora to chronic herbivory and deer exclusion in Great Smoky Mountains National Park, USA. *Biol. Conserv.* 125, 297–307 (2005). <u>doi:10.1016/j.biocon.2005.03.027</u>
- 166. A. Sandhage-Hofmann, A. Linstädter, L. Kindermann, S. Angombe, W. Amelung, Conservation with elevated elephant densities sequesters carbon in soils despite losses of woody biomass. *Global Change Biol.* 27, 4601–4614 (2021). doi:10.1111/gcb.15779 Medline
- 167. H. Uno, Y. Inatomi, M. Ueno, H. Iijima, Effects of sika deer (*Cervus nippon*) and dwarf bamboo (*Sasa senanensis*) on tree seedlings in a cool-temperate mixed forest on Hokkaido Island, Japan. *Eur. J. For. Res.* **138**, 929–938 (2019). <u>doi:10.1007/s10342-019-01214-1</u>
- 168. H. van Coller, F. Siebert, The impact of herbivore exclusion on forb diversity: Comparing species and functional responses during a drought. *Afr. J. Ecol.* 58, 236–250 (2020). <u>doi:10.1111/aje.12676</u>

- 169. C. R. Rossell Jr., B. Gorsira, S. Patch, Effects of white-tailed deer on vegetation structure and woody seedling composition in three forest types on the Piedmont Plateau. *For. Ecol. Manage.* 210, 415–424 (2005). doi:10.1016/j.foreco.2005.02.035
- 170. T. J. Zamin, P. Grogan, Caribou exclusion during a population low increases deciduous and evergreen shrub species biomass and nitrogen pools in low Arctic tundra. J. Ecol. 101, 671–683 (2013). doi:10.1111/1365-2745.12082
- 171. R. W. Myster, Above-ground vs. below-ground interactive effects of mammalian herbivory on tallgrass prairie plant and soil characteristics. J. Plant Interact. 6, 283–290 (2011). doi:10.1080/17429145.2010.541290
- 172. D. Saltz, H. Schmidt, M. Rowen, A. Karnieli, D. Ward, I. Schmidt, Assessing grazing impacts by remote sensing in hyper-arid environments. J. Range Manage. 52, 500–507 (1999). doi:10.2307/4003778
- 173. P. J. Bellingham, C. N. Allan, Forest regeneration and the influences of white-tailed deer (*Odocoileus virginianus*) in cool temperate New Zealand rain forests. *For. Ecol. Manage*. 175, 71–86 (2003). doi:10.1016/S0378-1127(02)00122-6
- 174. S. Chollet, C. Baltzinger, M. Maillard, J.-L. Martin, Deer exclusion unveils abiotic filtering in forest understorey plant assemblages. Ann. Bot. 128, 371–381 (2021). doi:10.1093/aob/mcab079 Medline
- 175. D. O. Dunkell, G. L. Bruland, C. I. Evensen, C. M. Litton, Runoff, sediment transport, and effects of feral pig (*Sus scrofa*) exclusion in a forested Hawaiian watershed. *Pac. Sci.* 65, 175–194 (2011). doi:10.2984/65.2.175
- 176. G. A. Hood, S. E. Bayley, A comparison of riparian plant community response to herbivory by beavers (*Castor canadensis*) and ungulates in Canada's boreal mixed-wood forest. *For. Ecol. Manage.* 258, 1979–1989 (2009). doi:10.1016/j.foreco.2009.07.052
- 177. P. Hanberry, B. B. Hanberry, S. Demarais, B. D. Leopold, J. Fleeman, Impact on plant communities by white-tailed deer in Mississippi, USA. *Plant Ecol. Divers.* 7, 541–548 (2014). doi:10.1080/17550874.2013.842615
- 178. F. K. Bockett, "Ungulate effects on tawa (*Beilschmiedia tawa*) forest in Urewera National Park," Conservation Advisory Science Notes No. 196 (Department of Conservation, Wellington, 1998).
