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Abstract: Considering the importance of environmental protection and renewable energy resources,
particularly solar energy, the present study investigates the temperature control of a solar panel using
a nanofluid (NFD) flow with eco-friendly nanoparticles (NPs) and a phase change material (PCM).
The PCM was used under the solar panel, and the NFD flowed through pipes within the PCM. A
number of straight fins (three fins) were exploited on the pipes, and the output flow temperature,
heat transfer (HTR) coefficient, and melted PCM volume fraction were measured for different pipe
diameters (D_Pipe) from 4 mm to 8 mm at various time points (from 0 to 100 min). Additionally,
with the use of artificial intelligence and machine learning, the best conditions for obtaining the
lowest panel temperature and the highest output NFD temperature at the lowest pressure drop have
been determined. While the porosity approach was used to model the PCM melt front, a two-phase
mixture was used to simulate NFD flow. It was discovered that the solar panel temperature and
output temperature both increased considerably between t = 0 and t = 10 min before beginning to
rise at varying rates, depending on the D_Pipe. The HTR coefficient increased over time, showing
similar behavior to the panel temperature. The entire PCM melted within a short time for D_Pipes
of 4 and 6 mm, while a large fraction of the PCM remained un-melted for a long time for a D_Pipe
of 8 mm. An increase in D_Pipe, particularly from 4 to 6 mm, reduced the maximum and average
panel temperatures, leading to a lower output flow temperature. Furthermore, the increased D_Pipe
reduced the HTR coefficient, with the PCM remaining un-melted for a longer time under the panel.

Keywords: solar energy; machine learning; collector; eco-friendly nanoparticles; PCM

1. Introduction

Today, many countries are struggling with climate change and its consequent environ-
mental impacts. Precipitation reduction and widespread droughts, floods, and hurricanes
result from climate change. Global warming is a major explanation for such changes, and
massive efforts are required to avoid further temperature increases across the world [1–4].
The excessive emission of CO2 after the Industrial Revolution has led to climate change
and global warming. Industrial and residential energy accounts for a significant portion
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of CO2 emissions [5–9]. The replacement of traditional energy resources with renewable,
clean energy could substantially help reduce CO2 emissions [10–13]. Today, attention has
been paid to the topic of HTR [14,15]. Specifically, solar energy has been of great interest
to researchers, and many researchers assume solar energy to be an effective substitute
for traditional energy resources [16–19]. Solar panels can be employed to harvest solar
energy [20–24]. Solar thermal panels can be more effective for solar energy harvesting since
they can generate hot water and can maximize panel efficiency [25–29]. Several researchers
studied solar thermal panels [30–34]. By using a thermosyphon–heat pipe combination
with water-cooling jackets beneath the PV modules to absorb extra heat from the solar cells,
Moradgholi et al. [35] devised a photovoltaic thermal (PVT) system. They reported a 26%
reduction in the PV cell temperature. Nizatik et al. [36] employed water spraying to cool
PV modules (in the front, in the back, and both in the front and back) in outdoor settings
in Croatia. It was found that water spraying in the front, back, and both front and back
reduced the solar module temperature by 42.8%, 58.9%, and 60.7%, respectively.

NFDs have been widely employed in thermal devices [37–41]. A NFD is made up of
base fluid with NPs. Research has shown that NFDs significantly enhance HTR [42–46].
Jingio et al. [47] theoretically studied the performance of Fe2O3 NFDs as an optical filter
on a silicon PV panel. The optimal volume fraction of Fe2O3 NPs for the NFD with a base
fluid mixture of 50% water and 50% ethylene glycol was found to be 5 × 10−4%. A passive
cooling method was suggested by Chandereskar et al. [48] to cool PV modules. On the
back of the PV modules, a cotton wick and several NFDs made up the system. The tests
were carried out in the climate of an Indian city in April. It was found that the use of a
cotton wick and water, a cotton wick and a CuO/water NFD, and a cotton wick and an
Al2O3/water NFD led to 30%, 11%, and 17% temperature reductions, respectively.

