Supplementary Information

Fossorial adaptations in African mole-rats (Bathyergidae) and the unique appendicular phenotype of naked mole-rats

Germán Montoya-Sanhueza, Gabriel Šaffa, Radim Šumbera, Anusuya Chinsamy, Jennifer U. M. Jarvis, Nigel C. Bennett

Contents:

Supplementary Tables (p. 2-28) Supplementary Figures (p. 29) Supplementary Methods (p. 30-31) Supplementary References (p. 32-35)

Abbreviations	
Deltoid tuberositv	DT
Deltopectoral crest	DC
Distal fusion of tibia-fibula	DFTFi
Epicondyles (Humerus)	EH
Fibula	Fi
Femoral head	FH
Humerus	Н
Humeral head	HH
Index of fossorial ability	IFA
Grater trochanter	GT
Grater tubercle	GTu
Lesser trochanter	LT
Olecranon process	OP
Relative position of DT	RDT
Third trochanter	TT
Tibia	Т
Tibio-fibular junction index	TJI
Trochlear notch	TN

SUPPLEMENTARY TABLES

Supplementary Table 1. Total number of bathyergid individuals analyzed in this study (n = 382). Data includes ID code, sex, institution of origin (IO), ontogenetic stage (OS), limb bones and bone superstructures. Outgroup specimens (n = 19) from Petromuridae and Hystricidae were also included. The bones analyzed are humerus (H, n = 380), ulna (U, n = 376), femur (F, n = 323), tibia (T, n = 312), and fibula (Fi, n = 312). Presence/absence of bone superstructures including a projected deltoid tuberosity (DT), olecranon process (OP), third trochanter (TT), and distal tibio-fibular fusion (DFTFi). Some specimens are from captivity (ca). Scanned bones are indicated with an asterisk (*). Sample size for each species: *Bathyergus suillus* (n = 78); *B. janetta* (n = 6); *Heliophobius argenteocinereus* (n = 38); *Georychus capensis* (n = 51); *Cryptomys hottentotus* (n = 53); *Fukomys mechowii* (n = 32); *Fukomys damarensis* (n = 48); *Heterocephalus glaber* (n = 76); *Hystrix africaeaustralis* (n = 18); *Petromus typicus* (n = 1). OS: newborn (0), pup (1), juvenile (2), and adult (3). Sex: males (M) and females (F). Institutions: Kalahari Mole-Rat Project, Kalahari Research Centre (KRC); Department of Biological Sciences, University of Cape Town (UCT); Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria (UP); Department of Zoology, Faculty of Science, University of South Bohemia (USB); Paläontologisches Institut und Museum, Universität Zürich (UZ).

Species	ID Code	Sex	Age	OS	IO	Η	U	F	T-Fi	DT	OP	TT	DFTFi
Bathyergus suillus	219	F		2	UCT	Η	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus suillus	307	F		2	UCT	Η	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus suillus	314	F		3	UCT	Η	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus suillus	333	F		2	UCT	Η	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus suillus	365	F		3	UCT	Η	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus suillus	366	F		3	UCT	Η	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus suillus	377	F		3	UCT	Η	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus suillus	717	F		3	UCT	Η	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus suillus	721	F		3	UCT	Η	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus suillus	911	F		3	UCT	Η	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus suillus	913	F		3	UCT	Η	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus suillus	938	F		3	UCT	Η	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus suillus	982	F		3	UCT	Η	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus suillus	1085	F		3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus suillus	1138	F		3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus suillus	1144	F		3	UCT	Η	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus suillus	1153	F		3	UCT	Η	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus suillus	1155	F		3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus suillus	1163	F		3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes

Bathyergus	1169*	F	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus	1171	F	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus	1332	F	 3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus	1336	F	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus	1373*	F	2	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus	217	М	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
suillus Bathyergus	220	М	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus	223	М	2	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus	300	М	2	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus	313	М	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus	376	М	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus	713	М	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus	765	М	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus	861	М	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus	910	М	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus	964	М	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus	965	М	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus	1039	М	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus	1050	М	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus	1139	М	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus	1154	М	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus	1338	М	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus	1339	М	 3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus	332	М	2	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus	337	М	 2	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus	367	F	2	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus	866	М	2	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus suillus	1245	F	 2	UCT			F	T-Fi			Yes	Yes