- 179. S. B. Castleberry, W. M. Ford, K. V. Miller, W. P. Smith, Influences of herbivory and canopy opening size on forest regeneration in a southern bottomland hardwood forest. *For. Ecol. Manage.* **131**, 57–64 (2000). <u>doi:10.1016/S0378-1127(99)00200-5</u>
- 180. A. K. Eschtruth, J. J. Battles, Acceleration of exotic plant invasion in a forested ecosystem by a generalist herbivore. *Conserv. Biol.* 23, 388–399 (2009). <u>doi:10.1111/j.1523-1739.2008.01122.x</u> <u>Medline</u>
- 181. E. J. Ens, C. Daniels, E. Nelson, J. Roy, P. Dixon, Creating multi-functional landscapes: Using exclusion fences to frame feral ungulate management preferences in remote Aboriginal-owned northern Australia. *Biol. Conserv.* **197**, 235–246 (2016). <u>doi:10.1016/j.biocon.2016.03.007</u>

- 182. E. M. Cecil, M. J. Spasojevic, J. H. Cushman, Cascading effects of mammalian herbivores on ground-dwelling arthropods: Variable responses across arthropod groups, habitats and years. J. Anim. Ecol. 88, 1319–1331 (2019). doi:10.1111/1365-2656.13033 Medline
- 183. S. Boiko, E. Bielinis, Z. Sierota, A. Zawadzka, A. Słupska, M. Nasiadko, J. Borkowski, Polish pony changes lower layer biodiversity in old growth Scots pine stands. *Forests* 10, 417 (2019). doi:10.3390/f10050417
- 184. T. M. Anderson, M. E. Ritchie, S. J. McNaughton, Rainfall and soils modify plant community response to grazing in Serengeti National Park. *Ecology* 88, 1191–1201 (2007). <u>doi:10.1890/06-0399 Medline</u>
- 185. R. Guldemond, R. Van Aarde, The impact of elephants on plants and their community variables in South Africa's Maputaland. *Afr. J. Ecol.* 45, 327–335 (2007). doi:10.1111/j.1365-2028.2007.00714.x
- 186. S. B. Horsley, S. L. Stout, D. S. DeCalesta, White-tailed deer impact on the vegetation dynamics of a northern hardwood forest. *Ecol. Appl.* 13, 98–118 (2003). doi:10.1890/1051-0761(2003)013[0098:WTDIOT]2.0.CO;2
- 187. J. E. Donaldson, C. L. Parr, E. H. Mangena, S. Archibald, Droughts decouple African savanna grazers from their preferred forage with consequences for grassland productivity. *Ecosystems* 23, 689–701 (2020). doi:10.1007/s10021-019-00438-x
- 188. S. Chollet, S. Padié, S. Stockton, S. Allombert, A. J. Gaston, J. Martin, Positive plant and bird diversity response to experimental deer population reduction after decades of uncontrolled browsing. *Divers. Distrib.* 22, 274–287 (2016). doi:10.1111/ddi.12393
- 189. A. Bennett, "The impacts of sambar (*Cervus unicolor*) in the Yarra Ranges National Park," thesis, The University of Melbourne (2008).
- 190. J. R. Goheen, T. M. Palmer, F. Keesing, C. Riginos, T. P. Young, Large herbivores facilitate savanna tree establishment via diverse and indirect pathways. J. Anim. Ecol. 79, 372– 382 (2010). doi:10.1111/j.1365-2656.2009.01644.x Medline
- 191. J. K. Bailey, T. G. Whitham, Interactions among fire, aspen, and elk affect insect diversity: Reversal of a community response. *Ecology* 83, 1701–1712 (2002). <u>doi:10.1890/0012-9658(2002)083[1701:IAFAAE]2.0.CO;2</u>
- 192. R. Bucher, J. Rochlitz, N. Wegner, A. Hei
 ß, A. Grebe, D. G. Schabo, N. Farwig, Deer exclusion changes vegetation structure and hunting guilds of spiders, but not multitrophic understory biodiversity. *Diversity* 13, 25 (2021). doi:10.3390/d13010025
- 193. D. Fraser, H. Hristienko, Effects of moose, *Alces alces*, on aquatic vegetation in Sibley Provincial Park, Ontario. *Can. Field. Nat.* **97**, 57–61 (1983).