Today, it is necessary to protect the environment for future generations. Environmental
deterioration in the past decades has led to significant climate change and the extinction of
some species [49–52]. The destruction of the environment would destroy human life [53–55].
Hence, environmental revival is important for countries and the United Nations (UN).
Substantial CO2 emissions pose a serious threat to human life. The use of clean and
renewable energy in place of fossil fuels to reduce CO2 emissions is an effective approach
to environmental protection. Solar energy could be a promising alternative for future
energy generation as it is simple, renewable, and non-polluting. The use of phase change
material can also help with the efficiency of heating devices [56–60]. In this work, a NFD
containing eco-friendly NPs and a phase change material (PCM) at the same time is used
to adjust the temperature of a solar panel. It was presumed that the NFD was a two-phase
system. The PCM and a number of pipes with fins were employed under the solar panel to
control its temperature. This study assumed a transient system and analyzed the effects
of D_Pipe on the panel temperature, output NFD temperature, and melted PCM volume
fraction. It should be noted that eco-friendly NPs were fabricated through tea leaf extracts
to implement an even more eco-friendly solar system. In summary, the use of eco-friendly
NFD in the PV-thermal panel, the use of PCM in the system, and the examination of the
impact of changing the tube diameter on the outputs can be considered innovations of the
present work.

2. Problem Statement

The system consisted of a solar panel with a size of 54 × 67 cm, under which a PCM of
the same size was employed. Three pipes with a laminar NFD flow at a velocity of 1 mm/s
were used within the PCM. Three straight rectangular copper fins were used on the pipes.
As mentioned, the eco-friendly NPs were fabricated using tea leaf extracts. The D_Pipe
varied from 4 to 8 mm. The solar panel received a constant 850 W/m2 solar heat flow for
100 min. The system’s schematic is shown in Figure 1.
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Figure 1. Schematic of the system with PCM and NFD flow pipe.

3. Governing Equations
3.1. NFD

The governing equations of an incompressible NFD for a two-phase mixture are
written as follows [61]:

Conservation of mass
∇.
(

ρm
→
v m

)
= 0 (1)

Conservation of momentum

∇.
(

ρm
→
v m.∇→v m

)
= −∇Pm +∇.

(
µm∇

→
v m

)
+∇.

(
n

∑
k=1

ϕkρk
→
v dr,k

→
v dr,k

)
(2)
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Conservation of energy

∇.

(
n

∑
k=1

ϕkρkcp,k
→
v kT

)
= ∇.(km∇T) (3)

where
→
v and P denote the velocity and pressure, respectively. Furthermore, ρ is the density,

µ is the viscosity, T is the temperature, k is the conductivity, cp is the specific heat capacity,
and subscription m represents the mixture. The average mixture velocity, density, viscosity,
and volume fraction are given by the following:

→
v m =

∑n
k=1 ϕkρk

→
v k

ρm
(4)

ρm =
n

∑
k=1

ϕkρk (5)

µm =
n

∑
k=1

ϕkµk (6)

∇.
(

ϕpρp
→
v m

)
= −∇.

(
ϕpρp

→
v dr,p

)
(7)

The drift velocity of eco-friendly NPs is written as follows:

→
v dr,k =

→
v p f −

n

∑
i=1

ϕkρk
ρm

→
v f k (8)

The slip velocity is defined as follows:

→
v p f =

→
v p −

→
v f (9)

→
v p f =

ρpd2
p
(
ρp − ρm

)
18µ f fdragρp

a (10)

fdrag =

[
1 + 0.15Re0.687

p , Rep ≤ 1000
0.0183Re0.687

p , Rep > 1000
(11)

where p and f refer to eco-friendly NPs and the base fluid, respectively. The gravitational
acceleration is defined as follows:

a = g−
(→

v m.∇
)→

v m (12)

Table 1 reports the basic properties of the base fluid and eco-friendly NPs.

