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a b s t r a c t

A non-Bayesian decision maker forms posterior beliefs through an – ever so slightly – violation of
Bayes’ rule. A naive equilibrium is a competitive equilibrium for a multiperiod complete markets
economy such that every economic agent – Bayesian or non-Bayesian – assumes that all economic
agents are Bayesian decision makers. If all agents are indeed Bayesian decision makers, the naive
equilibrium coincides with the standard concept of an arbitrage-free equilibrium for which dynamic
price ratios are comprehensively pinned down as the equilibrium price ratios of Arrow–Debreu
securities in a static economy. If at least one agent is a non-Bayesian decision maker, however, some
equilibrium price ratios will change over time. These changing price ratios imply the existence of
unrealized dynamic arbitrage opportunities in a naive equilibrium with non-Bayesian decision makers.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

“How do people form beliefs in situations under
uncertainty? Economists have traditionally assumed
that people begin with subjective beliefs over the
different possible states of the world and then use
Bayes’ Rule to update those beliefs. This elegant
and powerful model of economic agents as Bayesian
statisticians is the foundation of modern informa-
tion economics. Yet a large and growing body of
psychological research suggests that the way peo-
ple process information often departs systematically
from Bayesian updating.”Rabin and Schrag (1999),
p.37)

Asset pricing models in mathematical finance are based on
the paradigm that price processes must be arbitrage-free. For
models with a finite state space this absence of arbitrage op-
portunities is equivalent to the existence of a state-price vector
(i.e., a vector with prices for Arrow–Debreu securities) which
allows to express asset prices as the assets’ (discounted) expected
payoffs with respect to a martingale measure. Asset pricing mod-
els in financial economics are based on competitive equilibria
in asset exchange markets. Standard equilibrium models with
expected utility maximizers characterize the equilibrium prices

✩ I would like to thank Alex Ludwig for helpful comments and suggestions. I
am especially grateful to an anonymous reviewer and associate editor who both
asked hard but good questions.

E-mail address: alexander.zimper@up.ac.za.
https://doi.org/10.1016/j.mathsocsci.2023.07.001
0165-4896/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
nc-nd/4.0/).
of Arrow–Debreu securities through the (i) the economic agents’
risk-preferences as expressed by the curvature of their Bernoulli
utility functions, (ii) the agents’ beliefs given as additive proba-
bility measures that are updated in accordance with Bayes’s rule,
and (iii) the agents’ initial endowments in Arrow–Debreu securi-
ties. Asset prices in these standard equilibrium models turn out
to be arbitrage-free because the existence of any arbitrage oppor-
tunities would be incompatible with expected utility maximizing
behavior of Bayesian decision makers.

This paper formally defines the concept of a ‘naive equilibrium’
for multiperiod complete markets economies with commonly
observed information in which the economic agents can freely
exchange Arrow–Debreu securities. At any possible information
cell – i.e., at any date-event pair – the economic agents care
about their expected utility from final consumption whereby
this expectation is formed with respect to some information-
conditional subjective probability measure. In contrast to the
standard equilibrium concept, the economic agents in our model
are not necessarily Bayesian decision makers. To be precise, recall
that a Bayesian decision maker i is formally described through a
filtered probability space(
Ω, 2Ω , (Ft)t∈{0,...,T } , π0

i

)
(1)

such that (i) Ω is a finite set which collect all economically
relevant states, (ii) the sigma-algebra is given as the powerset
2Ω , (iii) arrival of new information is governed by the commonly
observed finite filtration process (Ft)t∈{0,...,T } consisting of σ -
algebras generated by information partitions (Πt)t∈{0,...,T }, and
(iv) i’s subjective prior belief is given as the additive probability

0
(

Ω
)

measure πi on Ω, 2 which is updated in accordance with
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ayes’ rule in the light of new information. To allow for non-
ayesian decision making, we extend (1) towards a filtered belief
rocess space

Ω, 2Ω , (Ft)t∈{0,...,T } , (πit)t∈{0,...,T }

)
uch that the function πit assigns to every possible information
cell It ∈ Πt in period t some subjective probability measure on
t , denoted πi [It ]. As a generalization of (1), the posterior belief
i [It ] is not necessarily derived from the prior π0

i through Bayes’
rule.1 We say that agent i is a non-Bayesian decision maker if and
only if

πi [It ] (ω) ̸=
π0
i ({ω} ∩ It)
π0
i (It)

= π0
i (ω | It)

or some information cell It ∈ Πt and some ω ∈ Ω .
In contrast to a Bayesian decision maker, the information

onditional expectation of a non-Bayesian decision maker vi-
lates the law of iterated expectations, which is equivalent to
ynamic consistency. The literature on dynamically inconsistent
references distinguishes between the two extreme benchmark
ases of naive versus sophisticated agents whereby empirical
vidence suggests that naive decision making is a more prevalent
henomenon than sophisticated decision making (cf. O’Donoghue
nd Rabin (1999)). Whereas the sophisticated agent is fully aware
f his dynamically inconsistent preferences, the naive agent in-
orrectly assumes that his preferences are dynamically consistent
see the literature cited in . Our concept of a naive equilibrium
eneralizes this notion of a naive decision maker from a single-
gent to a multi-agent context: In a naive equilibrium every agent
generically incorrectly – assumes that all agents have dynami-
ally consistent preferences, i.e., are Bayesian decision makers. As
ur main insight we establish equivalence between arbitrage-free
quilibrium prices in a naive equilibrium and Bayesian decision
aking.

Main insight. The following two assertions are equivalent for a
aive equilibrium.

i) The equilibrium price process is arbitrage-free.

ii) All economic agents are Bayesian (i.e., dynamically consistent)
decision makers.

For analytical convenience, we show how the price process of
ny naive equilibrium can be equivalently generated through a
representative agent’ model. To be precise, we use the following
otion of a representative agent.

We speak of a representative agent model for the price process
of a naive equilibrium in the underlying multiperiod Arrow–
Debreu economy iff (=if and only if) this price process is
equivalently generated through a naive equilibrium in a single
(=representative) agent multiperiod Arrow–Debreu economy
such that this representative agent is – as the economic agents
in the underlying economy – an expected utility maximizer.

Because any equilibrium in a single-agent economy must be a
ero-trade equilibrium, representative agent models come with
he practical advantage that the naive equilibrium price ratios
f the underlying economy are pinned down at all informa-
ion cells through the first-order conditions of the representa-
ive agent’s information-conditional expected utility maximiza-
ion problem evaluated at his initial endowments. Reformulated
or a representative agent economy our main insight becomes:

Main insight (representative agent version). The following
wo assertions are equivalent for a naive equilibrium.

1 Our general notion of a filtered belief process space includes the filtered
robability space (1) of a Bayesian decision maker as a non-generic special case.
 p

28
(i) The equilibrium price process is arbitrage-free.

(ii) The representative agent is a Bayesian (i.e., dynamically consis-
tent) decision maker.

The above results are sharp: marginal deviations from
Bayesian updating by at least one economic agent must result in
naive equilibrium prices that give rise to arbitrage opportunities.
How plausible are deviations from Bayesian updating? Bayesian
updating is a normatively important benchmark case because it
ensures dynamically consistent expected utility preferences (cf.,
e.g., Epstein and Le Breton, 1993; Epstein and Schneider, 2003;
Ghirardato, 2002; Siniscalchi, 2011). From a descriptive perspec-
tive, however, there exists a large body of psychological and
economic literature which demonstrates that preferences of real
life people are often subject to dynamic inconsistencies. In the
specific context of processing new information, dynamic inconsis-
tencies might arise whenever people are prone to psychological
biases such as, e.g., overconfidence, confirmation, or/and myside
biases.2

Whereas deviations from Bayesian updating seem to be the
rule rather than the exception, it is less clear why existing ar-
bitrage opportunities should not be exploited. The standard ar-
gument in favor of arbitrage-free asset prices is that some smart
outside investor would quickly exploit any arbitrage opportuni-
ties which might arise in a naive equilibrium. In my opinion,
the practical problem of exploiting arbitrage opportunities is not
so much the lack of general knowledge that such opportunities
exist but rather the lack of detailed knowledge about the right
arbitrage trading strategy. For example, Hong and Stein (1999)
argue that any investors who follow the news are simply too busy
for understanding the specific arbitrage opportunities that might
arise in a dynamic market context:

“One can think of the newswatchers as having
their hands full just figuring out the implications
of the ϵ’s for the terminal dividend DT . This leaves
them unable to [...] make any forecasts of future
price changes, and hence unable to implement dy-
namic strategies [...].” (p.2149)

To illustrate the complexity of getting arbitrage strategies
right, consider the following trading strategy: at first, trade
Arrow–Debreu security s′ for s in period zero; subsequently,
reverse this trade in period t whenever information It is ob-
served. For an economy in which all agents share the same CARA
Bernoulli utility function, our representative agent analysis estab-
lishes that this trading strategy becomes an arbitrage strategy iff
the n economic agents’ non-Bayesian beliefs satisfy the following
inequality
n∏

i=1

π0
i (ωs)

π0
i (ωs′)

<

n∏
i=1

πi [It ] (ωs)

πi [It ] (ωs′)
(2)

where π0
i (ω) denotes agent i’s prior probability and πi [It ] (ω)

denotes his information-conditional probability attached to state
ω. Using this arbitrage strategy would be risky for an outside
investor whenever he is not completely certain about (2): if this
inequality was reversed, the investor would make sure losses

