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Abstract: Given the food supply chain disruption from COVID-19 lockdowns around the world, we
examine the predictive power of daily infectious diseases-related uncertainty (EMVID) on commodity
traded futures within the agricultural bracket, sometimes known as the softs, using the heterogeneous
autoregressive realised variance (HAR-RV) model. Considering the short-, medium-, and long-run
recursive out-of-sample estimation approach, we estimate daily realised volatility by using intraday
data within the 5 min interval for 15 agricultural commodity futures. During the COVID-19 episode,
our results indicated that EMVID plays an important role in predicting the future path of agricultural
commodity traded futures in the short, medium, and long run, i.e., h = 1, 5, and 22, respectively.
According to the MSE-F test, these results are statistically significant. These results contain important
implications for investors, portfolio managers, and speculators when faced with investment risk
management and strategic asset allocation during infectious disease-related uncertainty.
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1. Introduction

The disruption of food supply chains from COVID-19 lockdowns around the world
triggered a tremendous interest in understanding the “safe haven” attribute of agricultural
commodity futures (Ji et al. 2020; Sifat et al. 2021; Rubbaniy et al. 2022; Zhang and Wang
2022), raising concerns about the attractiveness of these vehicles in commodity options
trading, global supply chain risk management,1 strategic asset allocations, and regulators’
supervision of inflation risk during infectious disease-related uncertainty.

In 2015, the United Nations set 17Sustainable Development Goals (SDGs) that were
aimed at improving the standard of living in the world by 2030 (SDSN 2021). Among these
SDGs are those of no poverty (SDG1) and zero hunger (SDG2) by 2030. The COVID-19
outbreak imposed the greatest threat to these goals and adversely affected some of the
developing progress in achieving them when governments imposed measures such as
lockdowns2 to contain the spread of the virus (Khan et al. 2020). In addition to the lost
lives, Béné (2020) emphasised that the main effect of COVID-19 was driven by mobility
restrictions by governments, which led to a subsequent loss of income and reduction in
purchasing power, especially for low-income individuals and households. The restricted
movement between countries (see McBryde et al. 2020) triggered demand and supply
shocks (Guerrieri et al. 2022). This threatened food security, the most crucial aspect of
sustainable development and economic growth in different parts of the world (Arndt et al.
2020; Mardones et al. 2020; O’Hara and Toussaint 2021). Empirically, approximately 265
million people were affected by food insecurity in 2020, which is a 135 million increase
from the COVID-19 outbreak (Food Security Information Network 2020).

The interest of our paper in commodity markets is driven by food security and their
more dramatic price fluctuations compared with other financial markets (Hák et al. 2016). If
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we think of agricultural commodities, for instance, the production of goods is not uniform
throughout the year (de Keizer et al. 2017). Crops, for example, grow in a certain season
and are usually harvested a few times a year, and it can often be unpredictable up to a
certain point whether the crops will turn out good or bad. The weather conditions have
a big effect on these outcomes; however, we may have other unpredictable factors such
as pesticides (Tudi et al. 2021). These kinds of fluctuations are a problem for commodity
producers, investors, and portfolio managers. However, the COVID-19 outbreak led to
high volatility as a result of the high unprecedented uncertainties in the financial market,3

especially in the commodity markets. Therefore, it is crucial for investors and portfolio
managers to mitigate or offset such risk by finding “safe haven” commodity futures during
times of infectious diseases.

In times of financial market uncertainties from global crises such as infectious diseases,
especially the recent coronavirus pandemic, typically used portfolio risk management
strategies are likely to default (Umar and Gubareva 2020; Harjoto et al. 2021). This may
result in extreme market volatility because of high trades. More precisely, the disastrous
COVID-19 pandemic prompted a high level of uncertainty in the commodity markets
although the reaction of such markets differed across countries and traded commodity
brackets. For instance, commodity-dependent countries rely heavily on exports and imports
as low-and middle-income countries; as a result, they experienced a strong adverse reaction
in their markets (Tröster 2020). On the other hand, Borgards et al. (2021) showed that
the reaction of agricultural (soft) and metal commodities to the pandemic was minimal
except for special treasures such as gold. In addition, Zhang and Hamori (2021) argued
that the effects of COVID-19 on the financial markets are more significant compared to
other historical shocks such as the 2008 financial crisis, droughts, and floods, although their
short-, medium-, and long-run impact is uncertain.

