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1 Introduction

Farhi and Gabaix (2016), based on significant earlier works by Rietz (1988) and Barro (2006),

developed a new model of exchange rates, which highlights that the possibility of rare but extreme

disasters is a key determinant of exchange-rate fluctuations (returns and volatility). In their model,

a world disaster might occur at any point in time, and with disasters corresponding to bad times,

such events cause an exchange-rate depreciation, where the extent depends on the relative riskiness

of the two currencies being involved. Moreover, in their model, the probability of a world disaster and

each country’s exposure to such an event varies over time, resulting in large fluctuations (volatility)

in exchange rates. Given these theoretical predictions, Gupta et al., (2019) empirically analyzed the

in-sample predictability of international political crises acting as proxies for rare disaster risks1 for

the United States (U.S.) dollar-based exchange rates for Brazil, Russia, India, China, South Africa,

and the United Kingdom (UK). Based on a non-parametric causality-in-quantiles test, and historical

monthly data covering the period from 1918 to 2013, they showed that indeed rare disaster risks

affect both returns and volatility over the majority of respective conditional distributions, with the

predictability of volatility being relatively stronger than that of returns.2

Against this backdrop of in-sample evidence involving rare disaster risks and exchange-rate

volatility, our objective is to conduct an elaborate out-of-sample forecasting analysis of the role

of such risks for the predictability of exchange-rate volatility, since in-sample evidence does not

necessarily translate into out-of-sample forecasting gains (Rapach and Zhou, 2013). In this regard,

Campbell (2008), and more recently Rapach and Zhou (forthcoming), points out that the ultimate

test of any predictive model (in terms of the econometric methodology(ies) and the predictor(s) being

used) is in its out-of-sample forecasting performance.

The foreign exchange market is the largest and most liquid financial market in the world. As

reported in the Triennial Survey of global foreign exchange market volumes of the Bank for Inter-

national Settlement (BIS), the average daily turnover was 6.6 trillion US dollars in April of 2019

(up from 5.1 trillion U.S. dollars three years earlier). Naturally, in light of the size of this market,

besides the statistical significance of a forecasting exercise, real-time forecasts are important to

multinational firms, financial institutions, and traders aiming to hedge currency risks (Balcilar et

al., 2016). Traders of foreign-currency options look to make profits by buying (selling) options if

they expect volatility to rise above (fall below) of what is implied in currency option premiums. In

addition, a large body of theoretical and empirical research has linked exchange-rate volatility to

1Park and Park (2020) used news articles reporting on North Korea to capture rare disaster risks, and found a strong
depreciation of the South Korean won using non-parametric regressions- and event study-based approaches. Alternatively,
identifying the number of confirmed cases associated with the ongoing COVID-19 pandemic as a rare disaster, Zhou et al.,
(2021), found evidence of a strong depreciation of the currencies of 27 advanced and emerging countries.

2In line with the theoretical claims, Gupta et al., (2019) also found that the effect is particularly strong on returns of
emerging-market currencies, because such currencies are perceived to be more risky, when compared to that of the British
pound.
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trade and welfare (see, Clark et al., (2004), Asteriou et al., (2016), Senadza and Diaba (2017) for de-

tailed reviews). Hence, accurate forecasting of exchange-rate volatility is of paramount importance

to both investors and policymakers.

In this regard, the literature on forecasting exchange-rate volatility has primarily relied on

univariate and multivariate versions of the Generalized Autoregressive Conditional Heteroskedas-

ticity (GARCH) models, and also more recently multifractal models (see Pong et al., (2004), Hansen

and Lunde (2005), Rapach and Strauss (2008), Christou et al., (2018) and Liu et al., (2020) for

discussions of this literature). McAleer and Medeiros (2008), however, pointed out that the rich

information contained in intraday data can lead to more accurate estimates and forecasts of daily

volatility. Given this, we make use of variations of the Heterogeneous Autoregressive realized volatil-

ity (HAR-RV) model proposed by Corsi (2009) to forecast the realized volatility of the exchange-rate

returns (i.e., the sum of non-overlapping squared high-frequency, 5-minute-interval intraday re-

turns observed within a day, following Andersen and Bollerslev (1998)). In the process, we obtain

an unconditional and observable metric of volatility. Moreover, the HAR-RV model has become

increasingly popular because of its ability to capture well-established features of exchange-rate

(and, in general, financial-returns) volatility such as long-memory and multi-scaling behaviour ex-

tensively documented in the empirical literature (e.g., Mei et al., (2017)). The key feature of the

HAR-RV model is that it uses volatilities from different time resolutions to forecast the realized

volatility of asset-price returns.

In order to capture the role of rare disaster risks in forecasting exchange-rate volatility, we aug-

ment the benchmark HAR-RV model to include proxies related to climate risks, as motivated by the

burgeoning literature on “Climate Finance” (Giglio et al., (2021), Stroebel and Wurgler (2021)) over

and above moments-based predictors (also derived from intraday data) namely, realized skewness,

realized kurtosis, realized good and bad variance, upside and downside tail risk, and jumps. In

other words, we, for the first time, go beyond the existing literature on forecasting exchange-rate

realized volatility based on its moments (see for example, Andersen et al., (2003), Mcmillan and

Speight (2012), Louzis et al., (2013), Barunik et al., (2016), Gkillas et al., (2019), Plı́hal and Lyócsa

(2021)) by considering daily metrics of climate-related risks.

The risks associated with climate change can be typically categorized into physical risks and

transition risks. The former comprise risks arising due to, for example, rising temperatures, higher

sea levels, destructive storms, and floods, and wildfires, while the latter arise in the wake of a grad-

ual switch over to a low-carbon economy and comprise risk due to changes in the stance of climate

policy, the development of disruptive green technologies, and changing patterns in consumer pref-

erences. Understandably, as pointed out by Battiston et al., (2021) and Flori et al., (2021), every

future scenario includes climate-related financial risks (though the level and form of the source of

uncertainty may vary) due to the occurrence of rare disasters. Not surprisingly, climate risks, as
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captured by textual and narrative analyses of climate-change news (related to natural disasters,

global warming, international summits, and climate policy) or via movements of temperature and

precipiation, have provided a source of (high-frequency) proxies of possible forthcoming rare dis-

aster risks (see, for example, Choi et al. (2020), Engle et al., (2020), Kapfhammer et al., (2020),

Faccini et al., (2021)).

Motivated by this line of research, we use the information content of seasonal, predictable,

and abnormal patterns of temperature, precipitation, number of heating degree days, number of

cooling degree days, and wind speed to capture climate-related risks. In addition, as a check of the

robustness of our results in terms of the proxies for rare disaster risks derived from climate risks,

we use the daily Google Search Volume Index (SVI) of the topic “global warming” in a country, as

well as the news trends (NT) function of the Bloomberg terminal to collect the news counts involving

the term “climate change” for each country. The intensity of such keywords-based searches can

also capture the transition risks component of climate change, over and above the physical risks.

The transition away from coal, gas, and oil, being bad news for commodity exporters, are likely

to impact, just like physical risks, currency valuations of fossil-fuel exporters, and, hence, affect the

variability of their exchange-rate returns. In light of this, as far as the exchange rates are concerned,

we investigate the predictability of the realized volatility of the exchange rates of eight major fossil-

fuel exporters (Australia, Brazil, Canada, Malaysia, Mexico, Norway, Russia, and South Africa), in

line with the recent work by Kapfhammer et al., (2020). They, by proposing a novel news media-

based measure of climate risk, show that when such risk is high, these major commodity currencies

experience a persistent depreciation, and the relationship between commodity-price fluctuations

and currencies tends to become weaker.3

Given that we extend the standard HAR-RV model to include several additional predictors, as

our main econometric framework, we use a machine-learning technique to estimate our forecasting

models, because overparameterization in a standard predictive regression framework results in poor

out-of-sample performance. In this regard, we use random forests (Breiman, 2001) to estimate our

forecasting models. Random forests are a machine-learning technique that is specifically tailored

to operate in settings featuring a large array of predictors, while automatically recovering potential

nonlinear links between the realized exchange-rate volatility and its various predictors, and any in-

teraction effects between the predictors. As a matter of robustness, we also conduct our forecasting

analysis by using the least absolute shrinkage and selection operator (Lasso) technique, proposed

by Tibshirani (1996). The Lasso belongs to the spectrum of linear regression-analysis methods and

performs, in a data-driven way, both model selection and regularization.

3For a related strand of recent research on commodity currencies, see, for example, Chen et a. (2010), who find that
commodity-currency exchange rates predict subsequent commodity-price changes using quarterly data, and that evidence
of the reverse predictability is not robust. Ferraro et. al. (2015) find that changes in commodity prices help to forecast
exchange-rate returns at a daily frequency.
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Our study contributes to the growing literature on reactions to climate risks and other external

conditions. Duan et al. (2020) examined the pricing of carbon risk in the U.S. corporate bond

market and find that carbon emissions intensity of firms provides predictability for future excess

corporate bond returns. Atanasova and Schwartz (2019) showed that the expansion of fossil fuel

reserves in commodity-exporter firms had a negative impact on company value, indicating that cap-

ital markets perceive fossil fuel as “stranded assets” in the transition to a lower-carbon economy.

Our study, hence, differs from previous literature focusing on the pricing of carbon risk through the

lens of the stock and bond market, because we examine how climate risk contributes to improve

forecasts of exchange-rate volatility. Furthermore, using proxies for retail and institutional atten-

tion, our study adds to earlier literature linking investor attention and news media to asset prices

(Andersson et al., 2016; Ben-Rephael et al., 2017; Choi et al., 2020; Engle et al., 2020). Finally, in

contrast to earlier studies, which generally employ annual data and use local temperature measures

(Colacito et al., 2019; Henseler and Schmuacher, 2019), our paper differs in that we directly inves-

tigate the predictability of exchange-rate volatility by constructing several high frequency measures

of climate-related risks based on extreme weather conditions, which renders it possible to capture

timely reaction of the foreign-exchange market to climate risk.

We organize the remainder of our paper as follows. In Section 2, we describe our machine-

learning methodology, along with the derivation of realized volatility and its moments that we use

for our empirical study. In Section 3, we present the data, while in Section 4 we discuss our

empirical results both in terms of statistical and economic gains. In Section 5, we conclude.