2 The economic literature on non-Bayesian updating of additive probability
easures is huge. Classic articles are Rabin and Schrag (1999), Rabin (2002),
pstein (2006), Epstein et al. (2008), Mullainathan et al. (2008), Gennaioli
nd Shleifer (2010), Ortoleva (2012). For more recent approaches see, e.g., the
eferences in Baker (2022). Motivated by the empirical literature on ‘asset
ispricing’, Daniel et al. (1998) model a confirmatory bias through non-Bayesian
pdating where a privately informed trader is overconfident with regards to his
rivate information.
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ith the above trading strategy. To understand for which s and
′ exactly inequality (2) holds, might be too difficult a task even
or a quasi-smart investor who knows that inequality (2) must
old for some Arrow–Debreu securities s and s′ because Bayesian
pdating is violated.
By construction, the naive equilibrium concept is only relevant

or situations in which all agents – Bayesians and non-Bayesians
are naive in the specific sense that they are not aware of any
ynamic inconsistencies in their own or the other agents’ decision
aking. What would happen if some or all agents became so-
histicated to the effect that they would correctly understand any
ynamic inconsistencies in the model? In a single-agent decision
heoretic context with dynamic inconsistencies a sophisticated
gent would (i) either try to commit his future selves to his
referred plan of actions or (ii), in the absence of any viable
ommitment mechanism, the sophisticated agent would play a
trategic game against all his future selves (see, e.g., Groneck
t al. (2022) and references therein). In our multi-agent context,
ne would need to come up with a full-blown strategic model
f strategic market interactions – with or without possibly costly
ommitment mechanisms – between a sophisticated agent and
is futures selves as well with all other agents and their future
elves. This is not a trivial task and beyond the scope of the
resent paper.
To come up with a proper game-theoretic model of sophis-

icated non-Bayesian decision makers who interact in a mul-
iperiod Arrow–Debreu economy would be, in my opinion, a
ighly interesting – and highly relevant – task for future re-
earch. Clearly, sophisticated utility maximizing agents would
xploit any arbitrage opportunities. While any subgame-perfect
ash equilibria of such market games with sophisticated agents
ust thus give rise to arbitrage-free asset prices, the resulting
rices for non-Bayesian decision makers will be different than
he arbitrage-free naive equilibrium prices for Bayesian decision
akers.
The remainder of this paper is organized as follows. Section 2

iscusses related literature. Section 3 introduces non-Bayesian
elief processes. Section 4 defines the naive equilibrium concept
or which we present representative agent models in Section 5.
e show the equivalence between arbitrage-free naive equilib-

ium price processes and Bayesian updating in Section 6. The
lausibility of unrealized arbitrage opportunities is discussed in
ection 7. Section 8 concludes. Formal proofs are relegated to
ppendix.

. Relationship to the literature

.1. Survival literature

The literature on dynamic survival models (cf. Sandroni (2000),
uerdjikova and Quiggin (2019), and references therein) argues
hat agents with incorrect beliefs may eventually run out of
vailable resources because – in contrast to their correct belief
ounterparts – they tend to invest too much into objectively less
ikely states of the world. Blume and Easley (2006) combine this
correct beliefs’ argument with consistency results for Bayesian
odels of statistical learning (Doob, 1949; Berk, 1966). A Bayesian
tatistician holds a prior belief over a joint distributional pa-
ameter and data space whereby she uses Bayes’ rule to form
in the light of observed data – posterior beliefs about the

istributional parameter space. Because a Bayesian statistician
ill, in the limit, learn with probability one the true payoff
istribution (provided that she considers the true distribution
ossible),3 she will eventually outperform agents who are stuck

3 If the true distribution does not belong to the support of the Bayesian statis-
ician’s prior, her Bayesian learning process will concentrate at distributions in
29
with incorrect beliefs. During the review process I had been asked
the following question by the associate editor:

“Your model is one of complete markets and
[...] you allow for the presence of some Bayesian
agents. Could one view the arbitrage result as further
rationalization of why only Bayesian traders asymp-
totically survive? If so, in what sense is the arbitrage
result here more than a special case of the Blume
and Easley survival result in the case where T is
arbitrarily large (i.e., all non-Bayesian agents would
eventually drop out because others profit at their
expense)?”

The short answer is that our model has nothing to do with
the question of whether a Bayesian decision maker outperforms
a non-Bayesian decision maker or not. Our notion of a Bayesian
decision maker is very different from the notion of a Bayesian
statistician considered in Blume and Easley (2006). In contrast to
a Bayesian statistician, the Bayesian decision maker of our model
does not receive any statistical information but rather observes
that some payoff-relevant states have become impossible. He
then uses Bayes’ rule to update his beliefs about the remaining
payoff relevant states of the world, which simply means that
his subjective posteriors coincide with the standard definition
of conditional probability measures.4 Since we do not consider
any prior defined over some joint distributional parameter and
sample space, there does not happen any Bayesian statistical
learning in our model. Unlike in the dynamic survival literature,
the beliefs of our Bayesian decision maker do thus not converge
to any ‘true’ payoff distribution so that the ‘converging to correct
beliefs’ argument by Blume and Easley (2006) does not apply.

To summarize: Unlike the dynamic survival literature, our
model has nothing to say about whether Bayesian agents out-
perform non-Bayesian agents (or vice versa). We establish that
unrealized (dynamic) arbitrage opportunities arise as an equi-
librium phenomenon if (i) at least one agent is a non-Bayesian
decision maker and (ii) all agents – Bayesian as well as non-
Bayesian – are naive in the sense that they do not understand
the arising arbitrage opportunities.

2.2. Mispricing and non-Bayesian updating literature

Our sharp characterization of arbitrage-free asset prices in
terms of Bayesian updating comes with strong implications for
the interpretation of empirically motivated ‘asset mispricing’
models.5 ‘Mispricing’ in this literature often refers to the situation
in which a risk-neutral representative agent prices an asset differ-
ently from its objective expected value because his belief differs
from the objective payoff distribution. Mispricing in this specific
sense thus already happens whenever the subjective beliefs of
Bayesian decision makers do not coincide with the objective
probability measure whereby such differences might even persist
in the long run.6 For an economy with (some) non-Bayesian

her prior’s support which minimize the Kullback and Leibler (1951) divergence
(i.e., relative entropy) from the true distribution. For background reading see
Zimper and Ma (2017) and references therein.
4 For the according preference-based foundations of Bayesian updating in

a conditional Savage (1954) world see, e.g., Epstein and Le Breton (1993),
Ghirardato (2002), and – within a Choquet expected utility framework – Gilboa
and Schmeidler (1993).
5 For references to the large mispricing literature see, e.g., Ludwig and Zimper

(2013).
6 Barberis et al. (1998) formalize the empirical phenomena of over- versus

underreaction of asset prices to news through a highly specific model of
Bayesian updating. Their representative agent incorrectly believes that the payoff
distribution is generated by either one of two Markov processes. Since the true
payoff generating process – given as a random walk – does not belong to the
support of the representative agent’s prior, this Bayesian decison maker will
never learn the true payoff distribution.



A. Zimper Mathematical Social Sciences 125 (2023) 27–41

d
o
o

t
i
l

e
h
p
n
B
o
p
s
i
n
f
a
a

o
f

f

a
p
w
f
t
p
I
a
a
o
d

(
c
g
a
a

f
b

Π

a
I
(

ecision makers our analysis allows for a much stronger notion
f ‘mispricing’, namely, the existence of unrealized arbitrage
pportunities in a naive equilibrium.
The possibility of unrealized arbitrage opportunities appears

o be neglected by existing asset pricing models which explic-
tly allow for non-Bayesian updating. As one example of this
iterature consider who write:

“In our model, investors are quasi-rational in
that they are Bayesian optimizers except for their
overassessment of valid private information, and
their biased updating of this precision.” (p.1842)

Prices in these authors’ model coincide with the subjective
xpectation of a privately informed (risk-neutral) trader who
olds a subjective belief in the form of (i) a normally distributed
rior and a (ii) data generating process that is independently
ormally distributed. Instead of using the ‘correct formula’ for the
ayesian posterior in this normal conjugate prior framework, the
verconfident trader systematically overestimates the precision
arameter of his private information. If this overconfident repre-
entative agent of Daniel et al. (1998) is indeed a non-Bayesian,
.e., dynamically inconsistent, decision maker in our sense – and
ot just a Bayesian decision maker whose subjective beliefs differ
rom objective probabilities –, then there would exist unrealized
rbitrage opportunities in a complete markets version of their
sset pricing model.
As another example, consider the heterogeneous beliefs model

f Bhamra and Uppal (2014). These authors also explicitly allow
or non-Bayesian updating:

“[...] whereas it is possible to assume that be-
liefs are not updated at all, one could also assume
Bayesian updating or some form of non-Bayesian
updating.” (Footnote 7, p.523)

Bhamra and Uppal (2014) use a de facto naive equilibrium
ramework:

“We use a notion of equilibrium that is an ex-
tension of equilibrium in the single-agent model of
Lucas (1978): both agents optimize their expected
lifetime utility and all markets clear. Given our as-
sumption that preferences are time separable and
financial markets are complete, the dynamic con-
sumption–portfolio choice problem simplifies to a
static problem that requires one to choose the op-
timal allocation of consumption between the two
investors for each date and state.” (p.526)

Whereas our formal definition of a naive equilibrium restricts
ttention to final period consumption only, Bhamra and Up-
al (2014) allow for intermediate consumption. The fact that
e ignore—for the sake of analytical simplicity—any preferences

or intermediate consumption—has no impact whatsoever on
he characterization of arbitrage-free asset price-ratios whenever
references are time separable as in Bhamra and Uppal (2014).7
n contrast to Lucas’s (1978) representative agent model with
Bayesian decision maker, the equilibrium prices in Bhamra

nd Uppal (2014) must therefore come with unrealized arbitrage
pportunities whenever their economic agents are non-Bayesian
ecision makers.
Our argument concerning the pricing-models in Daniel et al.

1998) and in Bhamra and Uppal (2014) is as follows: while we
onsider these models as important and relevant, one needs to
o one step further and emphasize the existence of unrealized
rbitrage opportunities in a naive equilibrium whenever markets
re complete and some non-Bayesian decision maker is present.

7 We briefly sketch the according formal argument in Remark 3.
30
3. Belief processes

3.1. General set-up

Fix a finite state space Ω = {ω1, . . . , ωS} with S ≥ 2. Fix a
inite number of time periods t ∈ {0, . . . , T } with T ≥ 1. Denote
y

t =
{
I1t , . . . , I

mt
t
}

partition of the state space Ω into mt ≥ 1 information cells.
n what follows we consider any fixed sequence of partitions
Πt)t∈{0,...,T } that satisfies the following two properties:

1. Π0 = {Ω} and ΠT = {{ω} | ω ∈ Ω};
2. Πt+1 is strictly finer than Πt , that is, for every information

cell It+1 ∈ Πt+1 there exists (i) some information cell It ∈ Πt
such that It+1 ⊆ It whereby (ii) this inclusion is strict for at
least one It ∈ Πt .