In this context, the objective of our paper is to investigate, for the first time, the
predictive ability of daily infectious disease-related uncertainty (EMVID) for agricultural
future realised volatilities utilising the heterogeneous autoregressive realised variance
(HAR-RV) model. The main attribute of the HAR-RV model is its ability to use volatilities
from different time horizons to predict the realised volatility on returns. The model
contains the heterogeneous market hypothesis, which states that market participants in
their different categories react differently to information flow in the short, medium, and
long run (Müller et al. 1997). For example, speculators and traders in the market are more
concerned about short-term investments, while investors are more interested in long-term
investments. Conventionally, the time-varying volatility is modelled, and the fit is assessed
using various generalised autoregressive conditional heteroscedastic (GARCH) models,
under which the conditional variance is a deterministic function of model parameters
and past data. Alternatively, researchers have also considered stochastic volatility models,
where the volatility is a latent variable that follows a stochastic process. These models
rely on daily data, and not intraday data as used to obtain RV, which in turn is known to
a be more accurate estimate of the latent process of volatility due to the richness of the
underlying intraday data (McAleer and Medeiros 2008).

There are a number of studies on the nexus between commodity returns and infectious
diseases, especially since the incidence of the COVID-19 pandemic (See Balcilar et al.
2022; Long and Guo 2022; Akyildirim et al. 2022; do Nascimento et al. 2022; Daglis et al.
2020; Umar et al. 2022; Cariappa et al. 2022; Chen et al. 2022; Shruthi and Ramani 2021;
Gutierrez et al. 2022; Ayyildiz 2022). However, the current study makes key contributions
to the existing literature. First, the focus of existing studies was mainly on the COVID-
19 pandemic, while the current study focuses on infectious disease-related uncertainty
(EMVID). Secondly, existing studies used daily data for commodity returns, while we
use the realised volatility of intraday agricultural commodity futures. Thirdly, relative to
existing studies, we analyse the out-of-sample power of EMVID for more (15) agricultural
commodity futures (i.e., BO, CC, C, CT, KC, OJ, SB, SM, S, W, FC, LB, LC, LH, and O)
(Table A1). The data coverage of uncertainty related to infectious diseases not only covers
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the COVID-19 episode, but also includes other infectious diseases such as Ebola, H1N1,
H5N1, MERS, or SARS viruses and the recent monkeypox. We use the newspaper-based
index by Baker et al. (2020) as a proxy for infectious disease-related uncertainty. The index is
derived from the daily equity market volatility (EMV) hosted in the Chicago Board Options
Exchange (CBOE) volatility index. This index is robust for a statistical model aimed at
forecasting the realised volatility of agricultural commodity futures. Most importantly, the
employed intraday data contains information that may result in more accurate and precise
estimates and forecasts across different time horizons. Furthermore, this paper contributes
to the literature on agricultural commodity futures in that it predicts its realised volatility
computed from 5 min intervals utilising the modified heteroscedasticity autoregression
model by Corsi (2009). In particular, the basic HAR-RV model is extended by adding
the daily infectious disease-related uncertainty (EMVID) variable, and then examining its
predictive power on the variables of interest (agricultural commodity futures). Furthermore,
we employ recursive out-of-sample predictability of EMVID for the realised volatility of
15 agricultural commodity futures in the short, medium, and long run. In sum, our study
is holistic and novel in terms of the wider coverage of infectious disease range, the focus
on intraday realised volatility of large number agricultural commodities, the focus on the
out-of-sample predictability of EMVID, and the uniqueness of the modified HAR-RV model
used, allowing us to conduct short-, medium-, and long-run forecast analysis. To the best
of our knowledge, we are not aware of any study that has examined the out-of-sample
predictability of EMVID for the intraday volatility of agricultural commodities using the
HAR-RV model. This analysis has important implications for portfolio managers in their
portfolio diversification possibilities given uncertainties from infectious diseases.

The remaining part of our paper is structured as follows: Section 2 presents the
literature review, while Section 3 describes the data and methodology. Section 4 presents
the empirical results. Section 5 concludes the paper. Figure A1 presents the data plots for
our variables of interest.

