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Abstract. G. Qian proposed a conjecture which states that if an element of a finite
group G has order a, then there exists an irreducible character of codegree b of G such
that a divides b. He showed that the conjecture holds for solvable groups. In this
note, we settle the conjecture for almost simple groups.

1. Introduction

Let G be a finite group. For an irreducible character χ of G, define its codegree by

cod(χ) =
|G : kerχ|
χ(1)

.

Many authors have studied the set of character codegrees of a finite group and how it
influences the structure of the group. One of the most interesting investigations has
been the connection between character codegrees and element orders of a finite group.
Let g be an element of G and denote by ord(g), the order of g. It was shown by G.
Qian in [16, Theorem 1.1] that if a solvable group G has an element g, then there exists
χ ∈ Irr(G) such that p divides cod(χ) for every prime divisor p of ord(g). This was
generalized by I. M. Isaacs [14, Theorem] to all finite groups and the proof does not
rely on the classification of finite simple groups. In [17], Qian proposed the following
conjecture which, if true, will be stronger than the result of Isaacs:

Conjecture 1.1. [17, Conjecture A] For every element g of a finite group G, there is
some χ ∈ Irr(G) such that ord(g) divides cod(χ).

It was shown in [17] that the conjecture holds for finite solvable groups. Giannelli
[11] has recently shown that the conjecture holds for alternating and symmetric groups.
In this note, we prove the following:

Theorem A. Conjecture 1.1 holds for finite almost simple groups.

Our proof relies on the classification of finite simple groups. For most of the cases of
groups of Lie type, the appropriate characters are unipotent characters. The classifica-
tion of orders of elements of almost simple groups is incomplete (see [7] for some results
in this direction). The proof of our main result does not need this classification.

2. Preliminary results

In this section we list a couple of useful observations. We also show that the conjecture
holds for an almost simple group whose socle is a sporadic simple group or an alternating
group.
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Lemma 2.1. Let N be a normal subgroup of a finite group G and let x ∈ G. Then
ord(x) = rs where s = ord(g) for some g ∈ N and r | |G/N |.

Proof. If x ∈ N , then the result follows easily. If x ∈ G \ N , then we have that
(xN)r ∈ N for some integer r and hence the result follows. �

Lemma 2.2. [16, Proposition 2.3] Let p be a prime. For every p-element g of a finite
group G, there is some χ ∈ Irr(G) such that ord(g) divides cod(χ).

Note that all non-trivial irreducible characters χ of a simple group G are faithful and

hence cod(χ) =
|G|
χ(1)

.

Theorem 2.3. Conjecture 1.1 holds for almost simple groups whose socle is either a
sporadic simple group, 2F4(2)′ or an alternating group.

Proof. Checking the character tables in the Atlas [9], we have that the result holds for
sporadic simple groups, 2F4(2)′ and their respective almost simple groups. Suppose
that the socle is an alternating group. Then the result follows from [11, Corollary B]
with the exception of A6, which we check its respective character tables in the Atlas [9].
This concludes our proof. �

Lemma 2.4. Let p be a prime. Let G be a finite simple group of Lie type of charac-
teristic p and g ∈ G. If g is p-regular, then the Steinberg character χ of G is such that
ord(g) | cod(χ).

Proof. This follows easily. �

Hence for finite groups of Lie type of characteristic p, it is sufficient to consider
p-singular elements which are not p-elements by Lemmas 2.2 and 2.4.

3. Classical groups

Let (n,m) = gcd(n,m) for some positive integers m,n. Let [n,m] = lcm(n,m),
ωp(G), the set of orders of p-singular elements of G. By ε ∈ {±1}, we also mean
ε ∈ {+,−} where appropriate. Table 3.1 below has the appropriate character degrees
of some classical groups of Lie type that we shall use in our arguments. These character
degrees can be found in [8, Section 13.8].