2 Methodology

2.1 Empirical Models

The nucleus of our forecasting models is the familiar HAR-RV model (Corsi, 2009), which has been

widely studied in the empirical-finance literature because it captures the long-memory and multi-

scaling behavior typical of financial data. The HAR-RV model is given by

RVt+h = β0 + βdRVt + βwRVw,t + βmRVm,t + εt+h, (1)

where the index, h, denotes the forecast horizon, and (for h > 1) RVt+h denotes the average realized

variance over the h-days forecast horizon. We study a short (daily, h = 1), a medium (weekly, h = 5),

and a long (monthly, h = 22) forecast horizon. Further, RVw,t is defined as the average RV from day

t−5 to day t−1, while RVm,t is constructed as the average RV from day t−22 to day t−1. Hence, the

HAR-RV model formalizes the heterogeneous market hypothesis (Müller et al., 1997) according to
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which financial markets are populated by market participants who trade at different time scales and

who differ, therefore, with respect to their sensitivity to information flows at different time horizons.

When we take into account for the moments of realized variance like, for example, realized

skewness and realized kurtosis (described in details in Section 2.2) as additional predictors, we

obtain the HAR-RV-M model:

RVt+h = β0 + βdRVt + βwRVw,t + βmRVm,t +

n∑
j=1

θjMj,t + εt+h, (2)

where Mj,t denotes the realization of moment j = 1, 2, , , ..., n on day t. When we extend the HAR-RV-

M model to include the climate variables temperature, HDD, CDD, precipitation, wind speed, we

obtain the HAR-RV-M-C model:

RVt+h = β0 + βdRVt + βwRVw,t + βmRVm,t +

n∑
j=1

θjMj,t +

5∑
j=1

γjCj,t + εt+h, (3)

where Cjt, j = 1, 2, ..., 5 denotes the climate variables capturing extreme weather conditions. We

obtain an alternative HAR-RV-M-climate model, when we use climate-related Google searches and

U.S. news as our predictors. We call this alternative specification as HAR-RV-M-CN model. It is

given by

RVt+h = β0 + βdRVt + βwRVw,t + βmRVm,t +

n∑
j=1

θjMj,t +

2∑
j=1

γjCNj,t + εt+h. (4)

Since the extended HAR-RV models given in Equations (2) to (4) feature several predictors, we use

a machine-learning techniques known as random forests as our main estimation tool. Random

forests build forecasting models in a completely data-driven way, they account for any potential

interaction effects between the predictors, and they automatically recover even complex potential

nonlinear links between the dependent variable and its various predictors.

The basic idea underlying random forests is to replace the linear additive models specified in

Equations (1) to (4) with a forecasting model assuming that the dependent variable can be expressed

as a general (nonlinear) unknown function, f , of the predictors. In the case of the HAR-RV-M-C

model, this idea can be formalized by writing

RVt+h = f(RVt, RVw,t, RVm,t,M1,t,M2,t, ...,Mn,t, C1,t, C2,t, ...). (5)

Random forests, first proposed by Breiman (2001), are an ensemble machine-learning technique

that recover the function, f , using a large number of individual random regression trees (for a text-

book exposition, see Hastie et al., 2009). A regression tree, in turn, is made up of several nodes

and branches that partition the predictor space systematically into non-overlapping regions in a
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hierarchical and binary manner. When a researcher grows a large regression tree that subdivides

the predictor space into many such regions, it is possible to compute increasingly fine-grained pre-

dictions of realized exchange-rate volatility. At the same time, however, the structure of a large

regression tree becomes increasingly complex and this complexity eventually deteriorates forecast-

ing performance because of the necessarily arising over-fitting problem and sensitiveness to the

data. A random forest overcomes this over-fitting problem by combining the forecasts from a large

number of individual random regression trees, each fitted on bootstrapped sample of data. A ran-

dom regression tree differs from a “simple” regression tree in that it uses a random subset of the

predictors to grow the tree. These additional elements of randomness curb the impact of influential

individual predictors (possibly due to past volatility clustering, jumps, or tail events) on predictions

and, in addition, decorrelate the predictions from individual trees. In this way, averaging the pre-

dictions across the individual random regression trees leads to a stabilization of predictions and,

thereby, superior forecasts of exchange-rate volatility.

In order to be more specific on how a regression tree, T , can be constructed in a completely

data-driven manner, we recap that the basic idea is to form branches that partition the space

of predictors, x = (x1, x2, ...), into l non-overlapping regions, Rl. Starting at the the top level of

a regression tree, a search-and-split algorithm is used to identify a first optimal partition of the

data. This algorithm searches across the array of predictors and the corresponding candidates

for split points, p, to form two half-planes, R1(s, p) = {xs|xs ≤ p} and R2(s, p) = {xs|xs > p}. The

optimal combination of predictor and split point minimizes the following squared-error loss objective

function:

min
s,p

min
R̄V 1

∑
xs∈R1(s,p)

(RVi − R̄V 1)2 + min
R̄V 2

∑
xs∈R2(s,p)

(RVi − R̄V 2)2

 , (6)

where we have dropped the time index to keep the sub-indices simple. The subscript i denotes

those observations of realized exchange-rate volatility, RV , that belong to a half-plane, and R̄V k =

mean{RVi|xs ∈ Rk(s, p)}, k = 1, 2 denotes the half-plane-specific mean of RV .

At the second level of a regression tree, the objective function given in Equation (6) is used to

find the optimal combination of predictors and split points for the respective half planes identified

at the top level of the regression tree. Application of the search-and-split algorithm at the second

tree level, thus, gives up to two second-level optimal splitting predictors and their corresponding

optimal splitting points. Upon recursively applying the search-and-split algorithm in a top-down

way to the next (third, fourth, ...) tree levels, we can build in a pyramid-like manner a hierarchical

regression tree, where every new tree level adds an additional layer of complexity to the tree. Two

simple approaches to terminate this tree-building process are to fix, in advance, a maximum num-

ber of terminal nodes for a regression tree or to require that the terminal nodes contain a minimum
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number of data points. Once the tree-building process has stopped, a researcher can use a regres-

sion tree with L regions to predict realized exchange-rate volatility by checking to which terminal

region a realization of the predictors belongs. The corresponding region-specific mean of RV is then

the optimal prediction of exchange-rate volatility:

T
(
xi, {Rl}L1

)
=

L∑
l=1

R̄V l1(xi ∈ Rl), (7)

where 1 denotes the indicator function. In the same way, an out-of-sample forecast is obtained

by updating the predictor variables, trickling the new data down the in-sample hierarchical tree

structure, and then using Equation (7) to predict exchange-rate volatility. Using to this end a

large number of random regression trees (that is, regression trees that apply the search-and-split

algorithm to a random subset of the predictors to build a tree) estimated on bootstrapped samples

of the data gives random-forests out-of-sample predictions of exchange-rate volatility.

2.2 Realized Variance and Its Moments

Exchange-rate returns realized volatilities are estimated relying on the classical estimator of RV ,

i.e., as the sum of squared intraday returns (Andersen and Bollerslev, 1998):

RVt =

M∑
i=1

r2
t,i, (8)

where rt,i denotes the intraday M × 1 return vector, and i = 1, ...,M is the number of intraday

returns.

Upon using only positive or negative intraday returns, one can construct measures of semi-

variance which can serve as measures of downside and upside risk, and capture the sign asymmetry

of FX rates. These are called “bad’ (RV B) and “good’ (RV G) realized variance. We, thus, construct

RV G and RV B by replacing RV (= RV B + RV G) in the above equation by RV B and RV G. In line

with Barndorff-Nielsen et al. (2010), we compute the bad and good realized semi-variances as

RV Bt=

M∑
i=1

r2
t,i 1[(rt,i)<0], (9)

RV Gt=

M∑
i=1

r2
t,i 1[(rt,i)>0]. (10)

Next, we compute the higher-moments (realized skewness, and realized kurtosis) of the daily FX

returns distribution, that is, RSK and RKU . We consider RSK as a measure of the asymmetry of

the daily exchange-rates returns distribution, and RKU as a measure that accounts for extremes.
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We compute RSK on day t as

RSKt =

√
M
∑M
i=1 r(i,t)3

RV
3/2
t

, (11)

and RKU on day t as

RKUt =
M
∑M
i=1 r(i,t)4

RV 2
t

. (12)

The scaling of RSK and RKU by (M)1/2 and M ensures that magnitudes correspond to daily skew-

ness and kurtosis.

In addition to RSK and RKU , we consider a jump component (JUMPS) in the FX price pro-

cess. As shown by Andersen et al. (2005), jumps are both highly prevalent and distinctly less

persistent than the continuous sample-path-variation process. Moreover, many jumps appear di-

rectly associated with specific macroeconomic news announcements. We use the result, derived by

Barndorff-Nielsen and Shephard (2004), that the realized variance converges into permanent and

discontinuous (jump) components as

lim
M→∞

RVt =

∫ t

t−1

σ2(s)ds+

Nt∑
j=1

k2
t,j , (13)

where Nt is the number of jumps within day t and kt,j is the jump size. This result implies that

RVt is a consistent estimator of the integrated variance
∫ t
t−1

σ2(s)ds plus the jump contribution. The

asymptotic results derived by Barndorff-Nielsen and Shephard (2004, 2006) further show that

lim
M→∞

BVt =

∫ t

t−1

σ2(s)ds, (14)

where BVt is the realized bipolar variation defined as

BVt = µ−2
1

(
M

M − 1

) M∑
i=2

|rt,i−1||ri,t| =
π

2

M∑
i=2

|rt,i−1||ri,t|, (15)

where

µa = E(|Z|a), Z ∼ N(0, 1), a > 0. (16)

A consistent estimator of the pure jump contribution can then be expressed as

Jt = RVt −BVt. (17)

The significance of the jump component is tested relying on a formal test estimator proposed by
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Brandorff-Nielsen and Shephard (2006) given by

JTt =
RVt −BVt

(vbb − vqq) 1
N TPt

, (18)

where TPt is the Tri-Power Quarticity:

TPt = M
M

M − 2

(
Γ(0.5)

22/3Γ(7/6)

) M∑
i=3

|rt,i|4/3|rt,i−1|4/3|rt,i−2|4/3, (19)

which converges to the Integrated Quarticity IQt

IQt →
∫ t

t−1

σ4(s)ds, (20)

even in the presence of jumps. We use the notation vbb =
(
π
2

)
+ π − 3 and vqq = 2. Note that for each

t, JTt ∼ N(0, 1) as M → ∞. As can be seen in Equation (17), the jump contribution to RVt is either

positive or null. Therefore, so as to avoid obtaining negative empirical contributions, we redefine,

like Zhou and Zhu (2012), the jump measure as

RJt = max(RVt −BVt; 0). (21)

Lastly, we consider the Hill tail-risk estimator (Hill, 1975), using Xt,i the set of reordered intraday

returns rt,i, in such a way that

Xt,i ≥ Xt,j for i < j. (22)

The Hill positive tail-risk estimator is then defined as

Hup
t =

1

k

k∑
j=1

ln(Xt,i)− ln(Xt,k), (23)

and the negative tail-risk estimator as

Hdown
t =

1

k

n∑
j=n−k

ln(Xt,i)− ln(Xt,n−k), (24)

where k denotes the number of observation employed to achieve the chosen α tail interval.