2. Literature Review

Several studies have been conducted on the infectious disease and financial markets,
especially since the incidence of COVID-19 pandemic (see, for example, Salisu and Vo 2020;
Salisu et al. 2020; Caggiano et al. 2020; Bouri et al. 2020b; Salisu and Sikiru 2020; Salisu
and Adediran 2020; Salisu et al. 2020; Adediran et al. 2021; Liu et al. 2022). However, these
studies focused mainly on stock returns. Some studies exist on commodity returns and
infectious diseases. For example, using the nonparametric Granger causality-in-quantiles
test, Balcilar et al. (2022), assessed the effect of COVID-19 (measured by the news-based
sentiment index) on 13 major agricultural commodity prices and price volatility. They
employed daily data over 73 months, i.e., from 1 January 2016 to 25 February 2022. Their
findings suggest that in both the lower and upper quantile ranges, there is Granger causality
from the pandemic to the average commodity prices. Furthermore, COVID-19 sentiment
is causal to the price volatility of agricultural commodities in the quantiles above the
first quarter.

Long and Guo (2022) analysed the effects of infectious disease equity market volatility
and other factors on commodity returns. Results based on time-varying Granger causality
test and time-varying parameter vector autoregression with a stochastic volatility model
showed that the time-varying effects are significant with mostly positive responses. They
also found out that, of the five pandemics (Bird Flu in 1998, SARS in 2003, Swine Flu in 2009,
MERS and Ebola in 2014, and COVID-19 in 2019) studied, the recent COVID-19 produced
the greatest impact on commodity returns. Furthermore, they showed that the returns of
five commodity subcategories, namely, textiles, industry, metals, livestock, and food, were
mostly negatively impacted during the sample period, thereby making these commodities
not safe haven assets during pandemic risks.

Akyildirim et al. (2022) used panel data regressions and time-varying Granger causal-
ity tests to examine whether the spillovers between agricultural commodity returns and
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sentiments are influenced by economic and financial uncertainties, including the global
COVID-19 pandemic. They found that the agricultural commodity returns and sentiments
were significantly influenced by COVID-19-induced uncertainty around the first cycle of
the pandemic in 2020. do Nascimento et al. (2022) used the Hurst exponent and multifractal
detrended fluctuations analysis, and they found that, during the COVID-19 pandemic (from
1 January 2020 to 25 September 2020), sugar was the most efficient commodity, while pork
was the least in the Brazilian agricultural commodity market. Daglis et al. (2020) analysed
the impact of COVID-19 pandemic on oats and wheat returns using data from 22 January
2020 to 2 June 2020. Results from the standard VAR model indicated that these markets
were affected by COVID-19. Furthermore, these results indicated the out-of-sample fore-
casting superiority of a model that explicitly incorporates COVID-19 pandemic over the
baseline model.

Using data from 1 January 2020 and 30 April 2021, Umar et al. (2022) examined the
dynamic return and volatility connectedness for three agricultural commodity indices
(softs, grains, and livestock) and the coronavirus media coverage index (MCI). Results
based on time-varying parameter vector autoregression showed that dynamic total return
and volatility connectedness fluctuated over time, reaching a peak during both the first and
the third waves of the COVID-19 pandemic. Cariappa et al. (2022) used time series data
from 1 November 2019 to 10 August 2020 in conjunction with survey data to analyse the
effect of COVID-19-induced lockdowns on agricultural commodity prices and consumer
behaviour in India. Results from an interrupted time series analysis showed a significant
rise in the prices of chickpea (4.8%), mung bean (5.2%), and tomato (78.2%), although these
reverted immediately after the lockdown. Furthermore, the Kruskal–Wallis test results
showed a significant change in consumer behaviour through panic purchases.

Chen et al. (2022) used data from 2019 to 2021 and the Black (1976) model to show
how theCOVID-19 pandemic impacted the volatility of Chinese agricultural commod-
ity options more strongly relative to non-agricultural commodities. Using causality in
impulse response functions and variance test and daily data from January 2020, Shruthi
and Ramani (2021) found that the risk transmission among agricultural commodities was
zero. According to Gutierrez et al. (2022), results from a global vector auto regression
(GVAR) model revealed that the fall in the oil price may have contributed to the stability of
the world grain market in during COVID-19 pandemic and that export restrictions could
significantly increase global prices. An asymmetric analysis by Ayyildiz (2022) using the
nonlinear autoregressive distributed lag model and data from 11 March 2020 to 11 March
2021 showed that the effect of an increase in the COVID-19 global fear index on agricultural
commodity prices was greater than the effect of a decrease.