3.1. Linear and unitary groups. The spectra of PSLn(q) and PSUn(q) are well
known and we list the orders of p-singular elements below:

Lemma 3.1. Let n > 2 and let q be a power of a prime p, ε ∈ {±1}. Let G ∼= PSLεn(q)
and d = (n, q − 1). Then ωp(G) consists of all divisors of the following numbers:

(i) pt(qn1 − εn1)/d for t, n1 > 0 such that pt−1 + 1 + n1 = n,
(ii) pt[qn1−εn1 , . . . , qns−εns ], where s > 2, t, ni > 0 such that pt−1+1+n1+· · ·+ns =

n,
(iii) pt if pt−1 + 1 = n for t > 0.

Proof. This follows from [2, Corollary 3]. �
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Table 3.1 Character degrees of classical groups of Lie type
G Labels Degrees

An(q), n > 3 (1, n) q(qn−1)
q−1

2An(q2), n > 3 (1, n) q(qn−(−1)n)
q+1

Bn(q), Cn(q), n > 2

(
1 n
0

)
q(qn+1)(qn−1−1)

2(q−1)(
0 n
1

)
q(qn−1)(qn−1+1)

2(q−1)

Dn(q), n > 4

(
n− 1

1

)
q(qn−2+1)(qn−1)

q2−1(
1 2 n
0 1 2

)
q6(q2(n−2)−1)(q2(n−1)−1)

(q2−1)(q4−1)

2Dn(q2), n > 4

(
1 n− 1

−

)
q(qn−2−1)(qn+1)

q2−1(
0 1 2 n

1 2

)
q6(q2(n−2)−1)(q2(n−1)−1)

(q2−1)(q4−1)

Theorem 3.2. Conjecture 1.1 holds when G ∼= PSLεn(q).

Proof. Let G ∼= PSL2(q) and let g ∈ G be a p-singular element. It means that ord(g) =
p. Using Lemma 2.2, our result follows.

Let G ∼= PSL3(q) and let g ∈ G be a p-singular element. Then either ord(g) = p
or ord(g) = p(q − 1) (and ord(g) = p2 if p = 2). In all these cases the appropriate
character of G is the unipotent character of degree q(q2 + q + 1).

Let G ∼= PSU3(q) and let g ∈ G be a p-singular element. Then either ord(g) = p
or ord(g) = p(q + 1) (and ord(g) = p2 if p = 2). In all these cases the appropriate
character of G is the unipotent character of degree q(q2 − q + 1).

Suppose that G ∼= PSLεn(q), n > 4 and let g ∈ G be a p-singular element. The largest
possible p-power order of ord(g) is in the case Lemma 3.1(iii) when pt−1 = n− 1. Since

the p-part of |G| is q
(n)(n−1)

2 , we may consider q
n(n−1)

2 /pt. We may assume that p = q.

Since t ≤ pt−1 = n − 1, we have that n(n−1)
2
− n + 1 = (n2 − 3n + 2)/2 ≥ 3 for n ≥ 4.

This means that our character degree may have a p-part up to q3.
Let G ∼= PSL+

n (q). Note that the largest possible degree of its p′-part polynomial of
ord(g) is when t = 1 in Lemma 3.1(i), that is when, ord(g) = p(qn−2−1). In particular,

no element of G has order divisible by qn−1−1
q−1 . Hence the unipotent character of degree

q(qn−1−1)
q−1 is such that ord(g)|cod(χ) as required.

Suppose that G ∼= PSL−n (q). The largest possible degree of its p′-part polynomial of
ord(g) is when ord(g) = p(qn−2 − (−1)n−2). Then no element of G has order divisible

by qn−1−(−1)n−1

q−1 . Hence the unipotent character of degree q(qn−1−(−1)n−1)
q−1 is such that

ord(g)|cod(χ). �

3.2. Symplectic and Orthogonal groups. The next set of results lists the orders of
p-singular elements of symplectic and orthogonal groups.