3 Data

We collect 5-minute interval intraday data on the currencies of major commodity-exporter economies

in terms of fossil fuel against the US dollar over a 24 hour trading day. The commodity-exporter
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economies are Australia (USDAUD), Brazil (USDBRL), Canada (USDCAD), Malaysia (USDMYR), Mex-

ico (USDMXN), Norway (USDNOK), Russia (USDRUB), and South Africa (USDUZAR). Using the in-

traday data and formulas introduced in Section 2, we compute daily measures of realized variance,

the corresponding good and bad variants, and the other covariates, i.e., realized jumps, realized

skewness, realized kurtosis, upside tail risk, downside tail risk, and jumps. Because the realized

variance is known to exhibit occasional large peaks, we use the natural log of the square root (that

is, volatility) of realized variance as our dependent variable, and, when computing forecasts (and,

thus, reverting back to anti-logs), account for this transformation by adding a Jensen-Ito term to

forecasts. Table 1 reports the number of observations and the start and end dates of our sample

period for every exchange rate based on the data availability. We also report summary statistics of

our dependent variable along with its first five coefficients of auto-correlation. The slowly decaying

coefficients of auto-correlation underline that the HAR-RV model is a useful starting point for our

forecasting analysis.

− Please include Table 1 about here. −

We obtain daily weather data from the Bloomberg terminal, produced by the National Climatic Data

Center (NCDC), for our sample countries and the US4. The weather data captures several factors,

including temperature, precipitation, number of heating degree days (HDD), number of cooling

degree days (CDD), and wind speed as described below:

• Temperature: The average temperature (usually of the high and low) that was observed be-

tween 7am and 7pm local time, expressed in Fahreinheit.

• HDD: The number of degrees below 65 degrees Fahrenheit of the mean temperature used to

estimate the energy needed to heat a building.

• CDD: The number of degrees above 65 degrees Fahrenheit of the mean temperature used to

estimate the energy needed to cool a building.

• Precipitation: The amount of rain, snow, sleet or hail that falls in a specific location.

• Wind speed: Average of sustained winds which does not include wind gust, expressed in

knots.

Following the approach described by Choi et al., (2020), we decompose the weather-related

variables into three components that account for seasonal, predictable, and abnormal patterns.

In particular, for each country, i, and day, t, we compute the daily WeatherMeasureit using the

4Since we collect our currency data against the US dollar, we include the climate variables of the US to capture the relative
riskiness of the two currencies being involved.
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following formula:

WeatherMeasureit = Aver WeatherMeasureit +Mon WeatherMeasureit +Ab WeatherMeasureit, (25)

where WeatherMeasureit denotes temperature, HDD, CDD, precipitation, or wind speed. Moreover,

Aver WeatherMeasureit is the average of WeatherMeasureit in country i over the 120 months prior to

t, Mon WeatherMeasureit is the average deviation of the WeatherMeasureit from the monthly average

temperature in country i in the same calendar month over the last 10 years minus Aver WeatherMeasureit,

and Ab WeatherMeasureit is the remainder, which represents unusual deviations from local weather

conditions and, thus, is the focus of our analysis. Finally, we standardize these abnormal devia-

tions, usually known as the standardized anomaly (Kim et al., 2021).

To capture how people react to abnormal local weather conditions, we use the daily Google

Search Volume Index (SVI) of the topic “global warming” in a country, representing the retail in-

vestor attention. Considering that the attention to abnormal weather conditions also can be am-

plified through communication channels and the media, we use the news trends (NT) function of

the Bloomberg terminal to collect the news counts, including the term “climate change” for each

country. Based on a vast archive of news stories and social media posts from over 150,000 sources,

the NT function makes it possible to search specific keywords and obtain the historical volume of

relevant news. Given that institutional investors who work in asset management, banking, and

institutional financial services primarily use Bloomberg terminals (Ben-Rephael et al., 2017), it is

reasonable to assume that institutional investors who have more resources and incentives to pay

attention to news quickly will follow the news that appears on Bloomberg terminal. Hence, we use

this measure to proxy for institutional investors’ attention.

4 Empirical Results

4.1 Statistical Gains

In order to set the stage for our forecasting analysis, we lay out in Table 2 for recursive-estimation

window.5 We use a training period of one year (250 observations) to initialize the estimations. The

table depicts the ratios of the root-mean-squared-forecasting errors (RMSFEs) calculated by dividing

the RMSFE statistic for a benchmark model by the RMSFE statistic of the rival model. Whenever

the ratio exceeds unity, the rival model outperforms the benchmark model in terms of the RMSFE

5We use the R language and environment for statistical computing (R Core Team 2021) to conduct our forecasting anaql-
ysis. We use the R add-on package “grf” (Tibshirani et al. 2021) to estimate random forests. A random forest features 1,000
individual random regression trees, where 10 is the minimum size of a terminal node, and floor( # number of predictors/3)
predictors are used for random splitting. We construct the data matrix such that the number of forecasts is the same for all
forecast horizons.
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statistic. The benchmark and rival models are reported in the first column of the table, and we

estimate both models by random forests. Using random forests for both models, even when the core

HAR-RV model is the benchmark model, guarantees that variations in the reported RMSFE ratios

reflect a variation in the vector of predictors that define the benchmark and rival models, not a

variation in the estimation technique. In addition to the core HAR-RV model, we study the following

three models:

1. The HAR-RV-M model extends the HAR-RV model to include the following “moments”: realized

skewness, realized kurtosis, realized good variance, realized bad variance, upside tail risk,

downside tail risk, and jumps.

2. The HAR-RV-M-C model extends the HAR-RV-M model to include the following domestic and

U.S. climate variables: Temperature, HDD, CDD, precipitation, wind speed.

3. The HAR-RV-M-CN model extends the HAR-RV-M model to include the climate-related Google

searches and U.S. news.

The results we summarize in Table 2 show that, for all three forecast horizons under scrutiny, the

overwhelming majority of the RMSFE ratios are larger than unity. Hence, the HAR-RV-M model

performs better than the core HAR-RV model in terms of the RMSFE statistic, while the HAR-RV-

M-C and HAR-RV-M-CN models further improve upon the HAR-RV-M model. The only exceptions

arise in the case of the Russian ruble. In sum, the climate-risk variables go beyond the battery

of widely-studied standard predictors like realized higher-order moments, jumps, and tail risks in

improving the accuracy of forecasts of the subsequent exchange-rate volatility. In economic terms,

a possible explanation for the predictive power of climate-related risks could rely on the notion that

climate risks cause economic harm and uncertainty, which are quickly priced by economic agents

in the foreign-exchange market, thereby, affecting the exchange-rate volatility.

− Please include Table 2 about here. −

In Table 3, we compare random forests with the ordinary-least-squared (OLS) estimator and the

least absolute shrinkage and selection operator (Lasso) estimator (Tibshirani, 1996). The Lasso

estimator is a model shrinkage and predictor-selection technique that is an attractive alternative

to the standard OLS estimator given that our HAR-RV-M-C and HAR-RV-M-CN models feature a

relatively large array of predictor variables. The Lasso estimator achieves model shrinkage and

predictor selection by adding to the standard quadratic OLS loss function a penalty term that

consists of a weighting parameter (that is, the shrinkage parameter) multiplied by the sum of the

absolute values of the estimated coefficients (that is, an L1 penalty term). Depending on the value

of the weighting parameter, the Lasso estimator shrinks the magnitude of the estimated coefficients
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of the forecasting model, or even sets to zero some of the estimated coefficients.6 Importantly,

the Lasso estimator resembles the OLS estimator insofar as it retains the assumption of a linear

forecasting model. Hence, the results we report in Table 3 shed light on whether a nonlinear

forecasting model, that is random forests, is superior relative to two popular linear forecasting

models.

− Please include Table 3 about here. −

We use the RMSFE statistic to compare in Table 3 random forests with the OLS and the Lasso

estimators, where we focus on the HAR-RV-M-C model. The results for the HAR-RV-M-CN model

are similar and are not reported (but available upon request). The results for the RMSFE ratios

clearly demonstrate that random forests outperform the two alternative linear estimators, where the

additional forecasting gains from using random forests tend to increase for several of the studied

currency pairs in the length of the forecast horizon.

In Table A1 at the end of the paper (Appendix), we compare random forests with two popular

variants of the Lasso estimator: The Ridge regression estimator and an elastic net. The Ridge re-

gression estimator replaces the L1 penalty terms of the Lasso with an L2 penalty term. The elastic

net, in turn, is in our analysis a simple equally-weighted combination of the Ridge regression esti-

mator and the Lasso. Again we find that random forests perform well relative to its two competitors,

especially at the intermediate and long forecast horizons.