According to the above, the majority of these studies focused on COVID-19 pan-
demic while the current study uses an infectious disease uncertainty index that is broad
and covers different infectious diseases pandemics. Furthermore, all the studies except
Daglis et al. (2020) conducted in-sample predictability analysis, while we conduct an out-
of-sample analysis. It is, however, noted that, while Daglis et al. (2020) analysed the
out-of-sample predictability of COVID-19 for oats and wheat returns, we analyse the out-
of-sample predictability of infectious disease-related uncertainty for the realised volatility
of 15 agricultural commodity futures. Hence, we innovate by focusing on volatilities in
several agricultural commodities in the futures market.

3. Data and Methodology
3.1. Data

Data on the realised volatility (RV) of commodity futures were sourced directly from
the University of Chicago Booth School of Business Risk Lab under the maintenance of
Professor Dacheng Xiu. This series is publicly available at https://dachxiu.chicagobooth.
edu/#risklab.com (accessed on 27 April 2022). The highest-frequency available trades
were collected and cleaned using the prevalent national best bid and offer (NBBO) that
is available every second. The RV estimation procedure was computed using the quasi-
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maximum likelihood estimation of volatility (QMLE) from moving average models MA(q),
using nonzero returns of transaction prices sampled up to the earliest available frequency
for days with at least 12 observations (see Xiu 2010). In choosing the best MA(q), we used
the Akaike information criterion. We also employed the 5min RV estimates for our analysis.

The index on dairy infectious disease-related uncertainty (EMVID) is publicly accessi-
ble at http://policyuncertainty.com/infectious_EMV.html (accessed on 27 April 2022).This
index was developed by Baker et al. (2020) using a newspaper-based infectious disease
equity market volatility tracker. In this paper, we use the EMVID data from as early as
22 September 2008 to 27 April 2022 for BO, CC, C, CT, KC, OJ, SB, SM, S, and W RVs,
and then from 27 July 2015 to 27 April 2022 for FC, LB, LC, LH, and O RVs (Table A1).
EMVID is based on the following four textual analysis terms: E, economic, economy, fi-
nancial; M, “stock market”, equity, equities, “standard and poor”; V: volatility, volatile,
uncertain, uncertainty, risky; ID: H1N1, H5N1, MERS, SARS, Ebola pandemic, epidemic,
virus, diseases, and coronavirus. In each of the E, M, V, and ID terms, a daily count of
at least one term over 3000 US newspaper articles was computed into the EMVID index.
On the same day, Baker et al. (2020) multiplicatively rescaled the final series to equal the
level of the VIX through the overall EMV index; then, the EMVID index was scaled to
total the EMV articles. Our data range varied from the earliest data available to the latest
date from our estimation. More interestingly, our data period covers the COVID-19 virus
and other economic uncertainties such as the global financial crisis and, more recently, the
Russia–Ukraine crisis. Given daily infectious disease-related uncertainty, the EMVID index
is the only proxy for uncertainty related to various infectious diseases.

3.2. Methodology: Heterogeneous Autoregressive Realised Variance (HAR-RV) Model

To realise the main objective of our paper, we conducted the out-of-sample predictabil-
ity analysis using the Corsi (2009) HAR-RV model. The key feature of our model is its
ability to reproduce the important properties contained in financial data in their respective
time intervals while remaining simple (Wang et al. 2019; Gkillas et al. 2020). These proper-
ties include fat tails, long memory, multi-scaling behaviour, and self-similarity. The basic
HAR-RV model is

RVt+h = β0 + βdRVt + βwRVw.t + βmRVm.t + εt+h, (1)

where realised volatility (RV) h days ahead is represented by the h index (in our paper,
h = 1, 5, and 22); RVw.t represents the average RV from day t − 6 to t − 1, whereas RVm.t
depicts the mean RV from day t − 22 to day t − 6. We then add the EMVID index to the
benchmark HAR-RV model to capture the interest of our paper. β0 is a constant, ceteris
paribus. βd,w and m are our respective coefficients for the short-, medium-, and long-run RV,
while εt+h is our error term. The extended HAR-RV model (θ is the coefficient for daily
infectious disease-related uncertainty) is

RVt+h = β0 + βdRVt + βwRVw.t + βmRVm.t + θEMVIDt + εt+h. (2)