4 SESUAI Y. MADANHA

Lemma 3.3. Let G ∼= PSp2n(q), where n > 2 and let q be a power of an odd prime p.
Then ωp(G) consists of all divisors of the following numbers:

(i) pt[qn1 + ε1, q
n2 + ε2, . . . , q

ns + εs], where s > 1, εj ∈ {±1} and t, ni > 0 with
pt−1 + 1 + 2n1 + 2n2 + · · ·+ 2ns = 2n,

(ii) pt if pt−1 + 1 = 2n for some t > 1.

Proof. This follows from [3, Corollary 2]. �

Lemma 3.4. Let q be a power of 2 and let G ∼= Sp2n(q) ∼= Ω2n+1(q), where n > 2.
Then ω2(G) consists of all divisors of the following numbers:

(i) 2[qn1 + ε1, q
n2 + ε2, . . . , q

ns + εs] for all s > 1, εj ∈ {±1} and ni > 0 with
n1 + n2 + · · ·+ ns = n− 1,

(ii) 2t[qn1 + ε1, q
n2 + ε2, . . . , q

ns + εs], where s > 1, t > 2, εj ∈ {±1} and ni > 0 with
2t−2 + 1 + n1 + n2 + · · ·+ ns = n,

(iii) 2t if 2t−2 + 1 = n for some t > 1.

Proof. This follows from [3, Corollary 3]. �

Lemma 3.5. Let q be a power of an odd prime p and let G ∼= Ω2n+1(q), where n > 3.
Then ωp(G) consists of all divisors of the following numbers:

(i) pt(qn1 ± 1)/2 for all t and n1 with pt−1 + 1 + 2n1 = 2n,
(ii) pt[qn1 + ε1, q

n2 + ε2, . . . , q
ns + εs] for all s > 2, εi ∈ {±1} and ni > 0 with

pt−1 + 1 + 2n1 + 2n2 + · · ·+ 2ns = 2n,
(iii) pt if n = pt−1 + 1 for some t > 1.

Proof. This follows from [3, Corollary 6]. �

Theorem 3.6. Let L = {PSp2n(q), n > 2} ∪ {Ω2n+1(q), n > 3}. Then Conjecture 1.1
holds when G ∈ L.

Proof. Suppose that G ∼= PSp4(q) and let g be a p-singular element. Then ord(g) is
given in Lemmas 3.4 and 3.3. In particular, ord(g) is a divisor of p(q± 1) (and p2 when
p = 2 or p = 3). By considering |G|, we have that the unipotent character of degree
q(q2+1)

2
will give us our result.

Suppose that G ∼= PSp2n(q), n > 3 and let g be a p-singular element. Let us consider
the largest possible p-power order of g. Then ord(g) is given in Lemmas 3.4 and 3.3.
Hence this happens in the cases in Lemma 3.3(ii) and Lemma 3.4(iii) when pt−1 = 2n−1

for odd p and 2t−2 = n − 1. Let us consider qn
2
/pt and qn

2
/2t. We may assume that

q = p. Since t < pt−1 = 2n−1 and t < 2t < n−1 we have that n2− t > n2−2n+ 1 > 4
and n2− t > n2− n+ 1 > 7. Hence the p-part of our character degree maybe up to q4.

We now consider the p′-part of ord(g). The highest possible degree of the p′-part
polynomial of ord(g) is when t = 1 and ns = n1 for odd p, and ns = n1 for p = 2,
that is, qn−1 ± 1. In particular, no value of ord(g) is divisible by qn − 1 or qn +

1. Hence appropriate characters are unipotent characters of degree q(qn−1)(qn−1+1)
2(q−1) and

q(qn+1)(qn−1−1)
2(q−1) , respectively.