We write It [ω] to identify the unique period t information
cell that contains state ω. Note that It [ω] ⊆ Iτ [ω] whenever
τ < t . Ft = σ (Πt) denotes the sigma-algebra generated by
Πt whereby point 1. implies F0 = {∅, Ω} and FT = 2Ω .
(Ft)t∈{0,...,T } denotes the information filtration corresponding to
(Πt)t∈{0,...,T }. A sequence of mappings {yt}t∈{0,...,T } on Ω is an
(Ft)t∈{0,...,T }-adapted process iff for all It ∈ Πt , t ∈ {0, . . . , T }

yt (ω) = yt
(
ω′
)
whenever ω, ω′

∈ It .

In that case we write y [It (ω)], or just y [It ], instead of yt (ω)
whenever it is understood that ω ∈ It . We typically write y0 for
y [I0]: since y [I0] takes on the same value for all ω ∈ I0 = Ω ,
there is no ambiguity in doing so.

There are n ≥ 1 different agents whereby each agent’s un-
certainty about the true state of the world is described by a
subjective belief process that – somehow – incorporates the
possible information that might be observed by the agent over
time. Denote by πit an Ft -measurable function on Ω that assigns
to every ω ∈ Ω some additive probability measure πi [It (ω)]
with full support on

(
It (ω) , 2It (ω)

)
. Again, instead of writing

πit (ω) for this probability measure we rather write πi [It (ω)]
or just πi [It ] whenever it is understood that ω ∈ It . For the
corresponding probability of the state ω′

∈ It (ω) we write
πi [It (ω)]

(
ω′
)
or just πi [It ]

(
ω′
)
. For the special case t = 0 the

function πi0 is constant across all states because it assigns to
every ω ∈ Ω the same probability measure πi [I0] on

(
Ω, 2Ω

)
. We

refer to πi [I0] as the agent’s prior belief. For notational simplicity
we will typically write π0

i for the prior belief πi [I0].

Definition 1. We call the (Ft)t∈{0,...,T }-adapted process
(πit)t∈{0,...,T } with

πit = {πi [It ] | It ∈ Πt}

a belief process of agent i iff the following two conditions are
satisfied for all It ∈ Πt , t ∈ {0, . . . , T }:

1. πi [It ] is an additive probability measure defined on
(
It , 2It

)
with πi [It ]

(
ω′
)

> 0 for all ω′
∈ It ;

2. πi [It ] = πi [It−1] whenever It = It−1.

3.2. Non-Bayesian versus Bayesian belief processes

Our notion of a Bayesian decision maker is adopted from the
decision theoretic literature which investigates how subjective
posterior beliefs are formed from subjective prior beliefs in a
conditional Savage (1954) framework (cf. Epstein and Le Breton,

1993; Epstein and Schneider, 2003; Ghirardato, 2002). Under



A. Zimper Mathematical Social Sciences 125 (2023) 27–41

t
u
a
h
a
p
s

D
a
t
π
m

π

a
T
w
t
B
s
z
s

E

Π

m
a

he assumption of a subjective expected utility maximizer, the
pdated posterior belief of a Bayesian decision maker is given
s the (standard) conditional probability measure derived from
is unconditional prior. Bayesian decision makers will be char-
cterized through a Bayesian belief process whereas the belief
rocesses of non-Bayesian decision makers violate Bayes’ rule in
ome state of the world.

efinition 2. We call (πit)t∈{0,...,T } a Bayesian belief process if
nd only if, for all information cells It ∈ Πt , t ∈ {1, . . . , T },
he posterior belief πi [It ] is updated from the predecessor belief
i [It−1] with It−1 ⊇ It as a standard conditional probability
easure in accordance with Bayes’ rule, i.e.,

i [It ] (ω) = πi [It−1] (ω | It) =
πi [It−1] (ω)

πi [It−1] (It)
for all ω ∈ It .

Repeating the argument

πi [It−1] (ω)

πi [It−1] (It)
=

πi[It−2](ω)

πi[It−2](It−1)
πi[It−2](It )

πi[It−2](It−1)

=
πi [It−2] (ω)

πi [It−2] (It)

shows that the posterior beliefs πi [It ], It ∈ Πt , t ∈ {1, . . . , T } of
a Bayesian decision maker are equivalently given as conditional
probability measures derived from his prior belief π0

i through
Bayes’ rule, i.e.,

πi [It ] (ω) = π0
i (ω | It) =

π0
i (ω)

π0
i (It)

for all ω ∈ Ω. (3)

Fact 1. While each agent i is associated with a filtered belief process
space(
Ω, 2Ω , (Ft)t∈{0,...,T } , (πit)t∈{0,...,T }

)
, (4)

this space (4) reduces to a filtered probability space(
Ω, 2Ω , (Ft)t∈{0,...,T } , π0

i

)
satisfying (3) if and only if agent i is a Bayesian decision
maker.

For a Bayesian decision maker we have, by (3), that

Eπi[It−1]Z = Eπ0
i (·|It−1)

Z ,
⇔∑

ω∈It−1

Z (ω) πi [It−1] (ω) =

∑
ω∈It−1

Z (ω) π0
i (ω | It−1)

as well as

Eπi[It−1]
(
Eπi[It ]Z

)
= Eπ0

i (·|It−1)

(
Eπ0

i (·|It )Z
)

⇔∑
It⊆It−1

(∑
ω∈It

Z (ω) πi [It ] (ω)

)
πi [It−1] (It ) =

∑
It⊆It−1

(∑
ω∈It

Z (ω) π0
i (ω | It )

)
× π0

i (It | It−1)

for any FT -measurable random variable Z . By the law of iterated
expectations

Eπ0
i (·|It−1)

(
Eπ0

i (·|It )Z
)

= Eπ0
i (·|It−1)

Z (5)

for the additive probability measure π0
i , we thus obtain the fol-

lowing equivalent characterization of a Bayesian decision maker.

Fact 2. Agent i a Bayesian decision maker if and only if his belief
process (πit)t∈{0,...,T } satisfies the law of iterated expectations,
that is, if and only if, for all FT -measurable random variables
Z and all It ∈ Πt , t ∈ {1, . . . , T }, and all It−1 ⊇ It ,

E
(
E Z

)
= E Z . (6)
πi[It−1] πi[It ] πi[It−1] (

31
Facts 1 and 2 establish that any economic agent i must be a
Bayesian decision maker in our sense whenever his belief process
is given as a filtered probability space(
Ω, 2Ω , (Ft)t∈{0,...,T } , π0

i

)
(7)

such that the time-conditional expectation Ei
tZ of any FT -

measurable random variable Z is an Ft -measurable random
variable satisfies, for every ω ∈ It ,8

Ei
tZ (ω) = Eπ0

i (·|It )Z =

∫
ω′∈It

Z
(
ω′
)
dπ0

i (· | It)

=
1

π0
i (It)

∫
ω′∈It

Z
(
ω′
)
dπ0

i . (8)

For our set-up of subjective expected utility maximizers,
Bayesian decision making is also equivalent to dynamically con-
sistent decision making (for a detailed formal argument in terms
of preferences over Savage (1954) acts, see Epstein and Le Breton
(1993))). This equivalence is also an immediate consequence
of the equivalence between Bayesian decision making and the
law of iterated expectations (6) as established by Fact 2. The
basic (standard) argument goes as follows: under the law of
iterated expectations, the maximization of information type It−1’s
expected utility

Eπi[It−1]ui (X, θi) = Eπi[It−1]
(
Eπi[It ]ui (X, θi)

)
=

∑
It⊆It−1

πi [It−1] (It)

×

(∑
ω∈It

ui (X (ω) , θi [It ]) πi [It ] (ω)

)
(9)

over all θi [It ], It ⊆ It−1, is equivalent to the maximization of each
information type It ’s, It ⊆ It−1, expected utility

Eπi[It ]ui (X, θi) =

(∑
ω∈It

ui (X (ω) , θi [It ]) πi [It ] (ω)

)
over θi [It ] because the probability πi [It−1] (It) in (9) is a positive
constant for each It . In other words, we have dynamic consistency
because future information types It ⊆ It−1 have no incentive
to deviate from an investment plan that is optimal from the
perspective of the predecessor information type It−1.

Fact 3. For subjective expected utility maximizers, Bayesian deci-
sion making is equivalent to dynamically consistent decision
making.

For the degenerate special case of a static economy, i.e., T = 1,
ll economic agents are trivially Bayesian decision makers. For

≥ 2 there exists, by construction, some information cell It
ith #It ≥ 2 such that the belief πi [It ] can be any point in
he interior of the (#It − 1)-dimensional simplex whereas the
ayesian posterior πi [It−1] (· | It) is only a single point in this
implex. Since the Bayesian posterior has thus Lebesgue measure
ero, a Bayesian decision maker corresponds to a non-generic
pecial case of all possible belief processes whenever T ≥ 2.

xample 1. Let T = 3 and consider a state space Ω = {ω1, . . . ,

ωS} with S ≥ 5 and information partitions

1 = {{ω1, . . . , ω4} , {ω5, . . . , ωS}} ,

8 For a detailed analysis of the relationship between (i) conditional probability
easures formed through Bayes’ rule, (ii) conditional expectations operators,
nd (iii) the law of iterated expectations, see Section 34 in Billingsley (1995)
especially Example 34.1 and Theorem 34.4).
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Fig. 1. The Bayesian posterior corresponds to the unique point
(πi [I1] (ω1) , πi [I1] (ω2) , πi [I1] (ω3)) =

( 1
4 , 1

4 , 1
4

)
.

Fig. 2. The Bayesian posterior corresponds to the unique point
(πi [I2] (ω1) , πi [I2] (ω2)) =

( 1
3 , 1

3

)
.

2 = {{ω1, ω2, ω3} , {ω4} , {ω5, . . . , ωS}} .

uppose that agent i has prior π0
i such that π0

i (ω) =
1
S for all

∈ Ω . If the agent is a Bayesian decision maker, he forms upon
bserving information I1 = {ω1, . . . , ω4} and I2 = {ω1, ω2, ω3},
espectively, the posteriors πi [I1], resp. πi [I2], such that

πi [I1] (ω) = π0
i (ω | I1) =

{ 1
4 ω ∈ I1
0 else

πi [I2] (ω) = π0
i (ω | I2) =

{ 1
3 ω ∈ I2
0 else.

These It-conditional probability measures correspond to the cen-
ter of gravity

( 1
4 ,

1
4 ,

1
4

)
for the 3 -dimensional (resp.