4. Empirical Results

In this paper, we focus on the out-of-sample predictability of the realised volatility (RV)
of commodity traded futures, “the softs”; that is, we access the role that daily infectious
disease-related uncertainty (EMVID) plays in predicting the future path of our variables
of interest. Campbell (2008) and Bouri et al. (2020a) argued that the best test for any
predictive model relies on its out-of-sample performance in terms of any econometric
and predictability. We employ an out-of-sample recursive approach from the earliest
data available to the latest data for our estimation. The data plots on the variables under
investigation in Figure A1 move around the mean with a sharp positive shock that quickly
goes back to the mean in the first quarter of the COVID-19 pandemic, especially for
our independent variable. Our out-of-sample multiple structural breakpoints tests were
determined using the HAR-RV model under the Bai and Perron (2003) test of 1 to M

http://policyuncertainty.com/infectious_EMV.html
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globally determined breaks and UDMax and WDMax statistics. Table 1 presents the
structural breaks.

Table 1. Structural breakpoints.

Date Symbol Names

September 2010 KC Coffee “c” futures

October 2010 C, CT, and S Corn futures, cotton #2 futures, and
soybean futures

November 2010 BO and LC Soybean oil futures and live cattle futures

December 2010 OJ and SB Orange juice futures and sugar #11 futures

March 2011 CC and SM Cocoa futures and soybean meal futures

October 2011 W Wheat futures cbot

August 2016 FC, LB, and O Feeder cattle futures, lumber futures, and
oats futures

October 2016 LH Lean hogs futures

As tested by the multiple structural breakpoints test, Table 1 depicts that most agricul-
tural commodity futures experienced multiple structural breaks in 2010. More precisely,
corn (C), cotton #2 (CT), and soybean (S) futures experienced a structural breakpoint in
October 2010, followed by soybean oil (BO) and live cattle (LC) futures in November 2010.
The orange juice (OJ) and sugar #11 (SB) futures had a structural breakpoint in December
2010. In September 2010, the coffee “C” (KC) experienced a breakpoint. Furthermore,
cocoa (CC) and soybean meal (SM) futures had a structural breakpoint in March 2011,
and wheat futures CBOT (W) experienced a breakpoint in October 2011. Lastly, the feeder
cattle (FC), lumber (LB) and oats (O) futures had a structural breakpoint in August 2016,
and the lean hogs (LH) futures experienced a breakpoint in October 2016. The important
basis of these multiple structural breakpoints involves factors such as food price peak-
ing, reduction in grain stock, low interest rates, and the depreciation of the United States
(US) dollar (Headey 2011). Export restrictions, droughts, demand surges, trade shocks,
and climate change are among other factors contributing to the global food crisis (see
Falkendal et al. 2021; Lieber et al. 2022).

Next, we compute the root-mean-squared forecast errors (RMSFEs) for the bench-
mark and extended h = 1, 5, and 22 HAR-RV models using the above multiple structural
breakpoints models. Since our primary aim is to forecast, lower RMSFEs in our recursive
out-of-sample estimated from the earliest experienced breakpoint in all the variables of
interest would represent a better-performing model. For forecast accuracy, we employ the
McCracken (2007) MSE-F test. The out-of-sample forecast gains (FG) were calculated using
the following formula:

FG =

(
RMSFE0

RMSFE1
− 1

)
× 100, (3)

where RMSFE0 denotes the RMSFEs for the benchmark HAR-RV model, while the RMSFEs
for the extended HAR-RV model are presented by RMSFE1. Positive or negative FGs
indicate the gains or losses in percentage (Equation (3)).

According to our out-of-sample results in Table 2, the highest forecast loss of 0.28%
was for the lumber futures (LB), followed by 0.26% forecast loss for soybean oil futures (BO)
in the short run (h = 1), and then 0.25% in the medium run (h = 5) in the BO. This implies that
taking the information context of the daily infectious disease-related uncertainty (EMVID)
into consideration using the forecast accuracy of the RMSFE metrics within our period
of interest, an econometrician can obtain the highest forecast loss of 0.28% for LB (h = 1),
followed by 0.26% and then 0.25% for BO h = 1 and h = 5, respectively. Our results also
indicate that the coffee “C” (h = 22) and oat futures (O) (h = 5) remained constant, i.e., there
was no forecast gain or loss. However, the lowest forecast loss of 0.01% was in the oat
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futures h = 1 model, followed by 0.02 for wheat futures CBOT (W) in the h = 22 model. This
suggests that, considering the information context of uncertainty associated with infectious
diseases based on the forecast accuracy of the RMSFE metrics, an econometrician would
not be able to obtain any forecast gain or loss for KC (h = 22) and O (h = 5), but could at
least obtain a minimal forecast loss of 0.01% for O (h = 1), followed by 0.02% for W (h = 22).
Considering the whole sample period, these negative FGs also imply that EMVID adds no
value in forecasting the realised volatility of our commodity futures. Therefore, the MSE-F
test cannot be significant it is a one-sided test associated with whether the unrestricted
model does better than the restricted one.