Suppose that G ∼= Ω2n+1(q), where n > 3 and q is a power of an odd prime. Let g be
a p-singular element. Then ord(g) is given in Lemma 3.5. The largest possible p-part of

ord(g) is when ns = n1 in case (i), that is, when pt−1 = 2n− 3. Let us consider qn
2
/pt

and assume that q = p. Since t 6 pt−1 = 2n − 3, n2 − t > n2 − 2n + 3 > 3 for n > 3.
Hence the p-part of our character degree maybe up to q6.
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Let us consider the p′-part of ord(g). The highest possible degree of the p′-part
polynomial of ord(g) is when t = 1, that is, when (qn−1 ± 1)/2. Arguing as above, we
have our result. �

Lemma 3.7. Let q be a power of 2 and let G ∼= Ωε
2n(q), where n > 4. Then ω2(G)

consists of all divisors of the following numbers:

(i) 2t[qn1 +1, qn2 +1, . . . , qnr +1, qnr+1−1, qnr+2−1, . . . , qns−1] for all s > 1, r > 1
and ni > 0 with 2t−2 + 2 + n1 + n2 + · · ·+ ns = n,

(ii) 2[qn1 + 1, qn2 + 1, . . . , qnr + 1, qnr+1 − 1, qnr+2 − 1, . . . , qns − 1] for all s > 1, r > 1
and ni > 0 with 2 + n1 + n2 + · · ·+ ns = n,

(iii) 2[q± 1, qn1 + 1, qn2 + 1, . . . , qnr + 1, qnr+1 − 1, qnr+2 − 1, . . . , qns − 1] for all s > 1
and ni > 0 with 2 + n1 + n2 + · · · + ns = n and r is even if ε = + and odd if
ε = −,

(iv) 4[q− 1, qn1 + 1, qn2 + 1, . . . , qnr + 1, qnr+1 + 1, qnr+2 + 1, . . . , qns + 1] for all s > 1
and ni > 0 with 3 + n1 + n2 + · · · + ns = n and r is even if ε = + and odd if
ε = −,

(v) 4[q+ 1, qn1 + 1, qn2 + 1, . . . , qnr + 1, qnr+1 − 1, qnr+2 − 1, . . . , qns − 1] for all s > 1
and ni > 0 with 3 + n1 + n2 + · · · + ns = n and r is even if ε = + and odd if
ε = −,

(vi) 2t if n = 2t−2 + 2 for some t > 2.

Proof. This follows from [3, Corollary 4]. �

Lemma 3.8. Let q be a power of an odd prime p and let G ∼= PΩε
2n(q), where n > 4,

ε ∈ {±1} and (4, qn − ε) = 4. For t > 1, let n(t) = (tn−1 + 3)/2. Then ωp(G) consists
of all divisors of the following numbers:

(i) pt(qn−n(t) ± 1)/2, for t with n(t) < t,
(ii) pt[qn1 +1, qn2 +1, . . . , qnr +1, qnr+1−1, qnr+2−1, . . . , qns−1] for all s > 2, r > 1

and ni > 0 with n(t) + n1 + n2 + · · ·+ ns = n
(iii) p[q± 1, qn1 + 1, qn2 + 1, . . . , qnr + 1, qnr+1 − 1, qnr+2 − 1, . . . , qns − 1] for all s > 2

and ni > 0 with 2 + n1 + n2 + · · · + ns = n and r is even if ε = + and odd if
ε = −,

(iv) p[q ± 1, (qn−2 − ε)/2],
(v) pt if n = n(t) for some t.

Proof. This follows from [3, Corollary 9]. �

Theorem 3.9. Conjecture 1.1 holds when G ∼= PΩε
2n(q), n > 4.

Proof. Let G ∼= PΩε
2n(q), n > 4 and g ∈ G be a p-singular element. Then the possible

values of ord(g) are listed in Lemmas 3.7 and 3.8. If p = 2, then the highest 2-power
order is in case (vi) of Lemma 3.7, that is, when 2t−2 = n− 2 and if p is odd, then the
highest p-power order is in case (v) of Lemma 3.8, that is, when tn−1 = 2n− 3. Let us
consider qn(n−1)/2t and qn(n−1)/pt and assume that p = q. Since t 6 2t−1 6 n − 2 and
t 6 pn−1 = 2n − 3, we have that n(n − 1) − t > 10 and n(n − 1) − t > 7. Hence the
p-part of our character degree maybe up to q7.