- 194. K. Ickes, S. J. DeWalt, S. Appanah, Effects of native pigs (*Sus scrofa*) on woody understorey vegetation in a Malaysian lowland rain forest. J. Trop. Ecol. 17, 191–206 (2001). doi:10.1017/S0266467401001134
- 195. M. A. Barrett, P. Stiling, Effects of Key deer herbivory on forest communities in the lower Florida Keys. *Biol. Conserv.* **129**, 100–108 (2006). <u>doi:10.1016/j.biocon.2005.10.026</u>

- 196. M. B. Coughenour, Biomass and nitrogen responses to grazing of upland steppe on Yellowstone's northern winter range. J. Appl. Ecol. 28, 71–82 (1991). doi:10.2307/2404114
- 197. S. Damhoureyeh, D. Hartnett, Effects of bison and cattle on growth, reproduction, and abundances of five tallgrass prairie forbs. Am. J. Bot. 84, 1719–1728 (1997). doi:10.2307/2446471 Medline
- 198. S. L. Hummel, H. Campa III, S. R. Winterstein, E. M. Dunton, Understanding how a keystone herbivore, white-tailed deer impacts wetland vegetation types in southern Michigan. *Am. Midl. Nat.* **179**, 51–67 (2018). doi:10.1674/0003-0031-179.1.51
- 199. S. W. Husheer, Introduced red deer reduce tree regeneration in Pureora Forest, central North Island, New Zealand. *N. Z. J. Ecol.* **31**, 79–87 (2007).
- 200. H. J. Dalgleish, D. C. Hartnett, The effects of fire frequency and grazing on tallgrass prairie productivity and plant composition are mediated through bud bank demography. *Plant Ecol.* 201, 411–420 (2009). doi:10.1007/s11258-008-9562-3
- 201. A. Collard, L. Lapointe, J.-P. Ouellet, M. Crête, A. Lussier, C. Daigle, S. D. Côté, Slow responses of understory plants of maple-dominated forests to white-tailed deer experimental exclusion. *For. Ecol. Manage.* 260, 649–662 (2010). doi:10.1016/j.foreco.2010.05.021
- 202. M. A. Barrett, P. Stiling, Key deer impacts on hardwood hammocks near urban areas. *J. Wildl. Manage.* **70**, 1574–1579 (2006). <u>doi:10.2193/0022-541X(2006)70[1574:KDI-OHH]2.0.CO;2</u>
- 203. D. A. Frank, R. L. Wallen, E. W. Hamilton III, P. J. White, J. D. Fridley, Manipulating the system: How large herbivores control bottom-up regulation of grasslands. J. Ecol. 106, 434–443 (2018). doi:10.1111/1365-2745.12884
- 204. L. H. Jenkins, M. A. Jenkins, C. R. Webster, P. A. Zollner, J. M. Shields, Herbaceous layer response to 17 years of controlled deer hunting in forested natural areas. *Biol. Conserv.* 175, 119–128 (2014). doi:10.1016/j.biocon.2014.04.022
- 205. E. R. Bush, C. D. Buesching, E. M. Slade, D. W. Macdonald, Woodland recovery after suppression of deer: Cascade effects for small mammals, wood mice (*Apodemus sylvaticus*) and bank voles (*Myodes glareolus*). *PLOS ONE* **7**, e31404 (2012). <u>doi:10.1371/journal.pone.0031404</u> <u>Medline</u>
- 206. C. D. Buesching, C. Newman, J. T. Jones, D. W. Macdonald, Testing the effects of deer grazing on two woodland rodents, bankvoles and woodmice. *Basic Appl. Ecol.* 12, 207– 214 (2011). doi:10.1016/j.baae.2011.02.007
- 207. D. Baines, R. B. Sage, M. M. Baines, The implications of red deer grazing to ground vegetation and invertebrate communities of Scottish native pinewoods. J. Appl. Ecol. 31, 776– 783 (1994). doi:10.2307/2404167
- 208. C. Goetsch, J. Wigg, A. A. Royo, T. Ristau, W. P. Carson, Chronic over browsing and biodiversity collapse in a forest understory in Pennsylvania: Results from a 60 year-old deer exclusion plot. J. Torrey Bot. Soc. 138, 220–224 (2011). doi:10.3159/TORREY-D-11-00013.1

- 209. D. A. Frank, P. M. Groffman, Ungulate vs. landscape control of soil C and N processes in grasslands of Yellowstone National Park. *Ecology* 79, 2229–2241 (1998). doi:10.1890/0012-9658(1998)079[2229:UVLCOS]2.0.CO;2