Table 2. Full out-of-sample forecasting gains.

h RMSE0 RMSEE1 FGs RMSE0 RMSEE1 FGs

Panel 1: BO: 11/18/2010 Panel 2: CC: 3/08/2011

1 0.0415 0.0416 −0.2643 0.0497 0.0497 −0.0282
5 0.0107 0.0107 −0.2528 0.0131 0.0131 −0.0229

22 0.0027 0.0027 −0.0741 0.0033 0.0033 −0.0302

Panel 3: C: 10/29/2010 Panel 4: CT: 10/12/2010

1 0.0781 0.0781 −0.0717 0.0632 0.0633 −0.1201
5 0.0202 0.0202 −0.0594 0.0165 0.0165 −0.0666

22 0.0049 0.0049 −0.0616 0.0041 0.0041 −0.0978

Panel 5: FC: 8/18/2016 Panel 6: KC: 9/14/2010

1 0.0503 0.0503 −0.0875 0.0578 0.0578 −0.1124
5 0.0129 0.0129 −0.0310 0.0152 0.0152 −0.0721

22 0.0018 0.0018 −0.1103 0.0038 0.0038 0.0000

Panel 7: LB: 8/19/2016 Panel 8: LC: 11/04/2010

1 0.1757 0.1762 −0.2798 0.0531 0.0532 −0.1937
5 0.0455 0.0455 −0.1383 0.0131 0.0131 −0.0915

22 0.0113 0.0114 −0.1674 0.0035 0.0035 −0.1442

Panel 9: LH: 10/11/2016 Panel 10: OJ: 12/29/2010

1 0.0740 0.0740 −0.0811 0.1239 0.1240 −0.0468
5 0.0184 0.0184 −0.0760 0.0324 0.0324 −0.0309

22 0.0049 0.0049 −0.1233 0.0078 0.0078 −0.0385

Panel 11: O: 8/17/2016 Panel 12: SB: 12/30/2010

1 0.1394 0.1394 −0.0065 0.0570 0.0570 −0.0526
5 0.0366 0.0366 −0.0027 0.0148 0.0148 −0.0271

22 0.0087 0.0087 −0.0345 0.0037 0.0037 −0.0540

Panel 13: SM: 3/21/2011 Panel 11: S: 10/21/2010

1 0.0536 0.0536 −0.0280 0.0461 0.0461 −0.0390
5 0.0139 0.0139 −0.0359 0.0120 0.0120 −0.0334

22 0.0034 0.0034 −0.0291 0.0029 0.0029 −0.0344

Panel 15: W: 10/03/2011

1 0.0683 0.0684 −0.0702
5 0.0183 0.0184 −0.0436

22 0.0046 0.0046 −0.0219

Note: FG =
(

RMSFE0
RMSFE1

− 1
)
× 100 was the formula used to calculate the forecasting gains (FG), where RMSFE0

stands for the root-mean-squared forecast errors (RMSFES) for the benchmark model, and RMSFE1 represents
the RMSFES for the extended HAR-RV model. RVt+h = β0 + βdRVt + βwRVw,t + βmRVm,t + εt+h is the equation
for the benchmark HAR-RV model, and RVt+h = β0 + βdRVt + βwRVw,t + βmRVm,t + θEMVIDt + εt+h is the
equation for the extended HAR-RV model. RV depicts the daily realised volatility for agricultural commodity
futures, whilethe daily infectious disease-related uncertainty is shown by EMVID.