Table 1. The basic properties of the base fluid and eco-friendly NPs [62].

cp (J/kg·K) k (W/m·K) µ (kg/m·s) ρ
(
kg/m3)

EG 2430.8 0.2532 0.0141 1088

Ag 235 429 - 10,500

Water 4179 0.613 0.001 997.1

3.2. PCM

The governing equations of the PCM are written as follows:

∂ρ

∂t
+∇ ·

(
ρ
→
U
)
= 0 (13)
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∂

∂t
(ρ
→
U) +∇ ·

(
ρ
→
U
→
U
)
= −

→
∇p + ρ

→
g +∇ · τ +

→
F (14)

∂(ρH)

∂t
+∇ ·

(
ρ
→
U H

)
= ∇ · (K∇H) + S (15)

The function β is defined as follows [62]:

βk =


β = O i f T < Tsolidus

β = 1 i f T > TLiquidus

β = T−Tsolidus
TLiquidus −Tsolidus

i f TLiquidus < T < Tsolidus

(16)

The β-function represents the phase change of the PCM [62]. The specific heat capacity
of the system is obtained as follows:

∆CP(System) = CP(npcm) + L× D(T) (17)

Paraffin wax was used as the PCM with a conductivity of 0.365 W/m.K, a latent heat
of 202.1 J/g, and a melting point of 27.7 ◦C [63].

4. Numerical Method, Grid Study, and Validation

By discretizing the equations, the finite element approach was used to address the
PCM melting and NFD flow problems [64]. The two-phase mixing technique was utilized
to simulate the flow. The enthalpy method was used to resolve the PCM melt front. The
optimal conditions for having a panel with the lowest temperature and having a NFD at
the output with the highest temperature and the lowest pressure drop in the solar system
were investigated using machine learning in order to more thoroughly examine the effect of
parameters on the outputs. Design Expert software was used for this purpose. The domain
was meshed using hexagonal pieces, as shown in Figure 2.
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Figure 2. Meshed domain with hexagonal elements.

Finer meshes were used in areas with larger temperature gradients. The sensitivity
of the output to the number of meshes was analyzed. Table 2 shows the output flow
temperature at different numbers of meshes and for a D_Pipe of 6 mm. The ideal grid for
the simulations was chosen, which has a total of 1,145,000 components.
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Table 2. Output flow temperature for a D_Pipe of 6 mm.

Element Number 911,000 1,027,000 1,145,000 1,283,000

T-out 300.41 300.68 300.80 300.81

The proposed model was validated by simulating the NFD flow through a helical
pipe [65]. Two-phase NFD mixture maximization was employed. Table 3 compares the
enhancement of the HTR coefficient by the proposed method and that by the method
of Bizhaem and Abbasi (65) for a D_Pipe of 50 and three volume fractions at Reynolds
numbers of 200 and 500.

Table 3. Proposed model versus the method of Bizhaem and Abbasi [65].

ϕ 1% 2% 3%

Re = 200

Bizhaem and Abbassi (65) 22.86 29.17 33.48

Present study 22.19 28.78 32.89

Re = 500

Bizhaem and Abbassi (65) 7.93 13.92 18.53

Present study 7.59 13.12 18.09

5. Results and Discussion

The effect of a change in the diameter of the tube, ranging from 4 to 8 mm, on the
temperature of the panel and changes in the volume fraction of a PCM within 100 min
are examined in this section. In all cases, the value of the NFD flow rate at the inlet is
constant and the number of fins is three. Additionally, the temperature of the NFD at the
inlet is considered to be constant. It is noteworthy that the NFD flow in the tubes improves
HTR due to the higher thermal conductivity of NFDs compared to normal fluids. Since it
has been proven by many researchers, changes in the volume percentage of NPs are not
considered in the present work and the volume percentage of NPs is assumed to be 1%.

Figure 3 shows the temperature contour in a vertical cross section of the middle
portion of the panel at t = 30, 60, and 90 min for D_Pipes of 4, 6, and 8 mm. In general,
the temperature of the panel somewhat increased over time, particularly for a diameter
of 4 mm. Due to the poor NFD flow in pipes with a diameter of 4 mm, the PCM melted
within a short time, with the temperatures of both the PCM and panel rising at the same
time. An increase in the D_Pipe to 8 mm better controlled the temperature of the panel
and reduced the temperature increase; the colder part of the pipe covered a larger area of
the PCM, and the top of the pipe and the solar panel had higher temperatures. The PCM
temperature was controlled thanks to the higher flow rate via the 8 mm pipe, with a greater
percentage of the PCM staying un melted.

