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ABSTRACT The coding-complete genome sequences of monkeypox virus (MPXV) were
obtained from skin lesion swabs from two human cases detected in South Africa in June
2022. Sequence analyses indicated that the genetic sequences of the viruses associated
with these two cases were related most closely to the genetic sequences of other MPXVs
reported during the 2022 multicountry outbreak and belong to the monkeypox hMPXV-1
clade (previously West Africa clade) and B.1 lineage.

The monkeypox virus (MPXV) is a zoonotic virus belonging to the Orthopoxvirus genus.
The virus is associated with a yet-to-be-determined natural animal host from the Western

and Central African regions, with human cases rarely reported (1, 2). MPXV is classified into
two clades, namely, I and II (previously known as the Central Africa and West Africa clades,
respectively), with 3 sublineages, including Ia, IIa, and IIb (3, 4). Since May 2022, an unprec-
edented outbreak of monkeypox with human-to-human transmission and multicountry
spread has been reported (5), as a result of a new lineage (B.1) which diverged from clade
IIb (6).

Here, we report the coding-complete genome sequences of two confirmed monkeypox
cases detected in South Africa in June 2022. These sequences were generated using a meta-
genomics approach. The first case involved a 30-year-old male residing in the Gauteng
Province of South Africa (sample reference NICD-SVPL223), and the second case involved
a 32-year-old male residing in the Western Cape Province (sample reference NICD-SVPL232).
Both cases reported no travel history prior to becoming ill but did report contact with indi-
viduals that did travel abroad and may have served as possible sources of exposure.

This study was approved by the Human Research Ethics Committee of the University of
the Witwatersrand Johannesburg South Africa (protocol number: M210752). Nucleic acids
were isolated from swabs collected from skin lesions using the QIAamp viral RNA mini kit
(Qiagen, Germany) according to the manufacturer’s instructions. DNA was quantified with the
Qubit double-stranded DNA (dsDNA) high-sensitivity assay (Life Technologies, USA) on the
Qubit 3.0 instrument (Life Technologies) according to the manufacturer’s instructions.
Shotgun metagenomics sequencing was performed using 11 to 14 ng of the extracted DNA.
Multiplexed paired-end libraries were prepared using the Illumina Nextera DNA flex prepara-
tion kit followed by sequencing (2 � 150 bp) on a NextSeq 550 instrument (Illumina, Inc.,
USA). Low-quality and adaptor sequence regions were trimmed using trimGalore v0.6.2
(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Host sequence reads were
removed using Bowtie 2 v2.4.2 (7) against a human reference genome (GCA_000001405). The
remaining reads were mapped to the reference genome MPXP_UK_P2 (NCBI accession num-
ber MT903344) with BWA-MEM v0.7.17 (8) followed by variant calling with LoFreq v2.1.3.1 (9)
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and bcltools v1.10.2-2. The consensus sequence was generated with iVar v1.0 (10), using the
output of the SAMtools v1.15 (11) mpileup-aligned BAM output file with a consensus fre-
quency threshold of 0.6. Gene annotations and open reading frames were predicted using
Genome Annotation Transfer Utility (GATU) (12) with MPXP_UK_P2 as the reference. The
remaining reads were also subject to de novo assembly with SPAdes v3.14.1 (13) and the
Galaxy monkeypox workflow (https://galaxyproject.org/projects/mpxv/) (14) as additional
verification of the assembly result. Default parameters were used unless otherwise stated.

The coding-complete genomes consist of double-stranded DNA with a genome size of
197 kb (Table 1) and a genome coverage of 99.9% when aligned to the reference genome

TABLE 1 Next-generation sequence data mapping statistics of the genomes of MPXV

Sample
Total no.
of reads

No. of reads
passing QCa

No. of reads mapped
to MPXV reference

Sequencing
coverage (×)

Total genome
size (bp)

GC
content (%)

NICD-SVPL223 169,216,239 169,039,316 560,807 391.433 197,213 32.99
NICD-SVPL232 53,526,611 53,164,490 28,670 20.1 197,126 33
a QC, quality control.

FIG 1 Maximum likelihood tree of the hMPXV-1 clade. Both NICD-SVPL223 and SVPL232 grouped in the hMPXV-1 clade, B.1 lineage. Alignment of the MPXV
genomes and the consensus sequences of NICD-SVPL223 and NICD-SVPL232 were generated using MAFFT v7.505 (16) and were curated. The phylogenetics tree
was constructed using IQ-TREE2 v2.0.3 (17) using the best-fit model from ModelFinder and a 1,000 ultrafast bootstrap.
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sequence. The differences between the two reported assembly sequences to the reference
genome are represented by 37 single nucleotide mutations (23 nonsynonymous and 14
synonymous mutations). The commonest nucleotide mutations detected were G. A (23/37),
C . T (12/37), GA.AA APOBEC3-like (14/37), and TC.TT (9/37). Publicly available MPXV ge-
nome sequences with near-complete to complete status were collected from NCBI (15) for
phylogenetic analysis, which indicates that the South African-associated MPXV cases belonged
to the B.1 lineage of the hMPXV-1 and that they are related most closely to other MPXV
genetic sequences reported during the multicountry outbreak of 2022 (Fig. 1).

Data availability. The genome sequences for NICD-SVPL223 and NICD-SVPL232 were
submitted to NCBI GenBank (accession numbers ON918611 and ON927248). Raw sequence
data have also been deposited in NCBI (BioProject accession number PRJNA856120 and SRA
accession number SRR19995508 and SRR19995509).
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