( 1
3 ,

1
3

)
for

he 2 -dimensional) simplex (cf. Figs. 1 and 2). In contrast, a
on-Bayesian agent i of our model can form any posterior belief
i [I1] (resp. πi [I2]) that corresponds to an interior point in the
-dimensional (resp. 2-dimensional) simplex.

emark 1. It will not be relevant to our arbitrage analysis (i)
hether there exists an objective (=true) probability measure on

Ω, 2Ω
)
, denoted ϕ0, or not, or (ii) whether the agents’ subjective

eliefs coincide with or converge to any existing objective mea-
ure ϕ0. However, if we wanted to consider an agent i who has
correct beliefs’, we would model this agent through the filtered
robability space

Ω, 2Ω , F , π0
= ϕ0) .
( t)t∈{0,...,T } i

32
ote that an agent i with correct beliefs is thus a Bayesian
ecision maker whose posterior beliefs are given as conditional
bjective probability measures, i.e.,

i [It ] (ω) = π0
i (ω | It) = ϕ0 (ω | It) for all ω ∈ Ω

, all It ∈ Πt , t ≥ 0.

4. Naive equilibria in a multiperiod Arrow–Debreu economy

We consider a complete markets multiperiod asset exchange
economy in which S Arrow–Debreu securities can be traded be-
tween n agents in each pre-ultimate period t ∈ {0, . . . , T − 1},
T ≥ 2. The Arrow–Debreu security s ∈ {1, . . . , S} pays out
one unit of the consumption good in the ultimate period T if
and only if the true state is ωs. Formally, the Arrow–Debreu
security s corresponds to the σ (ΠT )-measurable random variable
1{ωs}, i.e., the indicator function of {ωs}. Note that Arrow–Debreu
security s is worthless at any information cell It with ωs /∈ It
because

1{ωs} (ω) = 0 for all ω ∈ It .

For every agent i, fix some belief process (πit)t∈{0,...,T } and
some strictly increasing Bernoulli utility function ui : R≥0 →

{−∞} ∪ R defined over ultimate consumption in the final pe-
riod T . Denote by esi [It ] agent i’s endowment of Arrow–Debreu
security s at information cell It whenever ωs ∈ I . For simplicity,
we assume that every agent initially owns some strictly positive
endowment of every Arrow–Debreu security in period 0, i.e., ei0 =

ei [I0] ∈ RS
>0 for i ∈ {1, . . . , n}. At any given information cell

It ∈ Πt , t ≤ T−1, agent imaximizes his expected utility over final
period consumption with respect to the subjective belief πi [It ].

Definition 3. Fix information cell It ∈ Πt , t ≤ T − 1. Given the
belief πi [It ] and the It -endowments

ei [It ] =
(
esi [It ]

)
{s|ωs∈It }

∈ R#It
≥0

for all i ∈ {1, . . . , n} , a static equilibrium at information cell It is
an (n + 1) -tuple(
p∗ [It ] , θ∗

1 [It ] , . . . , θ∗

n [It ]
)

∈ R#It
>0 × R#It×n

that satisfies the following two conditions:

(i) Expected utility maximization at It : for i ∈ {1, . . . , n}

θ∗

i [It ] ∈ arg max
θi∈Bi(p∗[It ],ei[It ])

∑
{s|ωs∈It }

ui
(
esi [It ] + θ s

i

)
πi [It ] (ωs)

where

Bi
(
p∗ [It ] , ei [It ]

)
=

⎧⎨⎩θi ∈ R#It |

∑
{s|ωs∈It }

p∗s [It ] θ s
i = 0 and esi [It ] + θ s

i

≥ 0 for all s with ωs ∈ It

⎫⎪⎬⎪⎭ .

(ii) Market clearing at It :
n∑

i=1

θ∗s
i [It ] = 0 for all s with ωs ∈ It .

We define a naive equilibrium as a collection of static equi-
libria for all information cells whereby we have to keep track of
how initial endowments become, through successive net-trades,
current endowments.
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efinition 4. Fix the belief process (πit)t∈{0,...,T } and initial en-
owments ei0 ∈ RS

>0 for all agents i ∈ {1, . . . , n}. A naive
quilibrium of the multiperiod Arrow–Debreu economy is an
Ft)t∈{0,...,T }-adapted process

(
p∗∗
t , θ∗∗

t

)
t∈{0,...,T }

defined as follows.

(i) Let ωs /∈ It , i.e., Arrow–Debreu security s is worthless. We
define(
ps∗∗ [It ] , θ s∗∗

1 [It ] , . . . , θ s∗∗

n [It ]
)

= (0, 0, . . . , 0) .

(ii) Let ωs ∈ It such that {ωs} ̸= It . We define(
ps∗∗ [It ] , θ s∗∗

1 [It ] , . . . , θ s∗∗

n [It ]
)

=
(
ps∗ [It ] , θ s∗

1 [It ] , . . . , θ s∗
n [It ]

)
such that

(
ps∗ [It ] , θ s∗

1 [It ] , . . . , θ s∗
n [It ]

)
is a static equilib-

rium for the following It -endowments for all i ∈ {1, . . . ,
n}:

es∗i [It ] =

{
esi0 if t = 0

esi0 +
∑t−1

τ=0 θ∗s
i [Iτ ] if t > 0

. (10)

(iii) Let ωs ∈ It such that {ωs} = It . We define

ps∗∗ [It ] = 1,(
θ s∗∗

1 [It ] , . . . , θ s∗∗

n [It ]
)

= (0, . . . , 0) .

A nave equilibrium is thus a collection of static equilibria for
ach information cell It ∈ Π such that the It (ω) -endowments
re handed down after trade at the predecessor information cell
t−1 (ω). If ω is the true state of the world, we would observe in
naive equilibrium

(
p∗∗
t , θ∗∗

t

)
t∈{0,...,T }

the following sequence of
tatic equilibria over time:

ps∗ [It (ω)] , θ s∗
1 [It (ω)] , . . . , θ s∗

n [It (ω)]
)
t∈{0,...,T }

or the corresponding endowments (10). Because a naive equi-
ibrium exists if and only if the corresponding static equilibria
xist, sufficiency conditions for the existence or/and uniqueness
f naive equilibria are exactly the same as for static equilibria in
omplete market economies.9 In what follows we focus on well-
ehaved naive equilibria for which any agent i’s optimal net-trade
ecisions θ s∗∗

i [It ] = θ s∗
i [It ] satisfy the first-order conditions

′

i

(
es∗i [It ] + θ s∗

i [It ]
)
πi [It ] (ωs) = λi [It ] ps∗∗ [It ] whenever ωs ∈ It

(11)

here λi [It ] denotes agent i’s Lagrange multiplier at information
ell It .

efinition 5. We call
(
p∗∗
t , θ∗∗

t

)
t∈{0,...,T }

a ‘well-behaved’ naive
quilibrium iff the equilibrium price-ratios satisfy, for all It ∈ Πt ,
∈ {0, . . . , T − 1},

ps∗∗ [It ]
ps′∗∗ [It ]

=
u′

i

(
es∗i [It ] + θ s∗

i [It ]
)
πi [It ] (ωs)

u′

i

(
es′∗i [It ] + θ s′∗

i [It ]
)
πi [It ] (ωs′ )

whenever ωs, ωs′ ∈ It

(12)

or an arbitrary agent i ∈ {1, . . . , n}.

Note that a naive equilibrium is always well-behaved if every
gent’s strictly increasing Bernoulli utility function is strictly con-
ave and continuously differentiable on (0, ∞). The next result is
ormally proved in Appendix.

9 For existence and uniqueness results for competitive equilibria with addi-
ively separable utility functions, like the expected utility function of our model,
ee, e.g., Mas-Colell (1985), Dana (1993a,b)) and references therein.
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Proposition 1. Suppose that there exists a well-behaved naive equi-
librium

(
p∗∗
t , θ∗∗

t

)
t∈{0,...,T }

. Then the following two assertions are
equivalent.

(i) The price ratios are constant over time in the specific sense
that for all It ∈ Πt , t ∈ {0, . . . , T − 1}

ps∗∗ [It ]
ps′∗∗ [It ]

=
ps∗0
ps′∗0

=
u′

i

(
esi0 + θ s∗

i0

)
π0
i (ωs)

u′

i

(
es′i0 + θ s′∗

i0

)
π0
i (ωs′)

whenever ωs, ωs′ ∈ It

(13)

for an arbitrary i ∈ {1, . . . , n} whereby π0
i = πi [I0] denotes

i’s prior belief on
(
Ω, 2Ω

)
.

(ii) All economic agents are Bayesian decision makers, i.e., for all
i ∈ {1, . . . , n} and all It ∈ Πt , t ∈ {0, . . . , T − 1},

πi [It ] (ω) = π0
i (ω | It) =

π0
i (ω)

π0
i (It)

for all ω ∈ It .

A naive equilibrium is a collection of standard equilibria such
that all agents trade at any given information cell It ∈ Π under
the assumption that all agents are Bayesian decision makers. That
is, every agent implicitly assumes at any given information cell
It ∈ Π that all agents i ∈ {1, . . . , n} will use their current beliefs
πi [It ] as priors to derive all their future posteriors in accordance
with Bayes’ rule, i.e., for all Iτ ⊆ It

πi [Iτ ] (ω) = πi [It ] (ω | Iτ ) =
πi [It ] (ω)

πi [It ] (Iτ )
for all ω ∈ Iτ .

If all agents are indeed Bayesian decision makers, any asset ex-
change in a naive equilibrium only happens in the first period.
Afterwards, the agents have no further incentives to exchange
Arrow–Debreu securities at the constant equilibrium price ratios
(which are comprehensively pinned down as the price ratios of
the static equilibrium at the initial information cell I0 = Ω).
The naive equilibrium with Bayesian decision makers is therefore
identical to the standard textbook notion of an equilibrium in
a multiperiod complete-markets economy (cf., e.g., Chapter 4 in
Arrow (1974), Chapter 19 in Mas-Colell et al. (1995), Chapter 2 in
Duffie (2001)).