− Please include Figure 2 about here. −

Figure 2 illustrates why random forests tend to perform better than the estimators that retain the

assumption of a linear forecasting model. Focusing on Google SVI of the topic “global warming” and

four selected currency pairs, the figure presents partial-dependence functions that visualize how

our dependent variable (that is, ln(
√
RV )) responds to a variation in the Google SVI..7 While not

all partial-dependence functions suggest that the link between realized exchange-rate volatility and

the climate-risk predictors is nonlinear, the selected partial-dependence functions that we plot in

Figure 2 make clear that such nonlinearities are present in the data. Random forests are tailored

to detect such nonlinearities, and to exploit them to improve forecast accuracy.

− Please include Table 4 about here. −

Table 4 supplements our analysis so far by summarizing the results (p-values) of comparisons of

forecast accuracy by means of formal statistical tests. Because comparing forecasts from different

6We use the R add-on package “glmnet” (Friedman et al., 2010) to implement the Lasso estimator, where we use 10-fold
cross validation to select the weighting parameter that minimizes the mean cross-validated error.

7We use the full sample of data to estimate the partial dependence functions. We use the R add-on package random-
ForestSRC (Ishwaran and Kogalur 2021) to trace out the partial-dependence functions. Sampling is with replacement, the
minimum node size is five, and one third of the predictors are used for splitting. Details are available from the authors upon
request.
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random forests is complicated due to their complex structure, we present results for both the Clark

and West (2007) test and the Diebold and Mariano (1995) test, as modified by Harvey et al. (1997).

The latter test should be considered to be approximate because we use a recursive-estimation

window. Moreover, the interpretation of the test results should acknowledge that different random

forests cannot be regarded as nested models in a strict sense. Notwithstanding, it is reassuring that

the test results largely are in line with the results of the analysis of the RMSFE ratios. We observe

that the tests yield highly significant results in the overwhelming majority of cases. Insignificant

test results mainly obtain for the Russian rubel and for the long forecast horizon when we use the

modified Diebold-Mariano test compare the forecasts from the HAR-RV model with the forecasts

that we compute by means of the HAR-RV-M model.

In order to shed further light on the statistical significance of our results, we report in Table A2

the results of encompassing regressions (Fair and Shiller, 1990). For the encompassing regressions,

we regress the actual realized variance on a constant and the forecasts derived from the benchmark

and the rival model. The estimation results demonstrate that the coefficient we estimate for the

rival model is significantly different from zero in the overwhelming majority of cases, whereas the

coefficient that we estimate for the benchmark model is significantly different from zero occasionally

only. Hence, we conclude that in the overwhelming majority of cases the rival model encompasses

the predictive value of the benchmark model and, in addition, contains additional predictive value

not already captured by the benchmark model.

− Please include Table 5 about here. −

As an alternative setting, we consider a fixed estimation window. To this end, we use the first half

of the sample period for estimation of the models and the second half for forecasting. The RMSFE

ratios we report in Table 5 corroborate that, with few exceptions, the climate-risk predictors help

to improve the accuracy of forecasts relative to the HAR-RV-M benchmark model, which, in turn,

produces better forecasts than the HAR-RV benchmark model.

The fixed estimation window lends itself to study slightly modified forecasting settings. First,

we use the fixed estimation window to study the predictive value of the climate-risk predictors for

the anti-log of exchange-rate volatility. Second, we consider exchange-rate volatility t + h periods

ahead rather than its average over the forecast horizon as our predictand. Results (not reported

for the sake of brevity, but available upon request from the authors) are in line with the results we

report in Table 5.

− Please include Table 6 about here. −

Table 6 reports results for a rolling-estimation window (of length 250 observations). The results

of the rolling-estimation window are weaker than those for the recursive and the fixed estimation
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window. The RMSFE ratios exceed unity often by a small margin only, and mainly for the short

forecast horizon, for the long forecast horiozn when we compare the HAR-RV-M and the HAR-RV-

M-C models, and for the intermediate and long forecast horizons when we compare the HAR-RV-M

and the HAR-RV-M-CN models. Hence, the climate-risk predictors also have predictive value in

the rolling-estimation-window setting, but, from a forecasting perspective, the recursive and fixed

estimation windows that we study in our forecasting analysis clearly appear to be the preferred

schemes.

− Please include Table 7 about here. −

Finally, we present, for a recursive-estimation window, in Table 7 results for the mean-absolute-

forecast-error (MAFE) ratios, which attaches a smaller weight to very large (positive or negative)

forecast errors than the RMSFE statistic and, thereby, somewhat mitigates the impact of peaks

in exchange-rate volatility and volatility clustering on forecast performance. The results corrobo-

rate the results for the RMSFE ratios insofar as the HAR-RV-M dominates the HAR-RV model (at

the short and intermediate forecast horizons), while the HAR-RV-M-C and HAR-RV-M-CN models

clearly outperform the HAR-RV-M model. Hence, we conclude that accounting for the climate-

risk predictors helps to improve the accuracy of forecasts of exchange-rate volatility, a result that

apparently is of paramount importance for international investors and risk managers.

4.2 Utility Gains

We next shed light on the economic benefits a forecast consumer obtains from using the the climate-

risk predictors. To this end, we adapt the method proposed by West et al., (1993). We consider a

forecast consumer who has a utility function of the format Ut+1 = Wt+1 − 1
2γW

2
t+1, where γ > 0 is a

parameter. For simplicity, we focus on the case h = 1. The budget constraint is of the format Wt+1 =

Wt [ft(R
∗ + et+1) + (1− ft)R], where 0 < ft < 1 denotes a portfolio share (the choice variable of the

forecast consumer), et+1 denotes the exchange rate (assumed to follow a random work without drift),

and R∗ an R denote the foreign and domestic interest rates (assumed to be constant). We assume

µ = R∗ − R > 0 for the interest-rate differential. Choosing the portfolio share to maximize expected

utility, EtUt+1 = Et
[
Wt+1 − 1

2γW
2
t+1

]
, where Et denotes the conditional-expectations operator, and

assuming non-satiation (that is, 1− γWR > 0), yields an optimal portfolio share given by

ft+1 =
µ

γW
[1− γWR]

1

µ2 + R̂V t+1

, (26)

where a hat denotes a forecast, R̂V t+1, of the realized exchange-rate variance. It should be noted

that γW = δ
1+δ , where δ is the coefficient of relative risk aversion (CRRA). Upon using the result for
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ft+1 in the formula for expected utility, we obtain

EtUt+1 =
[
c+ d u(RVt+1, R̂V t+1)

]
W, (27)

where c = R− 1
2γWR2, and d = µ2

γW [1− γWR]
2, and

u(RVt+1, R̂V t+1) =

[
1

µ2 + R̂V t+1

− 1

2

µ2 +RVt+1

(µ2 + R̂V t+1)2

]
. (28)

Next, we use the ex-post actual values of the realized exchange-rate variance as a proxy of the

conditional expectation of RVt+1, and approximate EtUt+1 by computing average utility, Ū = (c +

dū)W , across the out-of-sample forecasting periods for our forecasting models. We can then easily

compare two models, let us denote them as Models 1 and 2, in terms of Ū1 and Ū2. Suppose Model

1 is the better of the two models. Then, in order to make it equivalent to Model 2 in terms of average

utility, we apparently have to reduce the wealth associated with Model 1 by some amount, ∆W , such

that (c+ dū1)(W −∆W ) = (c+ dū2)W , which implies ∆W
W = 1− Ū2

Ū1
. Like West et al. (1993), we express

this ratio as an average “fee” converted to annual basis points by computing 252×(1− Ū2

Ū1
)×100×100,

assuming that a year has 252 trading days, and where multiplication by the first 100 turns the

expression into percentage, and the second 100 gives basis points. This fee summarizes how much

a forecast consumer would be willing to pay to use the forecasts from the superior forecasting model

rather than the sub-optimal model.

− Please include Table 8 about here. −

Table 8 summarizes the results for three numerical values of δ, where we use in this numerical

example R = 0.05 and µ = 0.05. Corroborating the results of the statistical forecast criteria, we find

that a forecast consumer benefits from using the climate-risk predictors to compute forecasts of

exchange-rate volatility in the majority of cases, with exceptions arising for few model configurations

only for the exchange-rates of the dollar vis-à-vis the rubel and the ringgit. Overall, our findings

indicate that better predictability of realized volatility can translate into noticeable utility gains for

a risk-averse investor who would be ready to pay a portfolio-management fee to have access to the

forecast computed by means of the model augmented to include climate-related risks.

5 Concluding Remarks

Forecasting exchange-rate volatility is of apparent importance for currency trading, optimal cross-

border asset allocation, identifying and managing currency exposure, and pricing and trading of

derivative securities like foreign-currency options. Because exchange-rate fluctuations can have
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substantial implications for trade and welfare, forecasting exchange-rate volatility is also a key

concern for policymakers, especially when major commodity currencies exhibit large and sudden

swings. It is, therefore, not surprising that a large and significant literature on modeling and

forecasting exchange-rate volatility exists. Our contribution to this literature is that we argue that

accounting for climate-related risks has the potential to improve the accuracy of forecasts of the

realized volatility of major exchange rates vis-à-vis the dollar.

In our forecasting analysis, we analyze the role of climate risks in forecasting the intraday-

data-based daily realized volatility of exchange-rate returns of eight major fossil fuel-exporters,

namely Australia, Brazil, Canada, Malaysia, Mexico, Norway, Russia, and South Africa. We study a

wide array of metrics capturing risks associated with climate change, derived from data directly on

variables such as abnormal patterns of temperature, precipitation, number of heating degree days

(HDD), number of cooling degree days (CDD), and wind speed, as well as Google search volume and

media coverage on the topic. Because we also control for various other moments (realized skewness,

realized kurtosis, realized good and variance, upside and downside tail risk, and jumps) in our

forecasting models, we end up with many predictors and, hence, use a machine-learning approach,

i.e., random forests, to study the predictive value of climate-related risks for the subsequent realized

exchange-rate volatility. Our findings clearly show that climate-related risks do have incremental

predictive value, both in statistical and economic terms, for exchange-rate volatility. Inspection

of partial dependence plots suggests that the link between climate-related risks and subsequent

exchange-rate volatility tends to be nonlinear, which explains why random forests work well in our

forecasting analysis.