Across all economic agents, the interest in searching for “safe haven” vehicles given
infectious disease-related uncertainty was triggered by the COVID-19 outbreak; therefore,
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it is crucial to assess the impact of EMVID within the COVID-19 period. As the primary
purpose of this paper, we conducted a recursive out-of-sample estimation from January 2020
to the earliest period of our estimation and computed the in-sample period including the
same number of observations. That is, we performed in- and out-of-sample observations.
This period incorporates all phases of COVID-19. Within the COVID-19 episode, our
results in Table 3 depict that the cocoa futures (CC) had the highest FG of 265.12% in the
h = 22 model, followed by 119.38% for oats futures in the h = 22 model, and then 91.40%
for sugar #11 futures (h = 1). This implies that, by incorporating the information context
of infectious disease-related uncertainty such as COVID-19 using the forecast accuracy of
the RMSFE metrics, an econometrician could acquire the highest FG of 265.12% for CC
(h = 22), followed by 119.37% for O (h = 22), and then 91.40 for SB (h = 1). Furthermore,
within the same episode, the lowest forecast gains of 0.70%, 1.49%, and 1.68%were evident
in the SM (h = 5), SB (h = 22), and SM (h = 1), respectively. This means that, considering
COVID-19-related uncertainty and the forecast accuracy RMSFE metrics, an econometrician
could obtain the lowest FGs of 0.70% in SM (h = 5), followed by 1.49% for SB (h = 22),
and then 1.68% for SM (h = 1). According to the MSE-F critical values,4 these results
were statistically significant at a 1% level of significance except for BO in the h = 1 and
h = 5 models. Most importantly, the results of our out-of-sample in the COVID-19 episode
indicate the extent to which trade openness can be affected by a national shutdown given
infectious diseases. Specifically, the supply shock triggered food insecurity; as a result,
there was a high willingness to hedge against such risks.

Table 3. COVID-19 episode out-of-sample forecasting gains.

h RMSE0 RMSEE1 FGs RMSE0 RMSEE1 FGs

Panel 1: BO: 01/02/2019 Panel 2: CC: 01/02/2019

1 0.0593 0.0668 −11.2464 0.0683 0.0441 54.9028 ***
5 0.0151 0.0164 −8.0490 0.0167 0.0113 48.3345 ***
22 0.0039 0.0036 8.8284 *** 0.0107 0.0029 265.1210 ***

Panel 3: C: 01/02/2019 Panel 4: CT: 01/02/2019

1 0.1225 0.0743 64.7963 *** 0.1141 0.0673 69.4641 ***
5 0.0336 0.0195 72.1085 *** 0.0195 0.0172 13.8156 ***
22 0.0058 0.0049 18.4884 *** 0.0046 0.0044 4.2970 ***

Panel 5: FC: 01/02/2019 Panel 6: KC: 01/02/2019

1 0.0619 0.0523 18.4753 *** 0.0787 0.0703 11.9315 ***
5 0.0203 0.0169 19.9965 *** 0.0245 0.0182 34.4523 ***
22 0.0026 0.0023 11.3804 *** 0.0050 0.0047 6.8548 ***

Panel 7: LB: 01/02/2019 Panel 8: LC: 01/02/2019

1 0.2823 0.2492 13.3014 *** 0.1038 0.0737 40.7548 ***
5 0.0861 0.0641 34.3329 *** 0.0239 0.0179 33.5645 ***
22 0.0165 0.0161 2.4484 *** 0.0050 0.0048 2.9724 ***

Panel 9: LH: 01/02/2019 Panel 10: OJ: 01/02/2019

1 0.0977 0.0871 12.2664 *** 0.1552 0.1310 18.5122 ***
5 0.0302 0.0211 43.3042 *** 0.0408 0.0335 21.8513 ***
22 0.0063 0.0059 6.7586 *** 0.0124 0.0079 56.6002 ***

Panel 11: O:01/02/2019 Panel 12: SB:01/02/2019

1 0.2343 0.1449 61.6987 *** 0.0990 0.0517 91.4020 ***
5 0.0378 0.0370 2.2160 *** 0.0199 0.0131 52.1473 ***
22 0.0197 0.0090 119.3689 *** 0.0034 0.0034 1.4784 ***
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Table 3. Cont.

h RMSE0 RMSEE1 FGs RMSE0 RMSEE1 FGs

Panel 13: SM: 01/02/2019 Panel 14: S: 01/02/2019

1 0.0517 0.0508 1.6788 *** 0.0623 0.0458 36.0493 ***
5 0.0133 0.0133 0.7018 *** 0.0152 0.0118 27.9527 ***
22 0.0060 0.0035 72.6407 *** 0.0030 0.0030 0.0000 ***

Panel 15: W: 01/02/2019

1 0.1612 0.0935 72.4723 ***
5 0.0429 0.0257 66.8597 ***
22 0.0084 0.0063 32.7129 ***