Remark 2. We restrict attention to Arrow–Debreu securities
purely for analytical convenience. Our concept of a naive equi-
librium naturally extends to multiperiod complete markets econ-
omies with arbitrary assets (i.e., random variables) under the
standard portfolio-equivalence assumption that the equilibrium
price pX∗∗ [It ] of asset X : Ω → R at information cell It ∈ Π ,
t ∈ {0, . . . , T }, must coincide with the equilibrium value of
the portfolio of Arrow–Debreu securities which replicates the
payoffs of the random variable X on It . That is, in a naive equi-
librium

(
p∗∗
t , θ∗∗

t

)
t∈{0,...,T }

the (Ft)t∈{0,...,T }-adapted naive equilib-
ium price process

(
pX∗∗
t

)
t∈{0,...,T }

of asset X must satisfy at all
t ∈ Π , t ∈ {0, . . . , T }

X∗∗ [It ] =

∑
ωs∈It

X (ωs) ps∗∗ [It ] . (14)

For a static economy the asset pricing formula (14) in terms of
the state price vector

(
ps∗∗

0

)
s∈{1,...,S} would guarantee that asset X

is priced in an arbitrage-free way in period 0. The situation is dif-
ferent for multiperiod economies: whenever there is some agent
who is not a Bayesian decision maker, the asset pricing formula
(14) does no longer guarantee an arbitrage-free asset price for X
because the naive equilibrium prices for Arrow–Debreu securities

are themselves no longer arbitrage-free.
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emark 3. It does not matter for the analysis of equilibrium prices
hat our agents only care about final period consumption and
ot about intermediate consumption. To see this, consider the
ollowing slightly modified utility function at information cell It

i (ci [It ]) + δt,T
∑

{s|ωs∈It }

ui
(
esi [It ] + θ s

i

)
πi [It ] (ωs)

hich (i) incorporates consumption at It given as

i [It ] =

∑
{s|ωs∈It }

ps
(
esi [It ] − θ s

i

)
and (ii) which discounts final period consumption by some time-
discount factor δt,T > 0. In a naive equilibrium the first-order
condition (11) becomes

u′

i

(
es∗i [It ] + θ s∗

i [It ]
)
πi [It ] (ωs)

= δ−1
t,T u

′

i

(
c∗

i [It ]
)
ps∗∗ [It ] whenever ωs ∈ It .

Because δ−1
t,T u

′

i

(
c∗

i [It ]
)

> 0 is a constant on It , the equilibrium
prices ratios (13) remain unaffected for all ωs, ωs′ ∈ It by any
intermediate consumption. Formally, agent i ’s Lagrange multi-
plier λi [It ] in (11) is now his time adjusted marginal utility from
(equilibrium) consumption at information cell It .

5. Representative agent models for naive equilibria

Since a naive equilibrium is a collection of static equilibria,
the naive equilibrium price process can be conveniently described
through a representative agent model for the static equilibria
in question. Denote by uρ : R≥0 → {−∞} ∪ R the strictly
increasing Bernoulli utility function of the expected utility max-
imizing representative agent which is strictly concave and con-
tinuously differentiable on (0, ∞). Furthermore, denote by eρ =

e1ρ, . . . , eSρ
)

∈ RS
>0 the representative agent’s initial endowments

n Arrow–Debreu securities which remain constant over time.10

efinition 6. We say that there exists a representative agent
odel ρ for the naive equilibrium

(
p∗∗
t , θ∗∗

t

)
t∈{0,...,T }

iff we have
or all It ∈ Πt , t ∈ {0, . . . , T − 1}

ps∗∗ [It ]
ps′∗∗ [It ]

=
u′

ρ

(
esρ
)

u′
ρ

(
es′ρ
) πρ [It ] (ωs)

πρ [It ] (ωs′)
whenever ωs, ωs′ ∈ It (15)

where
(
πρt
)
t∈{0,...,T }

is the (Ft)t∈{0,...,T }-adapted belief process of
the representative agent.

In words: the representative agent model ρ recovers the equi-
librium prices of the underlying economy through an optimal
zero net-trade decision of the expected utility maximizing rep-
resentative agent at all information cells. The following result is
analogously proved as Proposition 1.

Proposition 2. If there exists a representative agent model ρ

for the naive equilibrium
(
p∗∗
t , θ∗∗

t

)
t∈{0,...,T }

, then the following two
assertions are equivalent.

(i) The equilibrium price ratios satisfy for all It ∈ Πt , t ∈

{0, . . . , T − 1}

ps∗∗ [It ]
ps′∗∗ [It ]

=
u′
(
esρ
)

u′
(
es′ρ
) πρ0 (ωs)

πρ0 (ωs′)
whenever ωs, ωs′ ∈ It

10 While it is standard in the literature to consider either average, i.e., esρ =

1
n

∑n
i=1 e

s
i , or aggregate, i.e., esρ =

∑n
i=1 e

s
i , endowments for all s ∈ {1, . . . , S},

he present paper allows for more general endowment specifications for the
epresentative agent (cf. Propositions 3 and 4).
34
where πρ0 = πρ [I0] denotes the representative agent’s prior
belief on

(
Ω, 2Ω

)
.

(ii) The representative agent is a Bayesian decision maker, that is,(
πρt
)
t∈{0,...,T }

satisfies, for all It ∈ Πt , t ∈ {0, . . . , T − 1},

πρ [It ] (ω) = πρ0 (ω | It) =
πρ0 (ω)

πρ0 (It)
for all ω ∈ It .

The next result – formally proved in the Appendix – estab-
lishes the existence of a representative agent model for any well-
behaved naive equilibrium through the explicit construction of
the corresponding aggregate belief process of the representative
agent.

Theorem 1. For every well-behaved naive equilibrium
(
p∗∗
t ,

θ∗∗
t

)
t∈{0,...,T }

, there exists a representative agent model ρ such that
he belief process

(
πρt
)
t∈{0,...,T }

of the representative agent is char-
cterized as follows: for all It ∈ Πt , t ∈ {0, . . . , T − 1},

ρ [It ] (ωs)

=

1
u′
ρ(esρ)

∏n
i=1

[
u′

i

(
es∗i [It ] + θ s∗

i [It ]
)
πi [It ] (ωs)

] νi∑n
i=1 νi

∑
ωs′∈It

1
u′
ρ

(
es

′

ρ

) ∏n
i=1

[
u′

i

(
es′∗i [It ] + θ s′∗

i [It ]
)
πi [It ] (ωs′)

] νi∑n
i=1 νi

for all ωs ∈ It (16)

here the agent coefficients νi > 0, i ∈ {1, . . . , n}, are arbitrary.

The remainder of this section uses Theorem 1 to derive an-
alytically convenient representative agent models for CARA and
CRRA Bernoulli utility functions, respectively.

Remark 4. In Zimper (2023) I study representative agent mod-
els for equilibria in static complete markets economies. There I
derive belief aggregation formulas under the assumption that all
economic agents share the same well-behaved Bernoulli util-
ity functions. For the special case of CARA and CRRA Bernoulli
utility functions the corresponding representative agent models
are mathematically equivalent to existing aggregation results in
Rubinstein (1974, 1976), Jouini and Napp (2007), Calvet et al.
(2018).11 The main difference of my approach and this existing
iterature is basically a normalization exercise whose advantage
s of expositional nature: whereas the present paper and Zim-
er (2023) require representative agents to be expected utility
aximizers with aggregate beliefs given as additive probabil-

ty measures, Jouini and Napp (2007) use a – mathematically
quivalent – ‘consensus characteristic’ approach which is only an
dditive probability measure for the special case of logarithmic
RRA Bernoulli utility. To describe the aggregate beliefs of repre-
entative agents as additive probability measures comes with the
mportant conceptual advantage that one can meaningfully dis-
inguish between Bayesian versus non-Bayesian expected utility
aximizing representative agents.

.1. CARA Bernoulli utility

Assume that every agent has some Bernoulli utility function
hich is of the CARA form, that is, ui : R≥0 → {−∞} ∪ R<0 such

11 For a continuum of economic agents on the real line with CRRA Bernoulli
utility function, Atmaz and Basak (2018) derive an analogous representative
agent result for a diffusion process under the assumption that the different
beliefs across the agents about the mean of the dividend growth rate are
normally distributed around the true mean. Similarly, for a continuum of
economic agents on the open unit interval with logarithmic CRRA Bernoulli
utility function, Martin and Papadimitriou (2021) present a representative agent
result for a binomial tree process.
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{
− exp (−αic) if c > 0
∞ if c = 0

where αi > 0 stands for agent i’s absolute risk aversion coeffi-
cient. We prove the following result in Appendix.

Proposition 3. Suppose that all economic agents have CARA
Bernoulli utility functions with αi > 0 for all i . Then there
exists a representative agent model ρ for the well-behaved naive
equilibrium

(
p∗∗
t , θ∗∗

t

)
t∈{0,...,T }

described as follows:

(i) The Bernoulli utility function uρ of the representative agent is
also of the CARA form whereby we can fix an arbitrary CARA
coefficient αρ > 0.

(ii) The initial endowments of the representative agent satisfy

esρ =
1∑n

i=1
αρ

αi

n∑
i=1

esi0 for all s ∈ {1, . . . , S} .

(iii) The belief process
(
πρt
)
t∈{0,...,T }

of the representative agent is
characterized as follows: for all It ∈ Πt , t ∈ {0, . . . , T − 1},

πρ [It ] (ωs) =

(∏n
i=1 [πi [It ] (ωs)]

αρ
αi

) 1∑
i=1

αρ
αi

∑
ωs′ ∈It

(∏n
i=1 [πi [It ] (ωs′ )]

αρ
αi

) 1∑
i=1

αρ
αi

for all ωs ∈ It .

Corollary 1. Suppose that all agents share the same CARA Bernoulli
utility function, i.e., α = αρ = αi for all i. Then the representative
agent model of Proposition 3 becomes an average endowment model,
i.e.,

esρ =
1
n

n∑
i=1

esi0 for all s ∈ {1, . . . , S} ,

uch that the aggregate beliefs are given as

ρ [It ] (ωs) =

(∏n
i=1 πi [It ] (ωs)

) 1
n∑

ωs′∈It

(∏n
i=1 πi [It ] (ωs′)

) 1
n

for all ωs ∈ It . (17)

oreover, if all economic agents additionally share the same belief,
.e., π [It ] = πi [It ] for all i, then (17) simplifies to πρ [It ] = π [It ].