- 210. M. L. Cadenasso, S. T. A. Pickett, P. J. Morin, Experimental test of the role of mammalian herbivores on old field succession: Community structure and seedling survival. J. Torrey Bot. Soc. 129, 228–237 (2002). doi:10.2307/3088773
- 211. M. A. Bowers, Influence of herbivorous mammals on an old-field plant community: Years 1-4 after disturbance. *Oikos* 67, 129–141 (1993). doi:10.2307/3545103
- 212. D. J. Augustine, S. J. Mcnaughton, Regulation of shrub dynamics by native browsing ungulates on East African rangeland. J. Appl. Ecol. 41, 45–58 (2004). doi:10.1111/j.1365-2664.2004.00864.x
- 213. J. R. Goheen, T. M. Palmer, G. K. Charles, K. M. Helgen, S. N. Kinyua, J. E. Maclean, B. L. Turner, H. S. Young, R. M. Pringle, Piecewise disassembly of a large-herbivore community across a rainfall gradient: The UHURU experiment. *PLOS ONE* 8, e55192 (2013). doi:10.1371/journal.pone.0055192 Medline
- 214. J. H. Cushman, L. E. Saunders, T. K. Refsland, Long-term and interactive effects of different mammalian consumers on growth, survival, and recruitment of dominant tree species. *Ecol. Evol.* **10**, 8801–8814 (2020). <u>doi:10.1002/ece3.6578 Medline</u>
- 215. S. W. Husheer, Q. W. Hansen, S. C. Urlich, Effects of red deer on tree regeneration and growth in Aorangi Forest, Wairarapa. *N. Z. J. Ecol.* **29**, 271–277 (2005).
- 216. Z. S. Gizicki, V. Tamez, A. P. Galanopoulou, P. Avramidis, J. Foufopoulos, Long-term effects of feral goats (*Capra hircus*) on Mediterranean island communities: Results from whole island manipulations. *Biol. Invasions* 20, 1537–1552 (2018). <u>doi:10.1007/s10530-017-1645-4</u>
- 217. A. Burke, The impact of large herbivores on floral composition and vegetation structure in the Naukluft Mountains, Namibia. *Biodivers. Conserv.* 6, 1203–1217 (1997). doi:10.1023/A:1018308907241
- 218. B. E. Johnson, J. H. Cushman, Influence of a large herbivore reintroduction on plant invasions and community composition in a California grassland. *Conserv. Biol.* **21**, 515–526 (2007). doi:10.1111/j.1523-1739.2006.00610.x Medline
- 219. B. W. Baker, H. C. Ducharme, D. C. S. Mitchell, T. R. Stanley, H. R. Peinetti, Interaction of beaver and elk herbivory reduces standing crop of willow. *Ecol. Appl.* 15, 110–118 (2005). <u>doi:10.1890/03-5237</u>
- 220. R. M. DeGraaf, W. M. Healy, R. T. Brooks, Effects of thinning and deer browsing on breeding birds in New England oak woodlands. *For. Ecol. Manage.* 41, 179–191 (1991). doi:10.1016/0378-1127(91)90102-2
- 221. R. J. Cole, C. M. Litton, Vegetation response to removal of non-native feral pigs from Hawaiian tropical montane wet forest. *Biol. Invasions* 16, 125–140 (2014). doi:10.1007/s10530-013-0508-x

- 222. R. J. Cole, C. M. Litton, M. J. Koontz, R. K. Loh, Vegetation recovery 16 years after feral pig removal from a wet Hawaiian forest. *Biotropica* 44, 463–471 (2012). doi:10.1111/j.1744-7429.2011.00841.x
- 223. G. O. Batzli, C. E. Dejaco, White-tailed deer (*Odocoileus virginianus*) facilitate the development of nonnative grasslands in central Illinois. *Am. Midl. Nat.* 170, 323–334 (2013). doi:10.1674/0003-0031-170.2.323
- 224. L. E. Baur, K. A. Schoenecker, M. D. Smith, Effects of feral horse herds on rangeland plant communities across a precipitation gradient. West. N. Am. Nat. 77, 526–539 (2018). doi:10.3398/064.077.0412
- 225. R. B. Allen, I. J. Payton, J. E. Knowlton, Effects of ungulates on structure and species composition in the Urewera forests as shown by exclosures. *N. Z. J. Ecol.* **7**, 119–130 (1984).