For widths of 4, 6, and 8 mm throughout the course of 100 min, Figure 4 shows the
average panel temperature. The panel temperature with a fixed solar heat flux (irradiance)
increased from t = 0 to t = 100 s, particularly during the first ten minutes. The temperature
of the panel rose as a result of sun radiation. The panel temperature was lowered using
the PCM and NFD flow. The highest and lowest panel temperatures occurred for pipe
sizes of 4 and 8 mm, respectively. A smaller D_Pipe led to a higher panel temperature.
Furthermore, the PCM was effective in panel temperature control, and it could control
the temperature of the panel as long as it remained un-melted. The PCM also allows for
providing hot water during periods when irradiance is poor.
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Figure 3. The temperature profile for pipes with diameters of 4, 6, and 8 mm at time intervals of
30, 60, and 90 min.

The highest panel temperature for D Pipes of 4, 6, and 8 mm is shown in Figure 5 as a
function of time. The D Pipe influenced the maximum panel temperature, and as the D Pipe
increased, the maximum temperature fell. In particular, an increase in the diameter from
4 to 6 mm dramatically decreased the maximum temperature of the panel. The maximum
panel temperature increased over time due to solar radiation exposure. The heat was
stored in the form of latent heat in the PCM or discharged by the NFD so that the panel
temperature would not increase. The maximum panel temperature was very high for a
D_Pipe of 4 mm due to the poor NFD flow and faster PCM melting. For a diameter of 8 mm,
however, the stronger flow and un-melted PCM kept the maximum panel flow low for a
longer time. The fluid flow under the solar panel was used to reduce its temperature. The
HTR between the fluid flow and the panel caused the temperature of the panel to decrease
and the temperature of the fluid to increase. A fluid with a greater thermal conductivity
might increase the amount of heat it transfers to the panel. Therefore, a NFD was utilized
instead of normal fluids to improve HTR and to ultimately reduce the panel temperature.



Processes 2022, 10, 2291 8 of 17
Processes 2022, 10, x FOR PEER REVIEW 8 of 18 
 

 

 

Figure 4. The average panel temperature for diameters of 4, 6, and 8 mm for 100 min. 

The highest panel temperature for D Pipes of 4, 6, and 8 mm is shown in Figure 5 as 

a function of time. The D Pipe influenced the maximum panel temperature, and as the D 

Pipe increased, the maximum temperature fell. In particular, an increase in the diameter 

from 4 to 6 mm dramatically decreased the maximum temperature of the panel. The max-

imum panel temperature increased over time due to solar radiation exposure. The heat 

was stored in the form of latent heat in the PCM or discharged by the NFD so that the 

panel temperature would not increase. The maximum panel temperature was very high 

for a D_Pipe of 4 mm due to the poor NFD flow and faster PCM melting. For a diameter 

of 8 mm, however, the stronger flow and un-melted PCM kept the maximum panel flow 

low for a longer time. The fluid flow under the solar panel was used to reduce its temper-

ature. The HTR between the fluid flow and the panel caused the temperature of the panel 

to decrease and the temperature of the fluid to increase. A fluid with a greater thermal 

conductivity might increase the amount of heat it transfers to the panel. Therefore, a NFD 

was utilized instead of normal fluids to improve HTR and to ultimately reduce the panel 

temperature. 

Figure 4. The average panel temperature for diameters of 4, 6, and 8 mm for 100 min.

Processes 2022, 10, x FOR PEER REVIEW 9 of 18 
 

 

 

Figure 5. The maximum panel temperature for D_Pipes of 4, 6, and 8 mm over time. 

Figure 6 shows the velocity profile for pipes with diameters of 4, 6, and 8 mm in a 

horizontal cross section of the center of a panel. An underdeveloped flow regime was 

present at the pipe wall when the NFD entered the channel at a constant speed. However, 

the flow profile developed within a short distance. For a larger diameter, due to the larger 

pipe cross-sectional area and fixed input velocity, the NFD flowed through the pipe at a 

greater rate and absorbed and discharged more heat. However, for smaller D_Pipes, the 

fluid had fewer collisions with the wall in the middle of the pipe, leading to a lower output 

temperature.  