5.2. CRRA Bernoulli utility

Next assume that all agents share the same CRRA Bernoulli
utility function u : R≥0 → {−∞} ∪ R such that, for c > 0,

u (c) =

{
c1−γ

1−γ
if γ ̸= 1

ln c if γ = 1

and

u (0) =

{
c1−γ

1−γ
if γ < 1

−∞ if γ ≥ 1

here γ > 0 stands for the relative risk aversion coefficient
shared by all agents. Recall from (11) that agent i’s Lagrange
ultiplier at information cell It evaluated at equilibrium values

s given as

i [It ] =
1

ps∗∗ [It ]
u′
(
es∗i [It ] + θ s∗

i [It ]
)
πi [It ] (ωs) . (18)

he next result is formally proved in Appendix.
35
Proposition 4. Suppose that all economic agents share the same
CRRA Bernoulli utility function. Then there exists a representa-
tive agent model ρ for the well-behaved naive equilibrium

(
p∗∗
t ,

θ∗∗
t

)
t∈{0,...,T }

described as follows:

(i) The Bernoulli utility function uρ of the representative agent is
of the same CRRA form with γ > 0.

(ii) The initial endowments of the representative agent satisfy

esρ = a
n∑

i=1

esi0 for all s ∈ {1, . . . , S}

for an arbitrary a > 0.
(iii) The belief process

(
πρt
)
t∈{0,...,T }

of the representative agent is
characterized as follows: for all It ∈ Πt , t ∈ {0, . . . , T − 1},

πρ [It ] (ωs) =

(∑n
i=1

(
µ̂i [It ]πi [It ] (ωs)

) 1
γ

)γ

∑
ωs′ ∈It

(∑n
i=1

(
µ̂i [It ]πi [It ] (ωs′ )

) 1
γ

)γ for all ωs ∈ It

(19)

whereby the agent weights are given as

µ̂i [It ] =
(λi [It ])−1

b
(20)

for an arbitrary constant b > 0 with λi [It ] denoting agent i’s
Lagrange multiplier (18).

In contrast to the CARA representative agent model, the CRRA
representative agent model with heterogeneous beliefs has to
keep track of the economic agents’ equilibrium trades because
the past and present equilibrium trades enter into each agent’s
Lagrange multiplier (18), which in turn enters into the agent
weight (20). Whenever the agents have heterogeneous beliefs it is
therefore analytically much more convenient to work with CARA
instead of CRRA Bernoulli utility. This problem does not arise for
the CRRA representative agent model if the economic agents have
homogeneous beliefs: note that(∑n

i=1

(
µ̂i [It ]π [It ] (ωs)

) 1
γ

)γ

∑
ωs′∈It

(∑n
i=1

(
µ̂i [It ]π [It ] (ωs′)

) 1
γ

)γ

=

π [It ] (ω)

(∑n
i=1

(
µ̂i [It ]

) 1
γ

)γ

∑
ωs′∈It

π [It ] (ωs′)

(∑n
i=1

(
µ̂i [It ]

) 1
γ

)γ = π [It ] (ω)

because of
∑

ωs′∈It
π [It ] (ωs′) = 1. This gives us the following

corollary.

Corollary 2. Suppose that all economic agents share the same belief,
i.e., π [It ] = πi [It ] for all i. Then (19) simplifies to πρ [It ] = π [It ].

emark 5. Since we are free to choose b > 0 in (20), we can set

=

n∑
j=1

(
λj [It ]

)−1

o obtain the normalized agent weights

∗

i [It ] =
(λi [It ])−1∑n
j=1

(
λj [It ]

)−1 , (21)

which sum up to one. The analysis of the static economy in the
companion paper Zimper (2023) shows that these normalized
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gent weights are ‘Pareto’ agent weights in the specific sense that
he utilitarian welfare function

µ∗

(
θ s
1 [It ] , . . . , θ

s
n [It ]

)
=

n∑
i=1

µ∗

i Eπi[It ]u
(
θ s
i [It ] + es∗i [It ]

)
=

n∑
i=1

µ∗

i

∑
ωs∈It

u
(
θ s
i [It ] + es∗i [It ]

)
πi (ωs)

subject to
n∑

i=1

θ s
i [It ] = 0 and θ s

i [It ] + es∗i [It ] ≥ 0 for all ωs ∈ It

s maximized at the naive equilibrium net-trade decisions
θ s∗
1 [It ] , . . . , θ s∗

n [It ]
)
. This equivalence between equilibrium net-

rades and utilitarian welfare maximization with appropriately
onstructed agent weights directly confirms the well-known fact
hat competitive equilibria in complete markets economies are
areto-efficient.12

. Naive equilibria versus arbitrage-free asset prices

This section establishes that arbitrage-free prices in a naive
quilibrium are equivalent to Bayesian decision making. Denote
y (pt)t∈{0,...,T } an (Ft)t∈{0,...,T }-adapted price process satisfying

1. ps [It ] > 0 if and only if ωs ∈ It .
2. ps [IT ] = 1{ωs}.

For a fixed price process (pt)t∈{0,...,T } the (Ft)t∈{0,...,T }-adapted
rading strategy {θt}t∈{0,...,T } is an arbitrage-opportunity in our
ultiperiod Arrow–Debreu economy iff the following two con-
itions are satisfied:

1. It is self-financing, i.e., for all It ∈ Πt , t ∈ {0, . . . , T − 1},∑
{s|ωs∈It }

ps [It ] θ s [It ] = 0;

2. The resulting period T − 1 portfolio strictly dominates the
initial endowment portfolio in the specific sense that, for
all s ∈ {1, . . . , S},
T−1∑
t=0

θ s [It (ωs)] ≥ 0

whereby this inequality is strict for some s.

We speak of an arbitrage-free price process iff there is no
rbitrage-opportunity. By a fundamental result from mathemati-
al finance, the price process (pt)t∈{0,...,T } is arbitrage-free iff it is
(discounted) martingale with respect to an additive probability
easure Q with full support on Ω; that is, iff we have for all
∈ {1, . . . , S} and all It ∈ Πt , t ∈ {1, . . . , T − 1},

s [It ] =
1

1 + rt,t+1 [It ]
EQ (·|It )p

s [It+1] (22)

where Q (ω) > 0 for all ω and
(
rt,t+1

)
t∈{0,...,T }

is an arbitrary
(Ft)t∈{0,...,T }-adapted short-rate process satisfying, for all ω ∈ Ω ,
rT ,T+1 [IT (ω)] = 0 and 1+rt,t+1 [It (ω)] > 0 for t < T (cf., Harrison
and Kreps (1979), Chapter 2G in Duffie (2001)). Moreover, for our
complete markets economy the martingale measure Q is unique.

12 Traditional aggregation analysis has used this Pareto-efficiency of equilibria
o derive representative agent models from the maximization of the utilitarian
elfare function Wµ∗ whereby the agent weights µ∗

i [It ], i ∈ {1, . . . , n}, are
given by equivalent expressions of (21). See, e.g., Negishi (1960), the discussion
in Zimper (2023), and, in particular, Chapter 1E on representative agent models
in Duffie (2001) who writes: “Aside from its allocational implications, Pareto
optimality is also a convenient property for the purpose of security pricing.”(p.8)
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We formally prove the following result in the Appendix through
the explicit construction of the martingale measure Q .

Proposition 5. Fix a period-0 state-price vector

p0 =
(
p10, . . . , p

S
0

)
∈ RS

>0. (23)

The (Ft)t∈{0,...,T } -adapted price process (pt)t∈{0,...,T } is arbitrage free
iff we have for all It ∈ Πt , t ∈ {1, . . . , T − 1},

ps0
ps′0

=
ps [It ]
ps′ [It ]

whenever ωs, ωs′ ∈ It . (24)

Combining Propositions 1 and 2 with Proposition 5 yields the
following fundamental relationship.

Theorem 2. Consider a well-behaved naive equilibrium
(
p∗∗
t ,

θ∗∗
t

)
t∈{0,...,T }

. The following assertions are equivalent.

(i) The equilibrium price process
(
p∗∗
t

)
t∈{0,...,T }

is arbitrage-free.
(ii) All economic agents are Bayesian decision makers.
(iii) The representative agent is a Bayesian decision maker.

emark 6. The (Ft)t∈{0,...,T }-adapted short-rate process
rt,t+1

)
t∈{0,...,T }

is an arbitrary normalization/numeraire process
hich is not pinned down in our economy because our agents
nly care about final period consumption. Define the σ (Πt)
measurable random variable Rt,T such that for all It ∈ Πt

t,T [It ] =

T∏
τ=t

(
1 + rτ ,τ+1 [Iτ ]

)
.

By (22) and the law of iterated expectations, we obtain

ps [It ] =
1

Rt,T [It ]
EQ (·|It )p

s [IT ] =
1

Rt,T [It ]
Q (ωs | It) .

At any information cell It the risk-free asset (i.e., portfolio of
Arrow–Debreu securities) that gives a guaranteed payoff of one
in period T would thus come with the price∑
ωs∈It

ps [It ] =

∑
ωs∈It

1
Rt,T [It ]

Q (ωs | It)

=
1

Rt,T [It ]
.

In other words, the short-rate process
{
rt,t+1

}
t∈{0,...,T }

determines
he nominal price 1

Rt,T [It ]
that has to be paid at information cell It

for one unit of a risk-free asset whose period-T payoff is one.

7. Discussion: Unrealized arbitrage opportunities in a naive
equilibrium

How plausible is the existence of unrealized arbitrage oppor-
tunities? By Proposition 5, we obtain the following equivalent
characterization of arbitrage opportunities in a naive equilibrium.

Corollary 3. The equilibrium price process
(
p∗∗
t

)
t∈{0,...,T }

comes
with unrealized arbitrage opportunities iff there exist some Arrow–
Debreu securities s, s′ such that
ps∗∗

0

ps′∗∗

0

<
ps∗∗ [It ]
ps′∗∗ [It ]

(25)

for some It ∈ Πt with ωs, ωs′ ∈ It .

Suppose that there exists a smart investor who knows in
period 0 that inequality (25) holds for fixed Arrow–Debreu secu-
rities s and s′. This investor could then use an arbitrage strategy
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ccording to which he sells in period 0 (as many as possible) units
f Arrow–Debreu security s′ in order to buy from the proceeds

units of Arrow–Debreu security s whereas this trade is reversed
whenever information cell It happens. We refer to this arbitrage
strategy as AS∗. More precisely, arbitrage strategy AS∗ is given as
the self-financing trading strategy13

θ s′
0 < 0,

θ s
0 = −

ps
′
∗∗

0

ps∗∗

0
θ s′
0 ,

θ s [It ] = −θ s
0,

θ s′ [It ] = −
ps∗∗ [It ]
ps′∗∗ [It ]

θ s [It ]

hich results in the following strictly dominating portfolio

θ s
0 + θ s [It ] = 0,

s′
0 + θ s′ [It ] =

(
1 −

ps∗∗ [It ]
ps′∗∗ [It ]

ps
′
∗∗

0

ps∗∗

0

)
θ s′
0 > 0

whereby the last line follows because (25) implies

1 −
ps∗∗ [It ]
ps′∗∗ [It ]

ps
′
∗∗

0

ps∗∗

0
< 0.