We now consider the p′-part of ord(g). The highest possible degree of the p′-part
polynomial of ord(g) is when ns = n1 in case (ii) of Lemma 3.7 for p = 2, that is,
qn−2 ± 1 and in case (iv) of Lemma 3.8 for odd p, that is, [q ± 1, (qn−2 ± 1)]. In
particular, no ord(g) is divisible by qn − 1, q2(n−1) − 1 or qn + 1.
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If G ∼= PΩ+
2n(q), then the appropriate character is either the unipotent character of

degree q(qn−2+1)(qn−1)
q2−1 or that of degree q6(q2(n−2)−1)(q2(n−1)−1)

(q2−1)(q4−1) .

If G ∼= PΩ−2n(q), then the appropriate character is either the unipotent character of

degree q(qn−2−1)(qn+1)
q2−1 or that of degree q6(q2(n−2)−1)(q2(n−1)−1)

(q2−1)(q4−1) . �

4. Exceptional groups

4.1. Exceptional groups of small Lie rank. We shall consider exceptional groups
of small Lie rank. Table 4.2 has the appropriate character degrees of some exceptional
groups of Lie type that we shall use in our arguments. These character degrees can be
found in [8, Section 13.9].

We shall collect information on the orders of some of the groups. Let ω(G) denote
the set of orders of elements of G and let µ(G) denote the subset of ω(G) of maximal
elements of ω(G) under divisibility.

Lemma 4.1. [19, Lemma 1.4] Let G ∼= G2(q), q > 3 and let q be a power of a prime p.
Then

(i) µ(G) ⊆ {8, 12, 2(q ± 1), q2 − 1, q2 ± q + 1} ⊆ ω(G) for p = 2;
(ii) µ(G) = {p2, p(q ± 1), q2 − 1, q2 ± q + 1} for p = 3, 5;
(iii) µ(G) = {p(q ± 1), q2 − 1, q2 ± q + 1} for p > 5.

Lemma 4.2. Let G ∼=3D4(q), with q a power of a prime p. Then ωp(G) consists of all
the appropriate divisors of the following numbers:

(i) p(q3 ± 1);
(ii) 4(q2 ± q + 1) and 8 if p = 2;

(iii) p2 if p ∈ {3, 5}.

Proof. This follows from [13, Theorem 3.2]. �

Let C = {2B2(q
2), q2 = 22f+1 > 2} ∪ {2G2(q

2), q2 = 32f+1 > 3} ∪ {2F4(q
2), q2 >

3} ∪ {G2(q), q > 3} ∪ {3D4(q), q > 2}.

Theorem 4.3. Conjecture 1.1 holds when G ∈ C.

Proof. Let G ∼= G2(q) and let g ∈ G be a p-singular element. Since |G|p = q6 and the
largest possible p-power order of ord(g) is p3 by Lemma 4.1, we have that the p-part
of an appropriate character degree is up to q3. Considering the p′-part of ord(g) we
also have that maximal orders are p(q ± 1). Hence the unipotent character of degree
1
3
q(q2 + q + 1)(q2 − q + 1) is appropriate.
Let G ∼=3D4(q) and let g ∈ G be a p-singular element. Considering the possible values

of ord(g) in Lemma 4.2, we have that the unipotent character of degree q(q4 − q2 + 1)
will give us the desired result.

Let G ∼=2 B2(q
2), where q2 = 22m+1 and let g ∈ G be a 2-singular element. The

orders of elements of G are well known (see for example [18]) and in particular the only
2-singular elements of G are of orders 2 and 4. Hence the result follows from Lemma
2.2.

Let G ∼=2G2(q
2), where q2 = 32m+1 and let g ∈ G be a 3-singular element. From [1,

XI, Theorems 13.2 and 13.4], the only possible values of ord(g) are 3, 6 and 9. Hence
the unipotent character of degree 1

2
√
3
q(q− 1)(q+ 1)(q2−

√
3q+ 1) will be appropriate.