- 226. G. H. De Stoppelaire, T. W. Gillespie, J. C. Brock, G. A. Tobin, Use of remote sensing techniques to determine the effects of grazing on vegetation cover and dune elevation at Assateague Island National Seashore: Impact of horses. *Environ. Manage.* 34, 642–649 (2004). doi:10.1007/s00267-004-0009-x Medline
- 227. E. S. Bakker, M. E. Ritchie, H. Olff, D. G. Milchunas, J. M. H. Knops, Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. *Ecol. Lett.* 9, 780–788 (2006). doi:10.1111/j.1461-0248.2006.00925.x Medline
- 228. D. E. Burkepile, D. I. Thompson, R. W. S. Fynn, S. E. Koerner, S. Eby, N. Govender, N. Hagenah, N. P. Lemoine, K. J. Matchett, K. R. Wilcox, S. L. Collins, K. P. Kirkman, A. K. Knapp, M. D. Smith, Fire frequency drives habitat selection by a diverse herbivore guild impacting top–down control of plant communities in an African savanna. *Oikos* 125, 1636–1646 (2016). <u>doi:10.1111/oik.02987</u>
- 229. M. Ibañez-Alvarez, E. Baraza, E. Serrano, A. Romero-Munar, C. Cardona, J. Bartolome, J. A. Krumins, Ungulates alter plant cover without consistent effect on soil ecosystem functioning. *Agric. Ecosyst. Environ.* **326**, 107796 (2022). doi:10.1016/j.agee.2021.107796
- 230. B. Freedman, P. M. Catling, Z. Lucas, Effects of feral horses on vegetation of Sable Island, Nova Scotia. *Can. Field Nat.* **125**, 200–212 (2011). <u>doi:10.22621/cfn.v125i3.1222</u>
- 231. J. H. Cushman, T. A. Tierney, J. M. Hinds, Variable effects of feral pig disturbances on native and exotic plants in a California grassland. *Ecol. Appl.* 14, 1746–1756 (2004). doi:10.1890/03-5142
- 232. D. J. Augustine, B. J. Wigley, J. Ratnam, S. Kibet, M. Nyangito, M. Sankaran, Large herbivores maintain a two-phase herbaceous vegetation mosaic in a semi-arid savanna. *Ecol. Evol.* 9, 12779–12788 (2019). doi:10.1002/ece3.5750 Medline
- 233. C. S. Boyd, K. W. Davies, G. H. Collins, Impacts of feral horse use on herbaceous riparian vegetation within a sagebrush steppe ecosystem. *Rangeland Ecol. Manag.* **70**, 411–417 (2017). doi:10.1016/j.rama.2017.02.001
- 234. R. Callan, N. P. Nibbelink, T. P. Rooney, J. E. Wiedenhoeft, A. P. Wydeven, Recolonizing wolves trigger a trophic cascade in Wisconsin (USA). J. Ecol. 101, 837–845 (2013). doi:10.1111/1365-2745.12095

- 235. D. A. Frank, The interactive effects of grazing ungulates and aboveground production on grassland diversity. *Oecologia* **143**, 629–634 (2005). <u>doi:10.1007/s00442-005-0019-2</u> <u>Medline</u>
- 236. M. T. Hoffman, C. F. Madden, K. Erasmus, N. Saayman, J. C. Botha, The impact of indigenous ungulate herbivory over five years (2004–2008) on the vegetation of the Little Karoo, South Africa. *Afr. J. Range Forage Sci.* 26, 169–179 (2009). doi:10.2989/AJRF.2009.26.3.8.953
- 237. G. K. Charles, L. M. Porensky, C. Riginos, K. E. Veblen, T. P. Young, Herbivore effects on productivity vary by guild: Cattle increase mean productivity while wildlife reduce variability. *Ecol. Appl.* 27, 143–155 (2017). <u>doi:10.1002/eap.1422</u> <u>Medline</u>
- 238. A. DiTommaso, S. H. Morris, J. D. Parker, C. L. Cone, A. A. Agrawal, Deer browsing delays succession by altering aboveground vegetation and belowground seed banks. *PLOS ONE* 9, e91155 (2014). doi:10.1371/journal.pone.0091155 Medline