That is, if information cell It happens, the initial trade combined
ith the reversed trade in Arrow–Debreu securities s and s′ at

nformation cell It results in a portfolio with strictly more units
f the Arrow–Debreu security s′ than in period 0 whereas the
umber of units of Arrow–Debreu security s remains the same. If
nformation cell It does not happen in period t because the true
tate of the world lies in a different period t information cell, both
rrow–Debreu securities s and s′ are worthless anyway so that
he initial trade does not affect the value of the portfolio in period
.

How can this smart investor know in period 0 that inequality
25) holds for fixed Arrow–Debreu securities s and s′? A ‘fully ra-
tional’ investor knows, by definition, all economic fundamentals,
i.e., all agents’ endowments, utility functions and belief processes,
from which he could deduce inequality (25) if he additionally
understands that the economic agents trade in accordance with
a naive equilibrium. Let us simplify the task of this investor by
assuming that he happens to know that all economic agents
share the same CARA Bernoulli utility function. We can then use
the belief aggregation formula for the CARA representative agent
model of Corollary 1 to obtain the following result.

Corollary 4. Suppose that all economic agents i ∈ {1, . . . , n} share
the same CARA Bernoulli utility function. Then inequality (25) holds
iff
n∏

i=1

π0
i (ωs)

π0
i (ωs′)

<

n∏
i=1

πi [It ] (ωs)

πi [It ] (ωs′)
. (26)

Consequently, whenever the smart investor additionally
nows that the economic agents’ beliefs satisfy inequality (26)
or fixed Arrow–Debreu securities s and s′, he also knows that
he arbitrage strategy AS∗ would strictly improve his portfolio at
ero costs. If this smart investor had sufficient endowments to
ake a difference, the naive equilibrium concept would not be an
dequate model for asset prices. However, it is hard to imagine

13 Let es
′

0 > 0 denote the initial endowment of the smart investor of Arrow–
ebreu security s′ . We can then set θ s′

0 = −es
′

0 so that the smart investor
ould maximally exploit this arbitrage opportunity in the absence of naked
hort-selling.
 a

37
how real-life investors could possibly know that inequality (26)
holds for fixed Arrow–Debreu securities s and s′.

To conclude: Even if a quasi-smart outside investor knows
that there must be some arbitrage opportunities because not all
economic agents are Bayesian decision makers, it might be diffi-
cult for him to figure out the correct arbitrage trading strategy.
If this investor accidentally happens to mix up the two Arrow–
Debreu securities s and s′ in (26), he would make strict losses at
information cell It (and zero-gains elsewhere) whenever he uses
the trading strategy AS∗.

8. Concluding remarks

This paper introduces the concept of ‘naive equilibria’ for com-
plete markets multiperiod economies with Arrow–Debreu secu-
rities whereby the economic agents are not necessarily Bayesian
decision makers. A naive equilibrium is the adequate equilib-
rium concept if every economic agent – generically incorrectly
– assumes that all agents are Bayesian decision makers. For the
non-generic case where all agents are indeed Bayesian decision
makers, the naive equilibrium coincides with the standard con-
cept of an arbitrage-free equilibrium in a multiperiod complete
markets economy. In such a standard arbitrage-free equilibrium
dynamic price ratios are comprehensively pinned down as the
equilibrium price ratios of a static economy and the economic
agents have no strict incentives to trade Arrow–Debreu securities
beyond the initial trading period. Our analysis shows that the
situation is different for a naive equilibrium if there exists at least
one agent who is a non-Bayesian decision maker. In this generic
case some equilibrium price ratios for Arrow–Debreu securities
will change over time. These changing price ratios imply the ex-
istence of unrealized dynamic arbitrage opportunities in a naive
equilibrium.

Data availability

No data was used for the research described in the article.

Appendix. Mathematical proofs

Proof of Proposition 1. Part (i). Suppose that all agents are
Bayesian decision makers. Then the two maximization problems

c∗

i [It ] ∈ arg max
ci∈Bi(p∗[It ])

1
π0
i (It)

∑
{s|ωs∈It }

ui
(
csi
)
π0
i (ωs)

and

c∗

i0 ∈ arg max
ci∈Bi(p∗

0)

∑
{s|ωs∈Ω}

ui
(
csi
)
π0
i (ωs)

identically yield for all ωs ∈ It

c∗s
i [It ] = c∗s

i0

⇔

es∗i [It ] + θ s∗
i [It ] = esi0 + θ s∗

i0

for all It ∈ Πt , t ∈ {0, . . . , T − 1}. By (12), we have for all It ∈ Πt ,
t ∈ {0, . . . , T − 1},

ps∗∗ [It ]
ps′∗∗ [It ]

=
u′

i

(
esi0 + θ s∗

i0

)
π0
i (ωs)

u′

i

(
es′i0 + θ s′∗

i0

)
π0
i (ωs′)

whenever ωs, ωs′ ∈ It .

ince the right hand side of the equation has the same value for
ll I with ω , ω ′ ∈ I , we obtain (13).
t s s t
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p

a

f
i

α

T∑

I
N
r

∏n
i=1

[
u′

i

(
es∗i [It ] + θ s∗

i [It ]
)
πi [It ] (ωs)

]νi∏n
i=1

[
u′

i

(
es′∗i [It ] + θ s′∗

i [It ]
)
πi [It ] (ωs′)

]νi =

(
u′

ρ

(
esρ
)

u′
ρ

(
es′ρ
) πρ [It ] (ωs)

πρ [It ] (ωs′)

)∑n
i=1 νi

⇔

πρ [It ] (ωs)

πρ [It ] (ωs′)
=

1
u′
ρ(esρ)
1

u′
ρ

(
es

′

ρ

)
∏n

i=1

[
u′

i

(
es∗i [It ] + θ s∗

i [It ]
)
πi [It ] (ωs)

] νi∑n
i=1 νi∏n

i=1

[
u′

i

(
es′∗i [It ] + θ s′∗

i [It ]
)
πi [It ] (ωs′)

] νi∑n
i=1 νi

.

Box I.
P
a
a

µ

Part (ii). Suppose now that there exists an equilibrium with
rice ratios given by (13). The equations

ps∗∗

0

ps′∗∗

0

=
ps∗∗ [It ]
ps′∗∗ [It ]

nd

ps∗∗ [It ]
ps′∗∗ [It ]

=
u′

i

(
esi0 + θ s∗

i0

)
πi [It ] (ωs)

u′

i

(
es′i0 + θ s′∗

i0

)
πi [It ] (ωs′)

hold for all It ∈ Πt , t ∈ {0, . . . , T − 1} with ωs, ωs′ ∈ It if and
only if

πi [It ] (ωs)

πi [It ] (ωs′)
= b

such that the constant b > 0 is given as

b =
u′

i

(
es

′

i0 + θ s′∗
i0

)
u′

i

(
esi0 + θ s∗

i0

) ps∗∗ [It ]
ps′∗∗ [It ]

=
u′

i

(
es

′

i0 + θ s′∗
i0

)
u′

i

(
esi [I0] + θ s∗

i [I0]
) ps∗∗

0

ps′∗∗

0

=
π0
i (ωs)

π0
i (ωs′ )

=

1
α[It ]

π0
i (ωs)

1
α[It ]

π0
i (ωs′ )

or any constant α [It ] ̸= 0. Assume, to the contrary, that agent i
s not a Bayesian decision maker, that is, assume that

[It ] ̸= π0
i (It) .

hen

ω∈It

πi [It ] (ω) =
1

α [It ]

∑
ω∈It

π0
i (ω) =

π0
i (It)
α [It ]

̸= 1,

which contradicts our assumption that πi [It ] is a probability
measure on

(
It , 2It

)
.□□

Proof of Theorem 1. Combining (12) with (15) establishes that
there exists a representative agent model ρ for the naive equi-
librium

(
p∗∗
t , θ∗∗

t

)
t∈{0,...,T }

iff we have for all It ∈ Πt , t ∈

{0, . . . , T − 1} and all i ∈ {1, . . . , n}

u′

i

(
es∗i [It ] + θ s∗

i [It ]
)
πi [It ] (ωs)

u′

i

(
es′∗i [It ] + θ s′∗

i [It ]
)
πi [It ] (ωs′)

=
u′

ρ

(
esρ
)

u′
ρ

(
es′ρ
) πρ [It ] (ωs)

πρ [It ] (ωs′)
whenever ωs, ωs′ ∈ It . (27)

For arbitrary agent coefficients νi > 0 for i ∈ {1, . . . , n}, transform
(27) equivalently to(

u′

i

(
es∗i [It ] + θ s∗

i [It ]
)
πi [It ] (ωs)

u′

i

(
es′∗i [It ] + θ s′∗

i [It ]
)
πi [It ] (ωs′ )

)νi

=

(
u′

ρ

(
esρ
)

u′
ρ

(
es′ρ
) πρ [It ] (ωs)

πρ [It ] (ωs′ )

)νi

.

f this holds for all i ∈ {1, . . . , n}, we obtain (see Box I).
ormalization, i.e.,

∑
ωs∈It πρ [It ] (ωs) = 1, yields the desired

esult.□□
38
roof of Proposition 3. By Theorem 1, we are free to choose the
gent coefficients νi > 0 in (16) arbitrarily. Fix the representative
gent’s CARA coefficient αρ > 0 and specify the agent coefficients

as

νi =
αρ

αi
for all i.

Observe that(
n∏

i=1

(
u′
(
es∗i [It ] + θ s∗

i [It ]
))νi) 1∑n

i=1 νi

=

(
n∏

i=1

αi exp
(

−αi
(
es∗i [It ] + θ s∗

i [It ]
) αρ

αi

)) 1∑n
i=1

αρ
αi

=

((
n∏

i=1

αi

)
exp

(
−αρ

n∑
i=1

es∗i [It ] + θ s∗
i [It ]

)) 1∑n
i=1

αρ
αi

=

((
n∏

i=1

αi

)
exp

(
−αρ

n∑
i=1

es∗i [It ] + θ s∗
i [It ]

)) 1∑n
i=1

αρ
αi

=

((
n∏

i=1

αi

)
exp

(
−αρ

n∑
i=1

esi0

)) 1∑n
i=1

αρ
αi

whereby the last step follows from

n∑
i=1

esi0 =

n∑
i=1

es∗i [It ] + θ s∗
i [It ]

whenever ωs ∈ It . For simplicity write es =
∑n

i=1 e
s
i0 for all s.