As part of future research, it is be interesting to extend our analyses to other asset markets

like, equities and bonds, especially in a regional context, given that climate change, while typically

interpreted as an aggregate risk factor, often has a significant local risk component.
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Figure 1: Realized variance (ln(
√
RV ))

500 1500 2500 3500

-1
0

-8
-6

-4

USDAUD

Time (in days)

lo
g(
sq
rt(
R
V
)

500 1000 1500 2000 2500

-1
0

-8
-6

-4

USDBRL

Time (in days)

lo
g(
sq
rt(
R
V
)

500 1500 2500 3500

-1
0

-8
-6

-4

USDCAD

Time (in days)

lo
g(
sq
rt(
R
V
)

500 1500 2500 3500

-1
0

-8
-6

-4

USDMXN

Time (in days)

lo
g(
sq
rt(
R
V
)

500 1000 1500 2000 2500

-1
0

-8
-6

-4

USDMYR

Time (in days)

lo
g(
sq
rt(
R
V
)

500 1500 2500 3500

-1
0

-8
-6

-4

USDNOK

Time (in days)

lo
g(
sq
rt(
R
V
)

500 1000 1500 2000 2500

-1
0

-8
-6

-4

USDRUB

Time (in days)

lo
g(
sq
rt(
R
V
)

500 1500 2500 3500

-1
0

-8
-6

-4

USDZAR

Time (in days)

lo
g(
sq
rt(
R
V
)

23



F
ig

u
re

2
:

S
el

ec
te

d
p
ar

ti
al

d
ep

en
d
en

ce
fu

n
ct

io
n

s

1
2

3
4

-36.0-35.5-35.0

G
S
_U
S

USDAUD/ h=1

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

-34.4-34.2-34.0-33.8-33.6-33.4

G
S
_U
S

USDBRL/ h=1

1
2

3
4

-39.0-38.5-38.0-37.5

G
S
_U
S

USDCAD/ h=1

1
2

3
4

-35.0-34.5-34.0

G
S
_U
S

USDMXN/ h=1

1
2

3
4

-36.0-35.8-35.6-35.4-35.2-35.0

G
S
_U
S

USDAUD/ h=5

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

-34.0-33.8-33.6-33.4-33.2

G
S
_U
S

USDBRL/ h=5

1
2

3
4

-38.8-38.6-38.4-38.2-38.0-37.8

G
S
_U
S

USDCAD/ h=5

1
2

3
4

-35.6-35.4-35.2-35.0-34.8-34.6

G
S
_U
S

USDMXN/ h=5

1
2

3
4

-35.2-35.0-34.8-34.6-34.4

G
S
_U
S

USDAUD/ h=22

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

-35.0-34.8-34.6-34.4-34.2

G
S
_U
S

USDBRL/ h=22

1
2

3
4

-37.6-37.4-37.2-37.0-36.8

G
S
_U
S

USDCAD/ h=22

1
2

3
4

-35.5-35.0-34.5

G
S
_U
S

USDMXN/ h=22

R
ed

p
oi

n
ts

/
b
la

ck
d
as

h
ed

li
n

es
:

p
ar

ti
al

va
lu

es
.

D
as

h
ed

re
d

li
n

es
:

sm
oo

th
ed

er
ro

r
b
an

d
(p

lu
s/

m
in

u
s

tw
o

st
an

d
ar

d
er

ro
rs

).

24



T
ab

le
1
:

S
u

m
m

ar
y

st
at

is
ti

cs
of

re
al

iz
ed

ex
ch

an
ge

-r
at

e
vo

la
ti

li
ty

E
xc

h
an

ge
ra

te
O

b
s.

S
ta

rt
E

n
d

M
in

.
1
st

Q
u

a.
M

ed
ia

n
M

ea
n

3
rd

Q
u

a.
M

ax
.

A
C

(1
)

A
C

(2
)

A
C

(3
)

A
C

(4
)

A
C

(5
)

U
S

D
A

U
D

3
5
7
2

0
1
/
0
7
/
2
0
0
8

1
1
/
8
/
2
0
2
1

-6
.7

6
8
9

-5
.3

3
5
7

-5
.0

7
9
8

-5
.0

4
8
5

-4
.8

1
2
0

-3
.1

3
4
3

0
.8

0
4
1

0
.7

3
3
7

0
.7

1
2
6

0
.7

3
0
8

0
.7

3
5
0

U
S

D
B

R
L

2
5
4
5

0
8
/
2
9
/
2
0
1
1

1
1
/
8
/
2
0
2
1

-7
.1

5
6
5

-5
.1

6
1
0

-4
.8

8
7
1

-4
.9

0
2
9

-4
.6

2
7
7

-2
.5

9
1
0

0
.7

0
2
3

0
.6

4
4
1

0
.6

0
8
3

0
.6

0
6
8

0
.6

0
0
2

U
S

D
C

A
D

3
6
0
8

0
1
/
0
2
/
2
0
0
8

1
1
/
8
/
2
0
2
1

-6
.7

7
2
7

-5
.5

8
4
7

-5
.3

2
1
9

-5
.2

9
1
2

-5
.0

1
6
5

-3
.6

4
1
5

0
.7

8
4
9

0
.7

4
8
9

0
.7

3
3
7

0
.7

3
0
7

0
.7

4
6
6

U
S

D
M

X
N

3
6
1
0

0
1
/
0
2
/
2
0
0
8

1
1
/
8
/
2
0
2
1

-1
0
.0

9
3
4

-5
.2

6
9
2

-5
.0

0
5
5

-5
.0

0
5
7

-4
.7

4
7
2

-2
.3

0
6
2

0
.7

8
9
1

0
.7

4
1
1

0
.7

0
5
0

0
.6

9
5
2

0
.6

8
8
8

U
S

D
M

Y
R

2
5
6
9

0
9
/
1
/
2
0
1
1

1
1
/
8
/
2
0
2
1

-8
.2

0
0
9

-6
.4

8
4
8

-6
.0

3
2
3

-5
.9

8
1
7

-5
.4

7
9
5

-2
.2

3
4
4

0
.6

1
8
5

0
.5

4
8
3

0
.5

3
4
2

0
.5

7
0
8

0
.6

8
1
9

U
S

D
N

O
K

3
5
4
5

0
3
/
3
1
/
2
0
0
8

1
1
/
8
/
2
0
2
1

-6
.5

0
9
0

-5
.1

8
4
4

-4
.9

5
2
7

-4
.9

2
2
3

-4
.6

9
9
5

-2
.4

3
5
7

0
.7

7
7
9

0
.7

1
3
9

0
.6

8
3
5

0
.6

9
8
0

0
.6

9
8
8

U
S

D
R

U
B

2
5
5
5

0
8
/
3
1
/
2
0
1
1

1
1
/
8
/
2
0
2
1

-6
.6

7
9
0

-5
.5

3
9
0

-5
.2

2
2
4

-5
.1

7
4
5

-4
.8

6
6
5

-2
.2

1
8
0

0
.8

5
3
7

0
.8

0
0
6

0
.7

6
1
3

0
.7

4
3
7

0
.7

3
3
3

U
S

D
Z

A
R

3
6
0
3

0
1
/
3
/
2
0
0
8

1
1
/
8
/
2
0
2
1

-8
.7

2
5
0

-4
.8

3
9
4

-4
.6

4
9
0

-4
.6

1
8
5

-4
.4

2
6
3

-2
.6

3
6
3

0
.7

0
2
1

0
.6

4
0
5

0
.6

0
6
0

0
.5

9
8
3

0
.5

9
9
8

S
u

m
m

ar
y

st
at

is
ti

cs
ar

e
fo

r
ln
(√

R
V
).

O
b
s=

n
u

m
b
er

of
ob

se
rv

at
io

n
s.

A
C

(x
)=

C
oe

ffi
ci

en
t

of
au

to
co

rr
el

at
io

n
at

la
g

x.

25



Table 2: RMSFE ratios

Exchange rate / benchmark vs. rival model h=1 h=5 h=22

USDAUD / HAR-RV vs. HAR-RV-M 1.0333 1.0170 1.0311
USDBRL / HAR-RV vs. HAR-RV-M 1.0224 1.0245 1.0188
USDCAD / HAR-RV vs. HAR-RV-M 1.0310 1.0229 1.0016
USDMXN / HAR-RV vs. HAR-RV-M 1.0200 1.0152 1.0142
USDMYR / HAR-RV vs. HAR-RV-M 1.0137 1.0222 1.0097
USDNOK / HAR-RV vs. HAR-RV-M 1.0175 1.0092 1.0057
USDRUB / HAR-RV vs. HAR-RV-M 1.0107 - -
USDZAR / HAR-RV vs. HAR-RV-M 1.0272 1.0195 1.0133
USDAUD / HAR-RV-M vs. HAR-RV-M-C 1.0337 1.0240 1.0614
USDBRL / HAR-RV-M vs. HAR-RV-M-C 1.0202 1.0312 1.0358
USDCAD / HAR-RV-M vs. HAR-RV-M-C 1.0296 1.0304 1.0270
USDMXN / HAR-RV-M vs. HAR-RV-M-C 1.0217 1.0291 1.0347
USDMYR / HAR-RV-M vs. HAR-RV-M-C 1.0108 1.0338 1.0329
USDNOK / HAR-RV-M vs. HAR-RV-M-C 1.0170 1.0164 1.0129
USDRUB / HAR-RV-M vs. HAR-RV-M-C 1.0051 - -
USDZAR / HAR-RV-M vs. HAR-RV-M-C 1.0226 1.0224 1.0322
USDAUD / HAR-RV-M vs. HAR-RV-M-CN 1.0300 1.0263 1.1384
USDBRL / HAR-RV-M vs. HAR-RV-M-CN 1.0237 1.0316 1.0519
USDCAD / HAR-RV-M vs. HAR-RV-M-CN 1.0317 1.0463 1.0832
USDMXN / HAR-RV-M vs. HAR-RV-M-CN 1.0240 1.0275 1.0534
USDMYR / HAR-RV-M vs. HAR-RV-M-CN 1.0114 1.0303 1.0347
USDNOK / HAR-RV-M vs. HAR-RV-M-CN 1.0230 1.0241 1.0418
USDRUB / HAR-RV-M vs. HAR-RV-M-CN 1.0149 - -
USDZAR / HAR-RV-M vs. HAR-RV-M-CN 1.0238 1.0360 1.0809

Both the benchmark and the rival model are estimated by random forests. For both models the root-mean-squared-
forecasting error (RMSFE) is computed. The RMSFE ratio is constructed by dividing the RMSFE of the benchmark model by
the RMSFE of the rival model. A RMSFE ratio larger than unity indicates that the rival model yields more accurate forecasts
than the benchmark model. Results are for a recursive estimation window. Training period = 250 observations. For better
readability of the estimation results, the table depicts the RMSFE ratios that exceed unity only. The parameter h denotes
the forecast horizon. HAR-RV-M = The HAR-RV model is extended to include the following “moments”: realized skewness,
realized kurtosis, realized good variance, realized bad variance, upside tail risk, downside tail risk, jumps. HAR-RV-M-C =
The HAR-RV-M model is extended to include the following domestic and U.S. climate variables: Temperature, HDD, CDD,
precipitation, wind. HAR-RV-M-CM = The HAR-RV-M model is extended to include the climate-related Google searches and
U.S. news.