Bathyergus suillus	283*	М	2?	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus suillus	F10	F	3	UP	Н	U			Yes	Yes		
Bathyergus suillus	F2	F	3	UP	Н	U			Yes	Yes		
Bathyergus suillus	F5	F	3	UP	Н	U			Yes	Yes		
Bathyergus suillus	F7	F	3	UP	Н	U			Yes	Yes		
Bathyergus suillus	S10*	F	3	UP	Н	U			Yes	Yes		
Bathyergus suillus	S11	F	3	UP	Н	U			Yes	Yes		
Bathyergus suillus	S12	F	3	UP	Н	U			Yes	Yes		
Bathyergus suillus	S13	F	3	UP	Н	U			Yes	Yes		
Bathyergus suillus	S14	F	3	UP	Н	U			Yes	Yes		
Bathyergus suillus	S16	F	3	UP	Н	U			Yes	Yes		
Bathyergus suillus	S17	F	3	UP	Н	U			Yes	Yes		
Bathyergus suillus	S2	F	3	UP	Н	U			Yes	Yes		
Bathyergus suillus	S20	F	3	UP	Н	U			Yes	Yes		
Bathyergus suillus	S3	F	3	UP	Н	U			Yes	Yes		
Bathyergus suillus	S6	F	3	UP	Н	U			Yes	Yes		
Bathyergus suillus	S7*	F	3	UP	Н	U			Yes	Yes		
Bathyergus suillus	S8	F	3	UP	Н	U			Yes	Yes		
Bathyergus suillus	F1	М	3	UP	Н	U	F		Yes	Yes	Yes	
Bathyergus suillus	F4	М	3	UP	Н	U	F		Yes	Yes	Yes	
Bathyergus suillus	S1*	М	3	UP	Н	U	F		Yes	Yes	Yes	
Bathyergus suillus	S15*	М	3	UP	Н	U	F		Yes	Yes	Yes	
Bathyergus suillus	S18	М	3	UP	Н	U	F		Yes	Yes	Yes	
Bathyergus suillus	S19	М	3	UP	Н	U	F		Yes	Yes	Yes	
Bathyergus suillus	S4	M	3	UP	Н	U	F		Yes	Yes	Yes	
Bathyergus suillus	S5	M	3	UP	Н	U	F		Yes	Yes	Yes	
Bathyergus suillus	S9	М	3	UP	Н	U	F		Yes	Yes	Yes	
Bathyergus suillus	GM282*	F	3	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes

Bathyergus	GM283*	F		3	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
suillus Bathyergus suillus	GM284*	М		3	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus suillus	GM285*	F		3	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus janetta	GM005	F		3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus janetta	GM007	М		3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus janetta	GM013	F		3	UCT	Н		F		Yes		Yes	
Bathyergus janetta	GM014	М		3	UCT	Н		F		Yes		Yes	
Bathyergus janetta	GM239	-	2 days	1	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Bathyergus janetta	GM503	-		2?	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu s	GM245	М	a few days		UZ	Н	U	F	T-Fi	Yes	Yes	Yes	No
Heliophobius argenteocinereu s	GM246	F	1 day		UZ	Н	U			Yes	Yes		
Heliophobius argenteocinereu s	GM247	М	~4 days		UZ	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu s	GM248	F	~14 days		UZ	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu s	103	М	2 months		USB	Н	U	F	T-Fi	Yes	Yes	Yes	No
Heliophobius argenteocinereu	77	М	2 months		USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu	20	М	3.5 months		USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu	350*	F	1 month		USB	Н	U	F	T-Fi	Yes	Yes	No	Yes
Heliophobius argenteocinereu	526	М	2 years, 4 months	3	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu	26*	F	1.5 months		USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu	11	F	2.5 months		USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu s	387*	F	at least 5 years	3	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu s	27	F	2 years, 10 months	3	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes

Heliophobius argenteocinereu s	386	М	at least 6 years	3	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu s	8	М	4 years, 9 months	3	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu s	6*	F	at least 1 year, 3 months		USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu s	516	М	at least 8 years, 2 months	3	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu s	361*	F	at least 2 years, 1 month	3	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu s	517	М	at least 2 years, 7 months	3	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu s	585	М	at least 5 years, 7 months	3	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu s	377	М	at least 2 years, 2 months	3	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu s	451	F	at least 2 years, 1 month	3	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu s	5*	F	at least 3 years	3	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu s	18	М	at least 6 years, 8 months	3	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu s	393	М	at least 1 year, 11 months		USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu s	473	F	at least 8 years	3	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu s	476	М	at least 2 years, 10 months	3	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu s	508	F	at least 3 years, 8 months	3	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu s	525	F	2 years, 5 months	3	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu s	492	F	at least 14 years	3	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu s	299*	F	2-3 days old		USB	Н	U	F	T-Fi	Yes	Yes	Yes	No
Heliophobius argenteocinereu s	479*	F	6 years, 10 months	3	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes

Heliophobius argenteocinereu	244	М	at least 2 years, 1 month	3	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu	590*	F	at least 6 years	3	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu s	NB10*	М		3	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu s	NB21*	F		3	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu s	NB05*	М		3	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Heliophobius argenteocinereu s	NB15	F		3	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Georychus capensis	GM528		~2 months	2	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Georychus capensis	GM530		3 days	1	UCT	Н	U			Yes	Yes		
Georychus capensis	JO475*	F	NB21	2	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Georychus capensis	JO402*	М	GM530	3	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Georychus capensis	GM295*	-	JO402	2	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Georychus capensis	GM296*	F	GM295	1	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Georychus capensis	GM297*	F	GM296	2	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Georychus capensis	GM298*	F	GM297	2	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
Georychus capensis	Z4	F	GM298	2	UP	Н	U			Yes	Yes		
Georychus capensis	Z6	F	Z4	3	UP	Н	U			Yes	Yes		
Georychus capensis	Z9	М	Z9	2	UP	Н	U			Yes	Yes		
Georychus capensis	Z10	F	Z10	2	UP	Н	U			Yes	Yes		
Georychus capensis	Z11	F	Z11	3	UP	Н	U			Yes	Yes		
Georychus capensis	Z12	F	Z12	3	UP	Н	U			Yes	Yes		
Georychus capensis	Z22	М	Z22	1	UP	Н	U			Yes	Yes		
Georychus capensis	Z23	F	Z23	2	UP	Н	U			Yes	Yes		
Georychus capensis	Z25	F	Z25	3	UP	Н	U			Yes	Yes		
Georychus capensis	Z27	F	Z27	1	UP	Н	U			Yes	Yes		
Georychus capensis	Z28	М	Z28	1	UP	Н	U			Yes	Yes		