  
4 mm 6 mm 

Figure 5. The maximum panel temperature for D_Pipes of 4, 6, and 8 mm over time.



Processes 2022, 10, 2291 9 of 17

Figure 6 shows the velocity profile for pipes with diameters of 4, 6, and 8 mm in a
horizontal cross section of the center of a panel. An underdeveloped flow regime was
present at the pipe wall when the NFD entered the channel at a constant speed. However,
the flow profile developed within a short distance. For a larger diameter, due to the larger
pipe cross-sectional area and fixed input velocity, the NFD flowed through the pipe at a
greater rate and absorbed and discharged more heat. However, for smaller D_Pipes, the
fluid had fewer collisions with the wall in the middle of the pipe, leading to a lower output
temperature.
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Figure 7 displays the temperature contours for D Pipes of 4, 6, and 8 mm for the
horizontal cross section of the middle area of the panel. The cold NFD flowed into the
pipe at a constant temperature and experienced an increase in temperature through the
pipe due to collisions with the pipe wall. The pipe absorbed heat from the surrounding
PCM. The PCM underwent a temperature increase upon contact with the solar panel under
solar irradiation. The PCM temperature was low until it began melting, increasing the
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pipe temperature. Hence, the output temperature was higher for a diameter of 4 mm than
for 6 and 8 mm. Furthermore, for a diameter of 8 mm, the flow had a high velocity and
fewer collisions with the pipe wall in the middle of the pipe. Thus, the flow temperature
remained low in more of the pipe since the heat would take longer to reach the middle of
the pipe.
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Figure 8 depicts the output flow temperature for D_Pipes of 4, 6, and 8 over time.
The output temperature is a critical parameter for electrical efficiency improvement. It is
dependent on the panel temperature, and a higher panel temperature leads to a higher
output temperature. Given the constant solar heat flux on the solar panel, the output
temperature was higher for lower D_Pipes. At larger flow rates, the flow had fewer
collisions with the pipe wall in the middle of the pipe, resulting in less HTR to the NFD.
Furthermore, for smaller D_Pipes, the PCM melted within a shorter time and the flow
collided with the PCM at a higher temperature, increasing the flow temperature. As a
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result, the output temperature was higher for lower D_Pipes, and the temperature of the
NFD continued to increase for a longer time.
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Figure 8. The output flow temperature for D_Pipes of 4, 6, and 8 over time.

Figure 9 plots the HTR coefficient for pipes with diameters of 4, 6, and 8 mm over time.
HTR between the pipe and PCM was found to be strongly dependent on the diameter, and
an increase in the D_Pipe decreased the HTR coefficient. The HTR coefficient between the
pipe and PCM changes incrementally for a longer time and was smaller for larger D_Pipes.
A change in the PCM temperature substantially influenced the amount of HTR; an increase
in the PCM temperature increased the temperature difference between the pipe and PCM,
increasing the amount of HTR. In addition, the increased diameter enlarged the HTR
surface area. As can be seen, the increased surface area reduced the overall HTR coefficient
due to the integration of local HTR coefficients, and the HTR coefficient experienced a
smaller increase with the increase in diameter due to the larger surface areas. Furthermore,
the rapid melting and, therefore, temperature increase in the PCM increased the amount of
HTR between the PCM and pipe. For a D_Pipe of 4 mm, the PCM melted and experienced
an increased temperature within a shorter time, leading to a larger HTR coefficient.

Figure 10 illustrates the PCM melting contour of the horizontal cross section of the
middle portion of the panel for piper diameters of 4, 6, and 8 mm. As can be seen, D_Pipe
had a strong effect on PCM melting; an increase in the diameter reduced the melted PCM
fraction. For a diameter of 4 mm, the PCM melted entirely in 10 min. Only a very tiny
proportion of the PCM remained un melted for a diameter of 6 mm, particularly in the
area of the center pipe and its fins. For a diameter of 8 mm, on the other hand, the PCM
remained un-melted, except for some areas under the panel and areas heated by solar
radiation. The increased flow rate for a diameter of 8 mm increased the amount of HTR
from the solar panel to the flow, leading to lower heat absorption into the PCM and melt
fraction. Hence, a larger fraction of the PCM remained un-melted for a D_Pipe of 8 mm.
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for pipe diameters of 4, 6, and 8 mm.