- 239. A. Cocquelet, A. Mårell, S. Bonthoux, C. Baltzinger, F. Archaux, Direct and indirect effects of ungulates on forest birds' nesting failure? An experimental test with artificial nests. *For. Ecol. Manage.* 437, 148–155 (2019). doi:10.1016/j.foreco.2019.01.025
- 240. P. Bayne, R. Harden, I. Davies, Feral goats (*Capra hircus* L.) in the Macleay River gorge system, north-eastern New South Wales, Australia. I. Impacts on soil erosion. *Wildl. Res.* 31, 519–525 (2004). doi:10.1071/WR03039
- 241. K. L. Flaherty, J. S. Rentch, W. N. Grafton, J. T. Anderson, Timing of white-tailed deer browsing affects wetland plant communities. *Plant Ecol.* 219, 313–324 (2018). doi:10.1007/s11258-018-0797-3
- 242. R. Carrera, W. B. Ballard, P. R. Krausman, J. Devos Jr., M. C. Wallace, S. Cunningham, O. J. Alcumbrac, S. A. Christensen, Reproduction and nutrition of desert mule deer with and without predation. *Southwest. Nat.* 60, 285–298 (2015). doi:10.1894/0038-4909-60.4.285
- 243. V. Boulanger, J. L. Dupouey, F. Archaux, V. Badeau, C. Baltzinger, R. Chevalier, E. Corcket, Y. Dumas, F. Forgeard, A. Mårell, P. Montpied, Y. Paillet, J.-F. Picard, S. Saïd, E. Ulrich, Ungulates increase forest plant species richness to the benefit of non-forest specialists. *Global Change Biol.* 24, e485–e495 (2018). doi:10.1111/gcb.13899 Medline
- 244. K. M. Asnani, R. A. Klips, P. S. Curtis, Regeneration of woodland vegetation after deer browsing in Sharon Woods Metro Park, Franklin County, Ohio. *Ohio J. Sci.* 106, 86–92 (2006).
- 245. R. Guldemond, R. Van Aarde, The influence of tree canopies and elephants on sub-canopy vegetation in a savannah. *Afr. J. Ecol.* **48**, 180–189 (2010). <u>doi:10.1111/j.1365-2028.2009.01100.x</u>
- 246. A. Elson, D. C. Hartnett, Bison increase the growth and reproduction of forbs in tallgrass prairie. *Am. Midl. Nat.* **178**, 245–259 (2017). <u>doi:10.1674/0003-0031-178.2.245</u>
- 247. M. Bernard, V. Boulanger, J.-L. Dupouey, L. Laurent, P. Montpied, X. Morin, J.-F. Picard, S. Saïd, Deer browsing promotes Norway spruce at the expense of silver fir in the forest regeneration phase. *For. Ecol. Manage.* **400**, 269–277 (2017). doi:10.1016/j.foreco.2017.05.040

- 248. K. J. Bloodworth, M. E. Ritchie, K. J. Komatsu, Effects of white-tailed deer exclusion on the plant community composition of an upland tallgrass prairie ecosystem. J. Veg. Sci. 31, 899–907 (2020). doi:10.1111/jvs.12910
- 249. D. J. Eldridge, J. Ding, S. K. Travers, Low-intensity kangaroo grazing has largely benign effects on soil health. *Ecol. Manage. Restor.* **22**, 58–63 (2021). doi:10.1111/emr.12439
- 250. D. J. Augustine, D. A. Frank, Effects of migratory grazers on spatial heterogeneity of soil nitrogen properties in a grassland ecosystem. *Ecology* 82, 3149–3162 (2001). doi:10.1890/0012-9658(2001)082[3149:EOMGOS]2.0.CO;2
- 251. N. A. Bourg, W. J. McShea, V. Herrmann, C. M. Stewart, Interactive effects of deer exclusion and exotic plant removal on deciduous forest understory communities. *AoB Plants* 9, plx046 (2017). doi:10.1093/aobpla/plx046
- 252. C. Casabon, D. Pothier, Impact of deer browsing on plant communities in cutover sites on Anticosti Island. *Ecoscience* **15**, 389–397 (2008). <u>doi:10.2980/15-3-3123</u>
- 253. J. M. Falk, N. M. Schmidt, T. R. Christensen, L. Ström, Large herbivore grazing affects the vegetation structure and greenhouse gas balance in a high arctic mire. *Environ. Res. Lett.* 10, 045001 (2015). doi:10.1088/1748-9326/10/4/045001