						1				-	1	1	1
Georychus	Z31	F	Z31	3	UP	Н	U			Yes	Yes		
capensis		_				-							
Georychus	Z32	F	Z32	2	UP	Н	U			Yes	Yes		
capensis													
Georychus	Z33	М	Z33	2	UP	Н	U			Yes	Yes		
capensis													
Georychus	Z35	F	Z35	3	UP	Н	U			Yes	Yes		
capensis													
Georvchus	Z36	F	Z36	2	UP	Н	U			Yes	Yes		
capensis													
Georychus	737	F	737	3	UP	н	U			Yes	Ves		
canansis	237	1	237	5	01		Ŭ			105	105		
Georgehus	738	F	738	2	UD	и	TT			Vac	Vac		
Georychus	238	1	250	3	01	11	0			1 05	105		
capensis	7010	N	7010	1	LID	11	TT			V	N/		
Georychus	Z210	M	Z210	1	UP	н	U			Y es	Y es		
capensis				-									
Georychus	Z212	М	Z212	2	UP	Н	U			Yes	Yes		
capensis													
Georychus	Z214	F	Z214	3	UP	Η	U			Yes	Yes		
capensis													
Georychus	Z215	М	Z215	2	UP	Н				Yes			
capensis													
Georvchus	Z216	F	Z216	1	UP	Н	U			Yes	Yes		
canensis		_		-			_						
Georychus	7218	F	7225	2	UP		U				Ves		
capansis	2210	1		2	01		0				103		
Georgehus	7210	м	4.01	2	UD	п	II			Vac	Vac		
Georychus	2219	IVI	AUI	2	U1	11	0			1 05	105		
Coomohua	7225		A 02	2	UD	TT	TT			Var	Vac		
Georychus	LLLS	-	A03	2	Ur	п	0			1 65	1 65		
capensis	4.01	Г	1.07	1	LID		TT	г	T D'	V	X7	N7	17
Georychus	A01	F	A06	1	UP	н	U	F	1-F1	Yes	Y es	Yes	Yes
capensis						-							
Georychus	A03	F	A19	1	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
capensis													
Georychus	A06	Μ	A35	1	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
capensis													
Georychus	A19	Μ	A40	2	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
capensis													
Georychus	A35	F	A43	2	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
capensis													
Georvchus	A40	М	A51	2	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
capensis													
Georychus	A43	F	A95	2	UP	н	U	F	T-Fi	Ves	Yes	Ves	Yes
canensis	1115	1	1155	2	01		Ŭ		1 1 1	105	105	105	105
Gaomahus	4.51	F	407	2	UD	и	TT	F	TE	Vac	Vac	Vac	Vac
Georychus	AJI	1	A7/	2	01	11	0	1.	1-11	1 05	105	105	105
capensis	1.05	Г	4.00	2	LID	11	TT	Г	T D'	V	N/	37	N/
Georychus	A95	r	A99	5	UP	Н	U	Г	1-F1	res	r es	r es	res
capensis			1.100	-	1								
Georychus	A97	F	A100	3	UP	H	U	F	T-Fi	Yes	Yes	Yes	Yes
capensis													
Georychus	A99	F	A115	3	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
capensis													
Georychus	A100	F	A118	3	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
capensis													
Georychus	A115	М	A128	3	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
capensis							1	1					

Georychus	A118	М	A130	3	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
capensis Georychus	A 128	F	A 131	3	LID	н	II	F	T_Fi	Ves	Vec	Ves	Ves
capensis	A120	1	AIJI	5	01	11	U	1	1-11	105	105	105	105
Georychus	A130	F		3	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
capensis													
Georychus	A131	F		2	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
<i>capensis</i>	CM102	Б		2	UCT	п	II	Б	ты	Vac	Vac	Vas	Vas
hottentotus	GIVI102	1		5	001	11	0	T.	1-11	105	105	1 05	1 05
Cryptomys	GM103	М		3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus													
Cryptomys	GM104	М		3	UCT	Η	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus	CM105	М		2	UCT	п	II	Б	ты	Vac	Vas	Vas	Vas
hottentotus	GM105	IVI		5	001	11	0	T.	1-11	105	105	105	1 05
Cryptomys	GM106*	М		3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus													
Cryptomys	GM107	М		2	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus	CM108	Б		2	UCT	п	II	Б	ты	Vac	Vas	Vas	Vas
hottentotus	GM108	г		3	001	п	0	г	1-11	1 65	1 68	1 05	1 05
Cryptomys	GM109	М		3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus													
Cryptomys	GM110	М		3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus	CM111	Б		2	UCT	п	TT	Б	ть	Var	Var	Var	Var
hottentotus	GMITT	Г		3	001	п	U	Г	1-F1	res	res	res	res
Cryptomys	GM112	F		3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus													
Cryptomys	GM113	F		2	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus	CM114	Б		2	UCT	11	TT	Б	ть	Var	Var	Var	Var
hottentotus	GM114	г		2	001	п	0	г	1-11	1 65	1 68	1 05	1 05
Cryptomys	GM115*	М		3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus													
Cryptomys	GM116	-		3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus	GM117	М		2	UCT	п	II	F	TE	Vac	Vac	Vac	Vac
hottentotus	GWITT/	IVI		5	001	11	0	1.	1-11	105	105	105	105
Cryptomys	GM118	F		2	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus													
Cryptomys	GM119*	М		2	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
nottentotus Cryptomys	GM120	F		2	UCT	н	IT	F	T-Fi	Ves	Ves	Ves	Ves
hottentotus	GM120	1		2	001	11	C	1	1 1 1	103	103	103	103
Cryptomys	GM121*	М		2	UCT	Η	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus													
Cryptomys	GM122	F		3	UCT	H	U	F	T-Fi	Yes	Yes	Yes	Yes
Cryptomys	GM123*	М		3	UCT	н	II	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus	011125	111		5		11		1		100	100	100	105
Cryptomys	GM124	F		2	UCT	Η	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus								-					
Cryptomys	GM125	F		3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
nonemonus		1	1			1				1		1	