Figure 11 depicts the PCM melting contour for the middle portion of panels with pipes
with diameters of 4, 6, and 8 mm. D_Pipe had a significant effect on the PCM melting time.
The PCM melted entirely for a diameter of 4 mm, with the phase change process being
completed. A significant portion of the PCM melted for a D Pipe of 6 mm, and the PCM
only remained solid around the central pipe. For a diameter of 8 mm, however, the PCM
remained mostly un-melted; it melted only in areas where the panel was exposed to solar
radiation. The dependence of the melted PCM fraction on the diameter is explained by the
flow rate; the flow rate was greater for larger D_Pipes, improving HTR from the panel to
the NFD.
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Figure 11. The PCM melting contour for the middle portion of panels with pipes with diameters of
4, 6, and 8 mm.

The melted PCM volume % for D Pipes of 4, 6, and 8 mm is shown with time in
Figure 12. Solar radiation increases the panel temperature, reducing its electrical efficiency.
The PCM and NFD flow were exploited under the panel to reduce its temperature and
to enhance its electrical efficiency. A significant portion of the PCM melted quickly since
there wasn’t much of it used. A large NFD flow rate could discharge a significant portion
of the heat from the solar panel. However, the heat would remain in the panel at poor
flow rates. For a D_Pipe of 8 mm, the flow rate through the pipe was larger, discharging a
greater amount of heat. For diameters of 4 and 6 mm, however, the flow discharged only a
small portion of the heat, with a major portion of the heat remaining in the solar panel and
increasing the panel temperature. The solid PCM absorbs the heat from the panel, melts
into a liquid-like form, and begins to increase in temperature once it has completely melted.
For a diameter of 8 mm, however, the melted PCM volume fraction never exceeded 50%
due to the strong NFD flow through the pipe. Finally, with the investigations conducted
using an artificial intelligence method, it was seen that the best conditions for the solar
system to have the lowest panel temperature, the highest NFD output temperature, and the
lowest pressure drop in the pipes were a 8 mm pipe diameter and a 350 Reynolds number.
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6. Conclusions

This paper evaluated the temperature control of a solar panel using NFD flow and
PCM. Eco-friendly NPs fabricated from tea leaf extracts were employed to develop the
NFD. A two-phase mixture was adopted to simulate the NFD flow, while the PCM melt
front was simulated using the enthalpy method. The PCM made use of a number of pipes
with straight fins. Over the course of 100 min, the system was examined for D Pipes of
4, 6, and 8 mm. The application of an eco-friendly NFD and a PCM simultaneously in
the solar panel and the evaluation of this system by changing the tube diameter are the
novelties of the present work. The results can be summarized as follows:

(1) The maximum and average panel temperatures dramatically increased from t = 0 to
t = 10 min and then increased at a large or small rate, depending on the diameter.

(2) An increase in the diameter, particularly from 4 to 6 mm, reduced the maximum and
average panel temperatures. However, the increased diameter raised the melted PCM
volume fraction.

(3) An increase in D_Pipe reduced the output flow temperature and the amount of HTR
between the pipes and PCM.

(4) The output temperature and the amount of HTR between the pipe and PCM were
found to be dependent on time and increased over time depending on D_Pipe.

(5) The panel had significantly lower temperatures in areas in contact with the pipes than
in the other areas.

Finally, suggestions for future works are presented based on the present simulations:

1. This study can be performed for a different number of fins and for various fin shapes
at different flow rates.

2. The effect of using different PCMs and different NFDs on the outputs should be
examined.

3. The influence of using a PV-thermal panel during the night should also be evaluated
in the absence of radiation.
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4. The impact of radiation changes on the outputs should be investigated at different
hours of the day.
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