Let G ∼=2F4(q
2), where q2 = 22m+1 and let g ∈ G be a 2-singular element. The orders

of elements of G are listed in [10, Lemma 3]. In particular, the only 2-singular elements
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are of orders 2, 4, 8, 16, all divisors of the following: 2(q2 +1), 4(q2−1), 4(q2 +
√

2q+1)
and 4(q2 −

√
2q + 1). Hence the character of degree q2Φ12Φ24 gives our result. This

concludes our proof. �

4.2. Exceptional groups of large Lie rank. We finally consider exceptional groups
of large Lie rank.

Let D = {F4(q),E6(q),
2 E6(q),E7(q),E8(q)}.

Theorem 4.4. Let G be a finite simple group of exceptional Lie type. Then Conjecture
1.1 holds.

Proof. Let G ∼= F4(q) and let g ∈ G be p-singular element. The orders of G are found
in [13, Theorem 3.1]. In particular, the possible values of ord(g) are not divisible by Φ2

4,
Φ8 or by Φ12. The unipotent character of degree 1

2
qΦ4Φ8Φ12 will be appropriate since

|G| is divisible by Φ2
4Φ8Φ12.

Let G ∼= E6(q) or 2E6(q) and let g ∈ G be a p-singular element. The orders of
G are described in [4, Theorem 1]. In particular, no p-singular elements have order
divisible by q4 + 1 or q6 + εq3 + 1. Hence for G ∼= E6(q), the unipotent character of
degree q(q4 + 1)(q6 + q3 + 1) is appropriate whilst for G ∼=2E6(q), we have the unipotent
character of degree q(q4 + 1)(q6 − q3 + 1).

Let G ∼= E7(q) and let g ∈ G be a p-singular element. The orders of G are described
in [5, Theorem 2]. In particular, no p-singular elements have order divisible by Φ7, Φ9,
Φ14 or Φ18. Hence the unipotent character of degree q3Φ7Φ9Φ14Φ18 will give us our
desired result.

Let G ∼= E8(q) and let g ∈ G be a p-singular element. The orders of elements of G are
described in [6, Theorem 1]. In particular, no p-singular elements have order divisible
by Φ12, Φ20 or Φ24. Moreover, no p-singular elements are divisible by Φ2

4, Φ2
8 or Φ2

12 but
|G| is divisible by Φ3

4Φ
2
8Φ

2
12. Hence the unipotent character of degree qΦ2

4Φ8Φ12Φ20Φ24

is what we need. �

Table 4.2 Character degrees of exceptional groups of Lie type
G Labels Degrees
G2(q), q > 2 φ′1,3

1
3
qΦ3Φ6

F4(q) φ′′2,4
1
2
qΦ4Φ8Φ12

E6(q) φ6,1 qΦ8Φ9

E7(q) φ21,3 q3Φ7Φ9Φ14Φ18

E8(q) φ8,1 qΦ2
4Φ8Φ12Φ20Φ24

3D4(q
3) φ′1,3 qΦ12

2E6(q
2) φ′2,4 qΦ8Φ18

2F4(q
2), q2 > 2 ε′ q2Φ12Φ24

2G2(q
2), q2 6= 3 cusp 1

2
√
3
qΦ1Φ2(q

2 −
√

3q + 1)
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5. Almost simple groups

We start this section by mentioning a result proved in previous sections. Note that
the appropriate characters used were unipotent characters. Hence we have the following
result using [15, Theorems 2.4 and 2.5]:

Theorem 5.1. Let S be a non-abelian simple group of Lie type which is not PSL2(q).
Then there exists a set of three character degrees Γ such that for every element x ∈ G:

(i) there exists χ ∈ Irr(S) with χ(1) ∈ Γ such that ord(x) | cod(χ);
(ii) χ is extendible to Aut(S).