	C) (10(м	2	LICT	TT	TT	Г	T F '	17	37	17	N 7
Cryptomys	GM126	M	3	UCI	н	U	F	1-F1	Yes	Yes	Yes	Yes
hottentotus	G) (105			LIGT							**	X 7
Cryptomys	GM127	Μ	3	UCT	Н	U	F	T-F1	Yes	Yes	Yes	Yes
hottentotus												
Cryptomys	GM128	F	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus												
Cryptomys	GM129*	М	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus												
Cryptomys	GM130	F	2	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus	011100	-	-	001		0	-		100	1.00	1.00	1 45
Cryptomys	GM131	М	2	UCT	н	ΙI	F	T_Fi	Ves	Ves	Ves	Vec
<i>Cryptomys</i>	GWIIJI	11/1	2	001	11	0	1	1-11	105	105	105	105
nonemotus	CN(122*	м	2	UCT	TT	TT	Б	T D'	V	V	V	V
Cryptomys	GM132*	M	3	UCI	н	U	F	1-F1	Y es	Y es	res	r es
hottentotus	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-		TIOT			-					
Cryptomys	GM133	F	3	UCT	Н	U	F	T-F1	Yes	Yes	Yes	Yes
hottentotus												
Cryptomys	GM134	М	2	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus												
Cryptomys	GM135	Μ	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus												
Cryptomys	GM136	F	2	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus												
Cryptomys	GM137	М	2	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus	011157		-	001		Ũ	-		105	105	105	105
Cupatomas	GM128	М	2	UCT	п	TI	Б	ты	Vac	Vac	Vac	Vac
<i>Crypiomys</i>	UN1150	IVI	5	001	11	0	1.	1-11	105	105	105	105
nonemotus	CM120	м	2	LICT	TT	TT	Б	T D'	V	V	V	V
Crypiomys	GM139	IVI	2	UCI	п	U	Г	1-F1	res	res	res	res
nottentotus	G1 (1 40			LIGT			-		* 7		**	.
Cryptomys	GM140	Μ	3	UCT	н	U	F	1-F1	Yes	Yes	Yes	Yes
hottentotus			_									
Cryptomys	GM141	F	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus												
Cryptomys	GM142	М	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus												
Cryptomys	GM143	F	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus												
Cryptomys	GM144	F	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus	0	-	5	001		0	-		1.00	1.00	1.00	1 - 5
Cryptomys	GM145*	М	3	UCT	н	U	F	T-Fi	Ves	Ves	Ves	Ves
hottentotus	0.01110		5	001		Ũ	-		105	105	105	105
Cryptomys	GM146	F	3	UCT	н	ΙI	F	T_Fi	Ves	Ves	Ves	Vec
hottentotus	011140	1	5	001	11	0	1	1-11	105	105	105	105
nonemotus	CM147	Б	2	UCT	TT	TT	Б	T D'	V	V	V	V
Cryptomys	GM14/	Г	3	UCI	п	U	Г	1-F1	res	res	res	res
nottentotus	C) (140		2	LICT			Б		X 7	37	37	N 7
Cryptomys	GM148	Μ	2	UCT	н	U	F	T-F1	Yes	Yes	Yes	Yes
hottentotus												
Cryptomys	GM149	F	2	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus												
Cryptomys	GM150*	М	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus												
Cryptomys	GM151	F	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus												
Cryptomys	GM152*	М	3	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus			-				1		5			
Cryptomys	GM153		2	ИСТ	н	I	F	T-Fi	Ves	Ves	Ves	Ves
hottentotus	51411.55		Ĺ		11		1	1-11	103	103	103	1 00
nonemons	1		1	1	1	1	1	1	1		İ	1