- 254. H. Beck, J. W. Snodgrass, P. Thebpanya, Long-term exclosure of large terrestrial vertebrates: Implications of defaunation for seedling demographics in the Amazon rainforest. *Biol. Conserv.* 163, 115–121 (2013). doi:10.1016/j.biocon.2013.03.012
- 255. C. C. Christopher, G. N. Cameron, Effects of invasive Amur honeysuckle (*Lonicera maackii*) and white-tailed deer (*Odocoileus virginianus*) on litter-dwelling arthropod communities. *Am. Midl. Nat.* 167, 256–272 (2012). doi:10.1674/0003-0031-167.2.256
- 256. D. S. deCalesta, Effect of white-tailed deer on songbirds within managed forests in Pennsylvania. J. Wildl. Manage. 58, 711–718 (1994). doi:10.2307/3809685
- 257. J. Hannaford, E. H. Pinn, A. Diaz, The impact of sika deer grazing on the vegetation and infauna of Arne saltmarsh. *Mar. Pollut. Bull.* 53, 56–62 (2006). <u>doi:10.1016/j.marpolbul.2005.09.017</u> <u>Medline</u>
- 258. J. Chen, Q. Wang, M. Li, F. Liu, W. Li, L. Yin, Effects of deer disturbance on soil respiration in a subtropical floodplain wetland of the Yangtze River. *Eur. J. Soil Biol.* 56, 65–71 (2013). doi:10.1016/j.ejsobi.2013.02.007
- 259. K. Anujan, J. Ratnam, M. Sankaran, Chronic browsing by an introduced mammalian herbivore in a tropical island alters species composition and functional traits of forest understory plant communities. *Biotropica* 54, 1248–1258 (2022). doi:10.1111/btp.13149
- 260. J. Beguin, S. D. Côté, M. Vellend, Large herbivores trigger spatiotemporal changes in forest plant diversity. *Ecology* **103**, e3739 (2022). <u>doi:10.1002/ecy.3739 Medline</u>
- 261. M. Maillard, J.-L. Martin, S. Chollet, C. Catomeris, L. Simon, S. J. Grayston, Belowground effects of deer in a temperate forest are time-dependent. *For. Ecol. Manage.* 493, 119228 (2021). doi:10.1016/j.foreco.2021.119228
- 262. Z. Ratajczak, S. L. Collins, J. M. Blair, S. E. Koerner, A. M. Louthan, M. D. Smith, J. H. Taylor, J. B. Nippert, Reintroducing bison results in long-running and resilient increases
in grassland diversity. *Proc. Natl. Acad. Sci. U.S.A.* **119**, e2210433119 (2022). doi:10.1073/pnas.2210433119 Medline

- 263. L. Hendricks-Franco, S. L. Stephens, W. P. Sousa, Mammalian herbivory in post-fire chaparral impacts herbaceous composition but not N and C cycling. J. Plant Ecol. 14, 213– 228 (2021). doi:10.1093/jpe/rtaa090
- 264. A. Loydi, S. M. Zalba, R. A. Distel, Vegetation change in response to grazing exclusion in montane grasslands, Argentina. *Plant Ecol. Evol.* 145, 313–322 (2012). doi:10.5091/plecevo.2012.730
- 265. C. A. Schneider, W. S. Rasband, K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. *Nat. Methods* **9**, 671–675 (2012). doi:10.1038/nmeth.2089 Medline
- 266. S. McGrath, X. Zhao, R. Steele, A. Benedetti, estmeansd: Estimating the Sample Mean and Standard Deviation from Commonly Reported Quantiles in Meta-Analysis (2022); <u>https://CRAN.R-project.org/package=estmeansd</u>.
- 267. W. Viechtbauer, Conducting meta-analyses in R with the metafor package. J. Stat. Softw.
 36, 1–48 (2010). doi:10.18637/jss.v036.i03
- 268. T. Hothorn, F. Bretz, P. Westfall, Package 'multcomp': Simultaneous inference in general parametric models, CRAN repository (2015); <u>http://multcomp.r-forge.r-project.org/</u>.