Table 3: Comparing random forests with competing methods (RMSFE ratios)

Exchange rate / benchmark vs. rival model h=1 h=5 h=22

USDAUD / HAR-RV-M-C-ols vs. HAR-RV-M-C-RF - 1.0258 1.0324
USDBRL / HAR-RV-M-C-ols vs. HAR-RV-M-C-RF 1.3290 1.0148 1.0210
USDCAD / HAR-RV-M-C-ols vs. HAR-RV-M-C-RF - 1.0108 1.0415
USDMXN / HAR-RV-M-C-ols vs. HAR-RV-M-C-RF 1.0444 1.0292 1.0489
USDMYR / HAR-RV-M-C-ols vs. HAR-RV-M-C-RF 1.0006 1.0214 1.0629
USDNOK / HAR-RV-M-C-ols vs. HAR-RV-M-C-RF - 1.0299 1.0651
USDRUB / HAR-RV-M-C-ols vs. HAR-RV-M-C-RF 1.1024 1.5260 4.6521
USDZAR / HAR-RV-M-C-ols vs. HAR-RV-M-C-RF 1.0211 1.0218 1.0259

USDAUD / HAR-RV-M-C-Lasso vs. HAR-RV-M-C-RF 1.0375 1.0706 1.0666
USDBRL / HAR-RV-M-C-Lasso vs. HAR-RV-M-C-RF - 1.0074 1.0247
USDCAD / HAR-RV-M-C-Lasso vs. HAR-RV-M-C-RF - 1.0030 1.0308
USDMXN / HAR-RV-M-C-Lasso vs. HAR-RV-M-C-RF - 1.0150 1.0182
USDMYR / HAR-RV-M-C-Lasso vs. HAR-RV-M-C-RF 1.0018 1.0201 1.0604
USDNOK / HAR-RV-M-C-Lasso vs. HAR-RV-M-C-RF - 1.0620 1.0637
USDRUB / HAR-RV-M-C-Lasso vs. HAR-RV-M-C-RF 1.4198 2.1212 4.9172
USDZAR / HAR-RV-M-C-Lasso vs. HAR-RV-M-C-RF 1.0163 1.0207 1.0216

Both the benchmark and the rival model include the following domestic and U.S. climate variables: Temperature, HDD,
CDD, precipitation, wind. The benchmark model is estimated either by the OLS technique or the Lasso estimator. The rival
model is estimated by random forests. For both models the root-mean-squared-forecasting error (RMSFE) is computed. The
RMSFE ratio is constructed by dividing the RMSFE of the benchmark model by the RMSFE of the rival model. A RMSFE
ratio larger than unity indicates that the rival model yields more accurate forecasts than the benchmark model. Results are
for a recursive estimation window. Training period = 250 observations. For better readability of the estimation results, the
table depicts the RMSFE ratios that exceed unity only. The parameter h denotes the forecast horizon.
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Table 4: Formal tests of forecast accuracy

Exchange rate / benchmark vs. rival model h=1 h=5 h=22

Clark-West test
USDAUD / HAR-RV vs. HAR-RV-M 0.0000 0.0000 0.0000
USDBRL / HAR-RV vs. HAR-RV-M 0.0000 0.0000 0.0000
USDCAD / HAR-RV vs. HAR-RV-M 0.0000 0.0000 0.0001
USDMXN / HAR-RV vs. HAR-RV-M 0.0000 0.0001 0.0025
USDMYR / HAR-RV vs. HAR-RV-M 0.0000 0.0000 0.0003
USDNOK / HAR-RV vs. HAR-RV-M 0.0000 0.0011 0.0000
USDRUB / HAR-RV vs. HAR-RV-M 0.0008 - -
USDZAR / HAR-RV vs. HAR-RV-M 0.0000 0.0000 0.0000
USDAUD / HAR-RV-M vs. HAR-RV-M-C 0.0000 0.0000 0.0000
USDBRL / HAR-RV-M vs. HAR-RV-M-C 0.0000 0.0000 0.0000
USDCAD / HAR-RV-M vs. HAR-RV-M-C 0.0000 0.0000 0.0000
USDMXN / HAR-RV-M vs. HAR-RV-M-C 0.0000 0.0000 0.0003
USDMYR / HAR-RV-M vs. HAR-RV-M-C 0.0000 0.0000 0.0000
USDNOK / HAR-RV-M vs. HAR-RV-M-C 0.0000 0.0008 0.0000
USDRUB / HAR-RV-M vs. HAR-RV-M-C 0.0186 - 0.0603
USDZAR / HAR-RV-M vs. HAR-RV-M-C 0.0000 0.0000 0.0000
USDAUD / HAR-RV-M vs. HAR-RV-M-CN 0.0000 0.0004 0.0000
USDBRL / HAR-RV-M vs. HAR-RV-M-CN 0.0000 0.0000 0.0000
USDCAD / HAR-RV-M vs. HAR-RV-M-CN 0.0000 0.0000 0.0000
USDMXN / HAR-RV-M vs. HAR-RV-M-CN 0.0000 0.0000 0.0000
USDMYR / HAR-RV-M vs. HAR-RV-M-CN 0.0000 0.0000 0.0000
USDNOK / HAR-RV-M vs. HAR-RV-M-CN 0.0000 0.0000 0.0000
USDRUB / HAR-RV-M vs. HAR-RV-M-CN 0.0011 - -
USDZAR / HAR-RV-M vs. HAR-RV-M-CN 0.0000 0.0000 0.0000

Diebold-Mariano test
USDAUD / HAR-RV vs. HAR-RV-M 0.0000 0.0416 0.0255
USDBRL / HAR-RV vs. HAR-RV-M 0.0001 0.0018 0.0327
USDCAD / HAR-RV vs. HAR-RV-M 0.0000 0.0045 -
USDMXN / HAR-RV vs. HAR-RV-M 0.0034 - -
USDMYR / HAR-RV vs. HAR-RV-M 0.0116 0.0001 -
USDNOK / HAR-RV vs. HAR-RV-M 0.0093 0.0686 -
USDRUB / HAR-RV vs. HAR-RV-M 0.0743 - -
USDZAR / HAR-RV vs. HAR-RV-M 0.0000 0.0051 0.0531
USDAUD / HAR-RV-M vs. HAR-RV-M-C 0.0000 0.0346 0.0203
USDBRL / HAR-RV-M vs. HAR-RV-M-C 0.0001 0.008 0.0023
USDCAD / HAR-RV-M vs. HAR-RV-M-C 0.0000 0.0004 0.0324
USDMXN / HAR-RV-M vs. HAR-RV-M-C 0.0011 0.0171 0.0448
USDMYR / HAR-RV-M vs. HAR-RV-M-C 0.0371 0.0001 0.0741
USDNOK / HAR-RV-M vs. HAR-RV-M-C 0.0001 0.0741 0.0109
USDRUB / HAR-RV-M vs. HAR-RV-M-C - - -
USDZAR / HAR-RV-M vs. HAR-RV-M-C 0.0001 0.0021 0.0025
USDAUD / HAR-RV-M vs. HAR-RV-M-CN 0.0000 - 0.0039
USDBRL / HAR-RV-M vs. HAR-RV-M-CN 0.0000 0.0066 0.0026
USDCAD / HAR-RV-M vs. HAR-RV-M-CN 0.0000 0.0000 0.0015
USDMXN / HAR-RV-M vs. HAR-RV-M-CN 0.0004 0.0129 0.0823
USDMYR / HAR-RV-M vs. HAR-RV-M-CN 0.0369 0.0002 0.0804
USDNOK / HAR-RV-M vs. HAR-RV-M-CN 0.0001 0.0292 0.0001
USDRUB / HAR-RV-M vs. HAR-RV-M-CN 0.0422 - -
USDZAR / HAR-RV-M vs. HAR-RV-M-CN 0.0000 0.0002 0.0000

Both the benchmark and the rival model are estimated by random forests. For both models Clark-West and modified
Diebold-Mariano tests are computed (p-values; robust standard errors). Results are for a recursive estimation window.
Training period = 250 observations. For better readability of the estimation results, the table depicts the p-values that are
smaller than 10% only. The parameter h denotes the forecast horizon. HAR-RV-M = The HAR-RV model is extended to
include the following “moments”: realized skewness, realized kurtosis, realized good variance, realized bad variance, upside
tail risk, downside tail risk, jumps. HAR-RV-M-C = The HAR-RV-M model is extended to include the following domestic and
U.S. climate variables: Temperature, HDD, CDD, precipitation, wind. HAR-RV-M-CM = The HAR-RV-M model is extended to
include the climate-related Google searches and U.S. news.
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Table 5: RMSFE ratios for a fixed estimation window