Let G be an almost simple group with socle S. Consider S ∼= PSL2(q), where
q = pf > 4 for a prime p. The character degrees of G are in the following result. The
outer automorphism group of S is of order gcd(2, q − 1) · f and is generated by a field
automorphism ϕ of order f and a diagonal automorphism δ of order gcd(2, q − 1).

Theorem 5.2. [21, Theorem A] Let S ∼= PSL2(q), where q = pf > 4 for a prime p,
A = Aut(S) and let S 6 G 6 A. Set H = PGL2(q) if δ ∈ G and H = S if δ /∈ G, and
let |G:H| = 2am = d, m odd. If p is odd, let ε = (−1)(q−1)/2. Then

cd(G) = {1, q, (q + ε)/2} ∪ {(q − 1)2ai : i | m} ∪ {(q + 1)j : j | d},
with the following exceptions:

(i) If p is odd with G 
 S〈ϕ〉 or if p = 2, then (q + ε)/2 is not a degree of G.
(ii) If f is odd, p = 3, and G = S〈ϕ〉, then i 6= 1.

(iii) If f is odd, p = 3, and G = A, then j 6= 1.
(iv) If f is odd, p = 2, 3 or 5, and G = S〈ϕ〉, then j 6= 1.
(v) If f ≡ 2 mod 4, p = 2 or 3, and G = S〈ϕ〉 or G = S〈δϕ〉, then j 6= 2.

Lemma 5.3. Let S ∼= PSL2(q) with q a power of p > 3. Then there exists χ ∈ Irr(S)
such that (χ(1), p) = 1 and χ is extendible to Aut(S).

Proof. This follows from [12, Lemma 4.4]. �

Theorem 5.4. Conjecture 1.1 holds for finite almost simple groups.

Proof. Let G be an almost simple group with socle S. Using Theorem 2.3, we may
assume that S is a non-abelian simple group of Lie type of characteristic p. Let x ∈ G.
Using Lemma 2.1, ord(x) divides |G : S|s where s = ord(g) for some g ∈ S. If x is
p-regular, then the Steinberg character of S gives us our result. Hence going forward,
we may assume that x is p-singular.

Let S be a non-abelian simple group of Lie type which is not PSL2(q). By Theorem
5.1, there exists θ ∈ Irr(S) such that ord(g) | cod(θ) and χS = θ for some χ ∈ Irr(G).
Hence ord(x) divides |G : S|s which divides |G : S|cod(θ) = cod(χ).

Let S ∼= PSL2(q), where q = pf and p > 3. Note that the only p-singular elements
of S are of order p. Then by Lemma 5.3, S has an irreducible character χ extendible
to Aut(S) with (χ(1), p) = 1. Hence this character degree shows that the conjecture
holds in this case.

For the remaining cases we may assume that G is as in Theorem 5.2. It is sufficient
to consider the exceptions in Theorem 5.2.

Let S ∼= PSL2(q), where q = pf and p = 3. We may assume that x is p-singular. If
G = S〈ϕ〉, then (q + ε)/2 is an appropriate character degree. If G = S〈δϕ〉, then G
has the character degree q + 1 which is appropriate. We are left with (i) and (iii). Let
us consider (iii). Then f is odd and so 2a = 1, which means that q − 1 is a character
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degree of G and the result follows. Hence we may assume that G 
 S〈ϕ〉, G 6= A and
G 6= S〈δϕ〉. In this case q + 1 is a character degree of G and it gives us the result.

Let S ∼= PSL2(q), where q = pf and p = 2. We may assume that x is p-singular.
Then ord(x) divides q|G/S|. If f is even, then G has an irreducible character of degree
q+1 and the result follows. If f is odd, then |G:H| = m, m odd and so the appropriate
character degree is q − 1. This concludes our proof. �

Using the argument in the proof of Theorem 5.4, the following result can be shown:

Corollary 5.5. Let N be a minimal normal subgroup of a finite group G. If N is a
non-abelian simple group of Lie type which is not PSL2(q), then Conjecture 1.1 holds.
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