Substituting in (16) yields (see Box II). Letting

esρ = es
1∑n

i=1
αρ

αi

for all s

gives us the desired result

πρ [It ] (ωs) =

(∏n
i=1 [πi (ωs)]

αρ
αi

) 1∑
i=1

αρ
αi

∑S
s′=1

(∏n
i=1 [πi [It ] (ωs′)]

αρ
αi

) 1∑
i=1

αρ
αi

.

□□

Proof of Proposition 4. Step 1. Observe that (11) can be equiva-
lently rewritten for i ∈ {1, . . . , n} as

ˆ i [It ] u′
(
es∗i [It ] + θ s∗

i [It ]
)
πi [It ] (ωs) = µ̂i [It ] λi [It ] ps∗∗ [It ]

=
1
ps∗∗ [It ]
b
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(

t

πρ [It ] (ωs) =

1
exp(−αρ eρs)

(∏n
i=1 αi

) 1∑n
i=1

αρ
αi
(
exp

(
−αρes

)) 1∑n
i=1

αρ
αi

(∏n
i=1 [πi [It ] (ωs)]

αρ
αi

) 1∑
i=1

αρ
αi

∑S
s′=1

1
exp

(
−αρeρs′

) (∏n
i=1 αi

) 1∑n
i=1

αρ
αi
(
exp

(
−αρes′

)) 1∑n
i=1

αρ
αi

(∏n
i=1 [πi [It ] (ωs′)]

αρ
αi

) 1∑
i=1

αρ
αi

=

1
exp(−αρ eρs)

exp
(

−αρes 1∑n
i=1

αρ
αi

)(∏n
i=1 [πi (ωs)]

αρ
αi

) 1∑
i=1

αρ
αi

∑S
s′=1

1
exp

(
−αρeρs′

) exp
(

−αρes′ 1∑n
i=1

αρ
αi

)(∏n
i=1 [πi [It ] (ωs′)]

αρ
αi

) 1∑
i=1

αρ
αi

.

Box II.
πρ [It ] (ωs) =

(
esρ
)γ ∏n

i=1

[(
1
a

(µ̂i[It ]πi[It ](ωs))
1
γ∑n

j=1(µ̂j[It ]πj[It ](ωs))
1
γ

esρ

)−γ

πi [It ] (ωs)

] 1
n

∑
ωs′∈It

(
es′ρ
)γ ∏n

i=1

[(
1
a

(µ̂i[It ]πi[It ](ωs′))
1
γ∑n

j=1(µ̂j[It ]πj[It ](ωs′))
1
γ

es′ρ

)−γ

πi [It ] (ωs′)

] 1
n

=

(
esρ
)γ ∏n

i=1

⎡⎣ (µ̂i[It ]πi[It ](ωs))
−1(∑n

j=1(µ̂j[It ]πj[It ](ωs))
1
γ

)−γ

(
esρ
)−γ

⎤⎦ 1
n ∏n

i=1 [πi [It ] (ωs)]
1
n

∑
ωs′∈It

(
es′ρ
)γ ∏n

i=1

⎡⎣ (µ̂i[It ]πi[It ](ωs′))
−1(∑n

j=1(µ̂j[It ]πj[It ](ωs′))
1
γ

)−γ

(
es′ρ
)−γ

⎤⎦ 1
n ∏n

i=1 [πi [It ] (ωs′)]
1
n

=

∏n
i=1

[
(µ̂i[It ])

−1
] 1
n(∑n

j=1(µ̂j[It ]πj[It ](ωs))
1
γ

)−γ

∑
ωs′∈It

∏n
i=1

[
(µ̂i[It ])

−1
] 1
n(∑n

j=1(µ̂j[It ]πj[It ](ωs′))
1
γ

)−γ

,

Box III.
□

P
d

where the agent weight µ̂i [It ] is given as (20). Using

µ̂i [It ] u′
(
es∗i [It ] + θ s∗

i [It ]
)
πi [It ] (ωs)

µ̂j [It ] u′
(
es∗j [It ] + θ s∗

j [It ]
)
πj [It ] (ωs)

=

1
bp

s∗∗ [It ]
1
bp

s∗∗ [It ]
= 1

yields for CRRA Bernoulli utility

µ̂i [It ]
µ̂j [It ]

=

(
es∗i [It ] + θ s∗

i [It ]
es∗j [It ] + θ s∗

j [It ]

)γ

πj [It ] (ωs)

πi [It ] (ωs)

⇔

µ̂i [It ]πi [It ] (ωs)

µ̂j [It ]πj [It ] (ωs)

) 1
γ

=
es∗i [It ] + θ s∗

i [It ]
es∗j [It ] + θ s∗

j [It ]
.

Let esρ = aes = a
∑n

i=1

(
es∗i [It ] + θ s∗

i [It ]
)
for an arbitrary a > 0.

Then this system of equations has the solution

es∗i [It ] + θ s∗
i [It ] =

1
a

(
µ̂i [It ]πi [It ] (ωs)

) 1
γ∑n

j=1

(
µ̂j [It ]πj [It ] (ωs)

) 1
γ

esρ . (28)

Step 2. By Theorem 1, we are free to choose arbitrary agent
coefficients in (16). Simply let νi = 1 for all i. Substituting (28) in
he general belief aggregation formula (16) gives us (see Box III)
39
which yields the desired result

πρ [It ] (ωs) =

(∑n
j=1

(
µ̂j [It ]πj [It ] (ωs)

) 1
γ

)γ

∑
ωs′∈It

(∑n
j=1

(
µ̂j [It ]πj [It ] (ωs′)

) 1
γ

)γ .

□

roof of Proposition 5. Step 1. Given the state-price vector p0,
efine the probability measure Q on

(
Ω, 2Ω

)
such that, for all

ωs ∈ Ω ,

Q (ωs) =
ps0∑

{s′|ωs′∈Ω} p
s′
0

> 0.

By construction, we have, for all ωs ∈ Ω , the equivalence

ps0
ps′0

=
Q (ωs)

Q (ωs′)

=

∑
ω∈Ω 1{ωs} (ω)Q (ω)∑

ω∈Ω 1{ωs′}

(ω)Q (ω)
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B
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D

D

D

D

D

E

E

E

E

G
G

G

G

G

H

H

J

K

L

L

M

M

=
EQ ps [IT ]
EQ ps

′ [IT ]
.

Step 2. Fix an arbitrary t < T . Let ωs, ωs′ ∈ It so that (24) is,
y Step 1, equivalent to
pst [It ]
ps′t [It ]

=
EQ psT
EQ ps

′

T

=

∑
It∈Πt

(∑
ω∈Ω 1{ωs} (ω)Q (ω | It)

)
Q (It)∑

It∈Πt

(∑
ω∈Ω 1{ωs′}

(ω)Q (ω | It)
)
Q (It)

by the law of iterated expectations

=

∑
ω∈Ω 1{ωs} (ω)Q (ω | It)Q (It)∑
ω∈Ω 1{ωs′}

(ω)Q (ω | It)Q (It)

=
EQ (·|It )p

s [IT ]
EQ (·|It )ps

′ [IT ]
.

enote by αt an arbitrary σ (Πt) -measurable random variable
such that αt [It ] > 0 for all It ∈ Πt . Set the price

ps [It ] = αt [It ]EQ (·|It )p
s [IT ] (29)

and note that

EQ (·|It )p
s [IT ] > 0 iff ωs ∈ It

so that
ps [It ]
ps′ [It ]

=
EQ (·|It )p

s [IT ]
EQ (·|It )ps

′ [IT ]

olds whenever ωs, ωs′ ∈ It whereby ps [It ] = 0 iff ωs /∈ It .
Step 3. Applying the pricing rule (29) to t + 1 yields

s [It+1] = αt+1 [It+1]EQ(·|It+1)p
s [IT ] .

f (and only if) the random variable
αt+1 [It+1]

αt [It ]
is σ (Πt)-measurable (i.e., taking on a constant value on It ), the
onditional expectation of ps [It+1] becomes

EQ (·|It )p
s [It+1] =

∑
It+1⊆It

ps [It+1]Q (It+1 | It)

=

∑
It+1⊆It

αt+1 [It+1]EQ(·|It+1)p
s [IT ]Q (It+1 | It)

=

∑
It+1⊆It

αt+1 [It+1]
αt [It ]

αt [It ]EQ(·|It+1)p
s [IT ]Q (It+1 | It)

=
αt+1 [It+1]

αt [It ]
αt [It ]

∑
It+1⊆It

EQ(·|It+1)p
s [IT ]Q (It+1 | It)

=
αt+1 [It+1]

αt [It ]
αt [It ]EQ (·|It )p

s [IT ]

by the law of iterated expectations

=
αt+1 [It+1]

αt [It ]
ps [It ] ,

hereby the last step follows from (29).
Step 4. By Step 3, we have constructed an (Ft)t∈{0,...,T }-adapted

rice process
(
pst
)
t∈{0,...,T }

such that for all It ∈ Πt , t ∈ {0, . . . ,
T − 1},

ps [It ] =
αt [It ]

αt+1 [It+1]
EQ (·|It )p

s [It+1] (30)

here αt [It ]
αt+1[It+1] is an arbitrary strictly positive, σ (Πt)-meas-

urable random variable. Define for all It ∈ Πt , t ∈ {0, . . . , T − 1}

rt,t+1 [It ] =
αt+1 [It+1]

− 1

αt [It ]

40
as well as rT ,T+1 [IT (ω)] = 0 for all ω ∈ Ω to obtain the desired
(discounted) martingale

ps [It ] =
1

1 + rt,t+1 [It ]
EQ (·|It )p

s
t+1.

where
(
rt,t+1

)
t∈{0,...,T }

is an arbitrary (Ft)t∈{0,...,T } -adapted short-
ate process with 1 + rt,t+1 [It (ω)] > 0 for all ω ∈ Ω for
t < T .□□
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