Exchange rate / benchmark vs. rival model h=1 h=5 h=22

USDAUD / HAR-RV vs. HAR-RV-M 1.0283 1.0431 1.0640
USDBRL / HAR-RV vs. HAR-RV-M 1.0291 1.0502 1.0691
USDCAD / HAR-RV vs. HAR-RV-M 1.0328 1.0602 1.0542
USDMXN / HAR-RV vs. HAR-RV-M 1.0151 1.0357 1.0129
USDMYR / HAR-RV vs. HAR-RV-M 1.0777 1.0900 1.1432
USDNOK / HAR-RV vs. HAR-RV-M 1.0363 1.0352 1.0467
USDRUB / HAR-RV vs. HAR-RV-M 1.0365 1.0265 -
USDZAR / HAR-RV vs. HAR-RV-M 1.0323 1.0443 1.0296
USDAUD / HAR-RV-M vs. HAR-RV-M-C 1.0289 1.032 1.0907
USDBRL / HAR-RV-M vs. HAR-RV-M-C 1.0284 1.0548 1.0604
USDCAD / HAR-RV-M vs. HAR-RV-M-C 1.0275 1.0498 1.0557
USDMXN / HAR-RV-M vs. HAR-RV-M-C 1.0222 1.0434 1.0028
USDMYR / HAR-RV-M vs. HAR-RV-M-C 1.0352 - 1.0485
USDNOK / HAR-RV-M vs. HAR-RV-M-C 1.0257 1.0344 1.0421
USDRUB / HAR-RV-M vs. HAR-RV-M-C 1.0354 1.0125 -
USDZAR / HAR-RV-M vs. HAR-RV-M-C 1.0297 1.0406 1.0179
USDAUD / HAR-RV-M vs. HAR-RV-M-CN 1.0209 1.0192 1.1703
USDBRL / HAR-RV-M vs. HAR-RV-M-CN 1.0268 1.0331 1.0431
USDCAD / HAR-RV-M vs. HAR-RV-M-CN 1.0198 1.0498 1.0601
USDMXN / HAR-RV-M vs. HAR-RV-M-CN 1.0205 1.0142 -
USDMYR / HAR-RV-M vs. HAR-RV-M-CN 1.0722 1.100 1.0880
USDNOK / HAR-RV-M vs. HAR-RV-M-CN 1.0175 1.0147 1.0465
USDRUB / HAR-RV-M vs. HAR-RV-M-CN 1.0417 1.0200 -
USDZAR / HAR-RV-M vs. HAR-RV-M-CN 1.0239 1.0321 -

Both the benchmark and the rival model are estimated by random forests. For both models the root-mean-squared-
forecasting error (RMSFE) is computed. The RMSFE ratio is constructed by dividing the RMSFE of the benchmark model by
the RMSFE of the rival model. A RMSFE ratio larger than unity indicates that the rival model yields more accurate forecasts
than the benchmark model. Results are for a fixed estimation window, where 50% of the sample are used for estimating
the models. For better readability of the estimation results, the table depicts the RMSFE ratios that exceed unity only. The
parameter h denotes the forecast horizon. HAR-RV-M = The HAR-RV model is extended to include the following “moments”:
realized skewness, realized kurtosis, realized good variance, realized bad variance, upside tail risk, downside tail risk, jumps.
HAR-RV-M-C = The HAR-RV-M model is extended to include the following domestic and U.S. climate variables: Temperature,
HDD, CDD, precipitation, wind. HAR-RV-M-CM = The HAR-RV-M model is extended to include the climate-related Google
searches and U.S. news.
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Table 6: RMSFE ratios for a rolling estimation window

Exchange rate / benchmark vs. rival model h=1 h=5 h=22

USDAUD / HAR-RV vs. HAR-RV-M 1.0187 - -
USDBRL / HAR-RV vs. HAR-RV-M 1.0131 - -
USDCAD / HAR-RV vs. HAR-RV-M 1.0219 - -
USDMXN / HAR-RV vs. HAR-RV-M 1.0131 - -
USDMYR / HAR-RV vs. HAR-RV-M 1.0047 - -
USDNOK / HAR-RV vs. HAR-RV-M - - -
USDRUB / HAR-RV vs. HAR-RV-M 1.0059 - -
USDZAR / HAR-RV vs. HAR-RV-M 1.0079 - 1.0046
USDAUD / HAR-RV-M vs. HAR-RV-M-C 1.0118 - -
USDBRL / HAR-RV-M vs. HAR-RV-M-C 1.0047 - -
USDCAD / HAR-RV-M vs. HAR-RV-M-C 1.0157 - 1.0121
USDMXN / HAR-RV-M vs. HAR-RV-M-C 1.0047 - -
USDMYR / HAR-RV-M vs. HAR-RV-M-C - - 1.0039
USDNOK / HAR-RV-M vs. HAR-RV-M-C - - -
USDRUB / HAR-RV-M vs. HAR-RV-M-C 1.0063 - 1.0046
USDZAR / HAR-RV-M vs. HAR-RV-M-C 1.0048 - 1.0462
USDAUD / HAR-RV-M vs. HAR-RV-M-CN 1.0193 1.0014 1.0065
USDBRL / HAR-RV-M vs. HAR-RV-M-CN 1.0133 1.0066 1.0262
USDCAD / HAR-RV-M vs. HAR-RV-M-CN 1.0244 1.0045 1.0237
USDMXN / HAR-RV-M vs. HAR-RV-M-CN 1.0191 - -
USDMYR / HAR-RV-M vs. HAR-RV-M-CN 1.0030 1.0037 1.0052
USDNOK / HAR-RV-M vs. HAR-RV-M-CN - - -
USDRUB / HAR-RV-M vs. HAR-RV-M-CN 1.0074 - -
USDZAR / HAR-RV-M vs. HAR-RV-M-CN 1.0090 1.0110 1.0544

Both the benchmark and the rival model are estimated by random forests. For both models the root-mean-squared-
forecasting error (RMSFE) is computed. The RMSFE ratio is constructed by dividing the RMSFE of the benchmark model by
the RMSFE of the rival model. A RMSFE ratio larger than unity indicates that the rival model yields more accurate forecasts
than the benchmark model. Results are for a rolling-estimation window. Length of the rolling-estimation window = 250
observations. For better readability of the estimation results, the table depicts the RMSFE ratios that exceed unity only. The
parameter h denotes the forecast horizon. HAR-RV-M = The HAR-RV model is extended to include the following “moments”:
realized skewness, realized kurtosis, realized good variance, realized bad variance, upside tail risk, downside tail risk, jumps.
HAR-RV-M-C = The HAR-RV-M model is extended to include the following domestic and U.S. climate variables: Temperature,
HDD, CDD, precipitation, wind. HAR-RV-M-CM = The HAR-RV-M model is extended to include the climate-related Google
searches and U.S. news.
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Table 7: MAFE ratios

Exchange rate / benchmark vs. rival model h=1 h=5 h=22

USDAUD / HAR-RV vs. HAR-RV-M 1.0413 1.0140 1.0191
USDBRL / HAR-RV vs. HAR-RV-M 1.0351 1.0172 1.0063
USDCAD / HAR-RV vs. HAR-RV-M 1.0293 1.0127 -
USDMXN / HAR-RV vs. HAR-RV-M 1.0391 1.0142 -
USDMYR / HAR-RV vs. HAR-RV-M 1.0265 1.0179 1.0119
USDNOK / HAR-RV vs. HAR-RV-M 1.0313 1.0030 -
USDRUB / HAR-RV vs. HAR-RV-M 1.0239 1.0013 -
USDZAR / HAR-RV vs. HAR-RV-M 1.0337 1.0239 1.0063
USDAUD / HAR-RV-M vs. HAR-RV-M-C 1.0407 1.0158 1.0341
USDBRL / HAR-RV-M vs. HAR-RV-M-C 1.0327 1.0273 1.0289
USDCAD / HAR-RV-M vs. HAR-RV-M-C 1.0269 1.0228 1.0215
USDMXN / HAR-RV-M vs. HAR-RV-M-C 1.0406 1.0309 1.0187
USDMYR / HAR-RV-M vs. HAR-RV-M-C 1.0272 1.0342 1.0348
USDNOK / HAR-RV-M vs. HAR-RV-M-C 1.0284 1.0092 1.0225
USDRUB / HAR-RV-M vs. HAR-RV-M-C 1.0186 1.0195 1.0344
USDZAR / HAR-RV-M vs. HAR-RV-M-C 1.0306 1.0307 1.0285
USDAUD / HAR-RV-M vs. HAR-RV-M-CN 1.0419 1.0432 1.1339
USDBRL / HAR-RV-M vs. HAR-RV-M-CN 1.0335 1.0224 1.0376
USDCAD / HAR-RV-M vs. HAR-RV-M-CN 1.0364 1.0505 1.0960
USDMXN / HAR-RV-M vs. HAR-RV-M-CN 1.0513 1.0480 1.0798
USDMYR / HAR-RV-M vs. HAR-RV-M-CN 1.0287 1.0356 1.0433
USDNOK / HAR-RV-M vs. HAR-RV-M-CN 1.0314 1.0303 1.0887
USDRUB / HAR-RV-M vs. HAR-RV-M-CN 1.0209 1.0125 1.0101
USDZAR / HAR-RV-M vs. HAR-RV-M-CN 1.0413 1.0582 1.0972

Both the benchmark and the rival model are estimated by random forests. For both models the mean-absolute-forecasting
error (MAFE) is computed. The MAFE ratio is constructed by dividing the MAFE of the benchmark model by the MAFE
of the rival model. A MAFE ratio larger than unity indicates that the rival model yields more accurate forecasts than
the benchmark model. Results are for a recursive-estimation window. Training period = 250 observations. For better
readability of the estimation results, the table depicts the RMSFE ratios that exceed unity only. The parameter h denotes
the forecast horizon. HAR-RV-M = The HAR-RV model is extended to include the following “moments”: realized skewness,
realized kurtosis, realized good variance, realized bad variance, upside tail risk, downside tail risk, jumps. HAR-RV-M-C =
The HAR-RV-M model is extended to include the following domestic and U.S. climate variables: Temperature, HDD, CDD,
precipitation, wind. HAR-RV-M-CM = The HAR-RV-M model is extended to include the climate-related Google searches and
U.S. news.
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Table 8: Economic benefits of using the climate-risk predictors