Note: FG =
(

RMSFE0
RMSFE1

− 1
)
× 100 was the formula used to calculate the forecasting gains (FG), where RMSFE0

stands for the root-mean-squared forecast errors (RMSFES) for the benchmark model, and RMSFE1 represents
the RMSFES for the extended HAR-RV model. RVt+h = β0 + βdRVt + βwRVw,t + βmRVm,t + εt+h is the equation
for the benchmark HAR-RV model, and RVt+h = β0 + βdRVt + βwRVw,t + βmRVm,t + θEMVIDt + εt+h is the
equation for the extended HAR-RV model. RV depicts the daily realised volatility for agricultural commodity
futures, while the daily infectious disease-related uncertainty is shown by EMVID. The MSE-F test denotes the
level of significance at the 1% level, as represented by ***.

5. Conclusions

Given food insecurity problems as a result of the COVID-19 lockdowns around the
world, we investigated the forecasting ability of daily infectious disease-related uncertainty
(EMVID) with respect to the realised volatility of agricultural commodity traded futures.
We employed the heterogeneous autoregressive realised variance (HAR-RV) model by
Corsi (2009) on 15 commodity traded futures. Considering our recursive out-of-sample
estimation approach in the short, medium, and long run within the COVID-19 episode, it
is evident that cocoa futures (CC) had the highest FG of 265.12% in the long run (h = 22),
followed by oat futures (O) with 119.38% FG in h = 22, and then 91.40% FG for sugar #11
(SB) in the short run (h = 1). This implies that, considering the information context of the
forecasting accuracy for RMSFE metrics within the COVID-19 period, an econometrician
could obtain the highest FG of 265.12% in CC h = 22, followed by 119.38% for O h = 22,
and then 91.40% for SB h = 1. An econometrician could also obtain the lowest FG of 0.70%,
followed by 1.49% and 1.68% in SM h = 5, SB h = 22, and SM h = 1, respectively.

Our results within the COVID-19 episode suggest that EMVID plays an important
role in predicting the future path of agricultural commodity futures. These findings
have important implications for portfolio managers and investors in their search for safe
investment or diversification options in the financial market. These results are robust as
suggested by McCracken’s (2007) MSE-F test. The COVID-19 pandemic is the worst crisis
the world had seen; therefore, there are limited related studies and measures or indices
for COVID-19. Furthermore, the pandemic already aggravated existing food insecurity
problems and other global challenges; hence, we cannot blame the volatility of this asset
class under review solely on the pandemic. In the future, we expect to extend our study to
other brackets of agricultural commodities such as those in the metal bracket.
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Appendix A

Table A1. Selected variables, acronyms, and sample coverage.

Symbol Future Index Sample Period

1. BO Soybean oil futures 22 September 2008–27 April 2022

2. CC Cocoa futures 22 September 2008–27 April 2022

3. C Corn futures 22 September 2008–27 April 2022

4. CT Cotton no.2 futures 22 September 2008–27 April 2022

5. FC Feeder cattle futures 27 September 2015–27 April 2022

6. KC Coffee c futures 22 September 2008–27 April 2022

7. LB Lumber futures 27 July 2015–27 April 2022

8. LC Live cattle futures 27 July 2015–27 April 2022

9. LH Lean hogs futures 27 July 2015–27 April 2022

10. OJ Orange juice futures 22 September 2008–27 April 2022

11. O Oat futures 27 July 2015–27 April 2022

12. SB Sugar #11 futures 22 September 2008–27 April 2022

13. SM Soybean meal futures 22 September 2008–27 April 2022

14. S Soybean futures 22 September 2008–27 April 2022

15. W Wheat futures CBOT 22 September 2008–27 April 2022
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Figure A1. Data plots. Notes: The realised volatility of the agricultural commodity futures is represented by RV. The newspaper-based uncertainty index related to
infectious disease is represented by EMVID.
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Notes
1 The profitability of businesses heavily depends on risk management strategies to hedge futures cash flow uncertainty.
2 Lockdowns reduced the movement of goods and services and even brought some to zero, i.e., movements of imports and exports.
3 Liao et al. (2018) noted the following three channels through which the fluctuation in the financial market can impact com-

modity prices: macro-economy reflection channel, financial market information transmission channel, and market sentiment
contagion channel.

4 MSE-F critical values: 3.584, 1.548, and 0.751.
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