- 269. J. A. C. Sterne, A. J. Sutton, J. P. A. Ioannidis, N. Terrin, D. R. Jones, J. Lau, J. Carpenter, G. Rücker, R. M. Harbord, C. H. Schmid, J. Tetzlaff, J. J. Deeks, J. Peters, P. Macaskill, G. Schwarzer, S. Duval, D. G. Altman, D. Moher, J. P. T. Higgins, Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. *BMJ* 343, d4002 (2011). <u>doi:10.1136/bmj.d4002</u> <u>Medline</u>
- 270. B. Boyle, N. Hopkins, Z. Lu, J. A. Raygoza Garay, D. Mozzherin, T. Rees, N. Matasci, M. L. Narro, W. H. Piel, S. J. McKay, S. Lowry, C. Freeland, R. K. Peet, B. J. Enquist, The taxonomic name resolution service: An online tool for automated standardization of plant names. *BMC Bioinformatics* 14, 16 (2013). <u>doi:10.1186/1471-2105-14-16 Medline</u>
- 271. D. M. Olson, E. Dinerstein, E. D. Wikramanayake, N. D. Burgess, G. V. N. Powell, E. C. Underwood, J. A. D'amico, I. Itoua, H. E. Strand, J. C. Morrison, C. J. Loucks, T. F. Allnutt, T. H. Ricketts, Y. Kura, J. F. Lamoreux, W. W. Wettengel, P. Hedao, K. R. Kassem, Terrestrial ecoregions of the world: A new map of life on Earth. *Bioscience* **51**, 933–938 (2001). doi:10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
- 272. E. Laliberté, P. Legendre, B. Shipley, FD: Measuring functional diversity (FD) from multiple traits, and other tools for functional ecology, CRAN Repository (2014); <u>https://cran.r-</u> project.org/web/packages/FD/.
- 273. E. Paradis, K. Schliep, ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. *Bioinformatics* 35, 526–528 (2019). <u>doi:10.1093/bioinformatics/bty633</u>
 <u>Medline</u>
- 274. R. J. Hijmans, terra: Spatial Data Analysis (2023); https://rspatial.org/terra/.
- 275. M. Zhao, F. A. Heinsch, R. R. Nemani, S. W. Running, Improvements of the MODIS terrestrial gross and net primary production global data set. *Remote Sens. Environ.* 95, 164– 176 (2005). doi:10.1016/j.rse.2004.12.011

- 276. S. E. Fick, R. J. Hijmans, WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. *Int. J. Climatol.* **37**, 4302–4315 (2017). <u>doi:10.1002/joc.5086</u>
- 277. O. Venter, E. W. Sanderson, A. Magrach, J. R. Allan, J. Beher, K. R. Jones, H. P. Possingham, W. F. Laurance, P. Wood, B. M. Fekete, M. A. Levy, J. E. M. Watson, Global terrestrial Human Footprint maps for 1993 and 2009. *Sci. Data* 3, 160067 (2016). <u>doi:10.1038/sdata.2016.67</u> Medline
- 278. R. M. Alexander, The relative merits of foregut and hindgut fermentation. J. Zool. 231, 391–401 (1993). doi:10.1111/j.1469-7998.1993.tb01927.x
- 279. A. E. Zanne, D. C. Tank, W. K. Cornwell, J. M. Eastman, S. A. Smith, R. G. FitzJohn, D. J. McGlinn, B. C. O'Meara, A. T. Moles, P. B. Reich, D. L. Royer, D. E. Soltis, P. F. Stevens, M. Westoby, I. J. Wright, L. Aarssen, R. I. Bertin, A. Calaminus, R. Govaerts, F. Hemmings, M. R. Leishman, J. Oleksyn, P. S. Soltis, N. G. Swenson, L. Warman, J. M. Beaulieu, Three keys to the radiation of angiosperms into freezing environments. *Nature* 506, 89–92 (2014). doi:10.1038/nature12872 Medline
- 280. M. Mendoza, C. M. Janis, P. Palmqvist, Characterizing complex craniodental patterns related to feeding behaviour in ungulates: A multivariate approach. J. Zool. 258, 223–246 (2002). doi:10.1017/S0952836902001346
- 281. F. J. Pérez-Barbería, I. J. Gordon, Relationships between oral morphology and feeding style in the Ungulata: A phylogenetically controlled evaluation. *Proc. R. Soc. London Ser. B* 268, 1023–1032 (2001). doi:10.1098/rspb.2001.1619 Medline
- 282. International Union for Conservation of Nature (IUCN), IUCN Red List of Threatened Species (2018); <u>https://www.iucnredlist.org/</u>.