Exchange rate / benchmark vs. rival model δ = 1 δ = 3 δ = 5

USDAUD / HAR-RV vs. HAR-RV-M 22.8081 22.216 22.0205
USDBRL / HAR-RV vs. HAR-RV-M 63.9011 62.2258 61.6727
USDCAD / HAR-RV vs. HAR-RV-M 8.9087 8.6790 8.6032
USDMXN / HAR-RV vs. HAR-RV-M 35.4924 34.5656 34.2596
USDMYR / HAR-RV vs. HAR-RV-M 0.8254 0.8043 0.7973
USDNOK / HAR-RV vs. HAR-RV-M 28.1385 27.4038 27.1612
USDRUB / HAR-RV vs. HAR-RV-M 100.2394 97.6172 96.7515
USDZAR / HAR-RV vs. HAR-RV-M 82.7249 80.5287 79.804
USDAUD / HAR-RV-M vs. HAR-RV-M-C 26.5456 25.8565 25.6289
USDBRL / HAR-RV-M vs. HAR-RV-M-C 56.4785 54.9978 54.5089
USDCAD / HAR-RV-M vs. HAR-RV-M-C 8.5492 8.3288 8.2560
USDMXN / HAR-RV-M vs. HAR-RV-M-C 39.9869 38.9427 38.5979
USDMYR / HAR-RV-M vs. HAR-RV-M-C - - -
USDNOK / HAR-RV-M vs. HAR-RV-M-C 40.8051 39.7396 39.3879
USDRUB / HAR-RV-M vs. HAR-RV-M-C - - -
USDZAR / HAR-RV-M vs. HAR-RV-M-C 65.8739 64.125 63.5479
USDAUD / HAR-RV-M vs. HAR-RV-M-CN 7.536 7.3404 7.2758
USDBRL / HAR-RV-M vs. HAR-RV-M-CN 73.6711 71.7396 71.102
USDCAD / HAR-RV-M vs. HAR-RV-M-CN 7.9529 7.7479 7.6802
USDMXN / HAR-RV-M vs. HAR-RV-M-CN 28.2678 27.5296 27.2859
USDMYR / HAR-RV-M vs. HAR-RV-M-CN - - -
USDNOK / HAR-RV-M vs. HAR-RV-M-CN 94.0533 91.5975 90.7867
USDRUB / HAR-RV-M vs. HAR-RV-M-CN 233.6994 227.5864 225.5681
USDZAR / HAR-RV-M vs. HAR-RV-M-CN 47.4598 46.1999 45.7841

Both the benchmark and the rival model are estimated by random forests. Results are for a recursive-estimation window.
Training period = 250 observations. For better readability of the results, the table only depicts positive fees (expressed in
annual basis points) a forecast consumer would be willing to pay for using the forecasts implied by the rival model. The
parameter h denotes the forecast horizon. HAR-RV-M = The HAR-RV model is extended to include the following “moments”:
realized skewness, realized kurtosis, realized good variance, realized bad variance, upside tail risk, downside tail risk, jumps.
HAR-RV-M-C = The HAR-RV-M model is extended to include the following domestic and U.S. climate variables: Temperature,
HDD, CDD, precipitation, wind. HAR-RV-M-CM = The HAR-RV-M model is extended to include the climate-related Google
searches and U.S. news.
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Appendix

Table A1: Comparing random forests with Ridge estimator and an elastic net (RMSFE ratios)

Exchange rate / benchmark vs. rival model h=1 h=5 h=22

USDAUD / HAR-RV-M-C-Ridge vs. HAR-RV-M-C-RF 1.0052 1.0190 1.0299
USDBRL / HAR-RV-M-C-Ridge vs. HAR-RV-M-C-RF 1.8521 1.0383 1.0257
USDCAD / HAR-RV-M-C-Ridge vs. HAR-RV-M-C-RF - 1.0016 1.0302
USDMXN / HAR-RV-M-C-Ridge vs. HAR-RV-M-C-RF 1.0066 1.0195 1.0079
USDMYR / HAR-RV-M-C-Ridge vs. HAR-RV-M-C-RF 1.0009 1.0223 1.0640
USDNOK / HAR-RV-M-C-Ridge vs. HAR-RV-M-C-RF - 1.0116 1.0503
USDRUB / HAR-RV-M-C-Ridge vs. HAR-RV-M-C-RF 2.7294 2.1413 6.4866
USDZAR / HAR-RV-M-C-Ridge vs. HAR-RV-M-C-RF 1.0174 1.0186 1.0190

USDAUD / HAR-RV-M-C-Elastic net vs. HAR-RV-M-C-RF 1.0032 1.0695 1.0508
USDBRL / HAR-RV-M-C-Elastic net vs. HAR-RV-M-C-RF - 1.0126 1.0217
USDCAD / HAR-RV-M-C-Elastic net vs. HAR-RV-M-C-RF - 1.0014 1.0294
USDMXN / HAR-RV-M-C-Elastic net vs. HAR-RV-M-C-RF 1.0189 1.0129 1.0135
USDMYR / HAR-RV-M-C-Elastic net vs. HAR-RV-M-C-RF 1.0017 1.0199 1.0607
USDNOK / HAR-RV-M-C-Elastic net vs. HAR-RV-M-C-RF - 1.0416 1.0574
USDRUB / HAR-RV-M-C-Elastic net vs. HAR-RV-M-C-RF 1.4351 2.1256 4.9324
USDZAR / HAR-RV-M-C-Elastic net vs. HAR-RV-M-C-RF 1.0151 1.0198 1.0188

Both the benchmark and the rival model include the following domestic and U.S. climate variables: Temperature, HDD,
CDD, precipitation, wind. The benchmark model is estimated either by the Ridge estimator or an elastic net. The latter is
computed as the equally weighted combination of the Lasso and the Ridge estimator. The rival model is estimated by random
forests. For both models the root-mean-squared-forecasting error (RMSFE) is computed. The RMSFE ratio is constructed by
dividing the RMSFE of the benchmark model by the RMSFE of the rival model. A RMSFE ratio larger than unity indicates that
the rival model yields more accurate forecasts than the benchmark model. Results are for a recursive estimation window.
Training period = 250 observations. For better readability of the estimation results, the table depicts the RMSFE ratios that
exceed unity only. The parameter h denotes the forecast horizon.
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Table A2: Results of encompassing regressions

Exchange rate / benchmark vs. rival model benchmark/h=1 rival/h=1 benchmnark/h=5 rival/h=5 benchmark/h=22 rival/h=22

USDAUD / HAR-RV vs. HAR-RV-M - 0.0000 - 0.0000 - 0.0000
USDBRL / HAR-RV vs. HAR-RV-M - 0.0000 - 0.0000 - 0.0000
USDCAD / HAR-RV vs. HAR-RV-M - 0.0000 - 0.0000 0.0096 0.0000
USDMXN / HAR-RV vs. HAR-RV-M - 0.0000 - 0.0004 - 0.0007
USDMYR / HAR-RV vs. HAR-RV-M - 0.0000 - 0.0000 - 0.0007
USDNOK / HAR-RV vs. HAR-RV-M - 0.0000 - 0.0159 0.0778 0.0150
USDRUB / HAR-RV vs. HAR-RV-M - 0.0010 0.0856 - 0.0078 -
USDZAR / HAR-RV vs. HAR-RV-M - 0.0000 - 0.0000 0.0094 0.0000
USDAUD / HAR-RV-M vs. HAR-RV-M-C - 0.0000 - 0.0000 - 0.0000
USDBRL / HAR-RV-M vs. HAR-RV-M-C - 0.0000 - 0.0000 - 0.0000
USDCAD / HAR-RV-M vs. HAR-RV-M-C - 0.0000 - 0.0000 - 0.0000
USDMXN / HAR-RV-M vs. HAR-RV-M-C - 0.0000 - 0.0001 - 0.0000
USDMYR / HAR-RV-M vs. HAR-RV-M-C - 0.0000 - 0.0000 - 0.0000
USDNOK / HAR-RV-M vs. HAR-RV-M-C - 0.0000 - - 0.0342 0.0000
USDRUB / HAR-RV-M vs. HAR-RV-M-C - 0.0034 0.0656 - 0.0606 -
USDZAR / HAR-RV-M vs. HAR-RV-M-C - 0.0000 - 0.0000 - 0.0000
USDAUD / HAR-RV-M vs. HAR-RV-M-CN - 0.0000 - 0.0039 - 0.0000
USDBRL / HAR-RV-M vs. HAR-RV-M-CN - 0.0000 - 0.0000 - 0.0000
USDCAD / HAR-RV-M vs. HAR-RV-M-CN - 0.0000 - 0.0000 - 0.0000
USDMXN / HAR-RV-M vs. HAR-RV-M-CN - 0.0000 0.0377 0.0000 - 0.0016
USDMYR / HAR-RV-M vs. HAR-RV-M-CN - 0.0000 - 0.0000 - 0.0000
USDNOK / HAR-RV-M vs. HAR-RV-M-CN - 0.0006 - 0.0142 - 0.0000
USDRUB / HAR-RV-M vs. HAR-RV-M-CN - 0.0095 - - 0.0173 -
USDZAR / HAR-RV-M vs. HAR-RV-M-CN - 0.0000 - 0.0000 - 0.0000

Both the benchmark and the rival model are estimated by random forests. Results are for a recursive-estimation window.
Training period = 250 observations. The encompassing regressions are estimated using the ordinary least squared (OLS)
technique. For better readability of the estimation results (results for the intercept term are not shown), the table depicts the
p-values (based on robust standard errors) that are smaller than 10% only. The parameter h denotes the forecast horizon.
HAR-RV-M = The HAR-RV model is extended to include the following “moments”: realized skewness, realized kurtosis,
realized good variance, realized bad variance, upside tail risk, downside tail risk, jumps. HAR-RV-M-C = The HAR-RV-M
model is extended to include the following domestic and U.S. climate variables: Temperature, HDD, CDD, precipitation,
wind. HAR-RV-M-CM = The HAR-RV-M model is extended to include the climate-related Google searches and U.S. news.

33


	1 Introduction
	2 Methodology
	2.1 Empirical Models
	2.2 Realized Variance and Its Moments

	3 Data
	4 Empirical Results
	4.1 Statistical Gains
	4.2 Utility Gains

	5 Concluding Remarks