Cryptomys	GM154	F		2	UCT	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
hottentotus													
Fukomys	227	F	1 day	1	USB	Н	U	F	T-Fi	Yes	Yes	Yes	No
mechowii								_					
Fukomys	228*	М	1 day	1	USB	Н	U	F	T-Fi	Yes	Yes	Yes	No
mechowii		-			LIGD			-					
Fukomys	146	F	2 days	1	USB	Н	U	F	T-Fi	Yes	Yes	Yes	No
mechowii	1.40				LIGD			F					N 7
Fukomys	148	Μ	l day	1	USB	Н	U	F	T-F1	Yes	Yes	Yes	No
mechowii	1.4.5	Г	5 1	1	LICD	TT	TT	Г		37	NZ	37	N7
FUKOMYS	145	Г	5 days	1	USB	Н	U	Г	1-F1	Yes	Y es	Yes	r es
<i>mechowii</i>	147	Б	2 davia	1	LICD	TT	TI	Б	тЕ	Var	Var	Var	Var
F ukomys machowij	14/	Г	5 days	1	USD	п	U	Г	1-11	res	res	res	res
Fukomus	50	М	2 days	1	LISB	ц	II	F	TE	Vac	Vac	Vac	No
Tukomys machowii	39	11/1	2 days	1	USD	11	0	I.	1-11	1 05	105	1 05	INU
Fukomys	154	F	2 days	1	USB	н	II	F	T_Fi	Ves	Ves	Ves	Ves
mechowii	134	1	2 days	1	050	11	0	1.	1-11	105	105	105	105
Fukomys	55	F	4 days	1	USB	н	II	F	T-Fi	Ves	Ves	Ves	No
mechowii	55	1	+ days	1	050	11	U	1	1-11	103	105	103	110
Fukomys	58	М	4 days	1	USB	Н	U	F	T-Fi	Ves	Ves	Ves	Ves
mechowii	50	101	1 duys	1	COD		Ŭ	1	1 1 1	105	105	105	105
Fukomys	125	F	1 month	1	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
mechowii	120	1	1 monun	1	CSD		Ŭ			105	105	105	105
Fukomys	167	М	21 days	1	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
mechowii	107			-	0.52			-		1.00	1.00	1.05	1.05
Fukomvs	36*	М	5 davs	1	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
mechowii			- 5										
Fukomys	45	F	9 days	1	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
mechowii			5										
Fukomys	153*	М	21 days	1	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
mechowii													
Fukomys	78*	Μ	1 month, 11 days	1	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
mechowii													
Fukomys	123	F	4-5 months?	2	USB	Η	U	F	T-Fi	Yes	Yes	Yes	Yes
mechowii													
Fukomys	54	F	17 days	1	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
mechowii	11.6				LIGD			-					
Fukomys	116	F		1	USB	Н	U	F	T-F1	Yes	Yes	Yes	No
mechowii	1.4.4		4 1	2	LICD	TT	TT	Г		NZ	NZ	V	N7
Fukomys	14*	М	4 months	2	USB	Н	U	F	1-F1	Yes	Yes	Yes	Yes
<i>mechowll</i>	22	Б	15	2	LICD	TT	TT	Б	T E:	Vaa	Vaa	Vaa	V
Fukomys	23	Г	15 months	2	USB	п	U	Г	1-F1	res	res	res	res
Fukomus	170*	м	12 months	2	LICD	п	TI	Б	ты	Vac	Vac	Vac	Vac
Tukomys machowii	1/9	11/1	15 monuis	2	USD	11	0	I.	1-11	105	105	105	105
Fukomys	3	F	1 vear 10	3	USB	н	I	F	T_Fi	Ves	Ves	Ves	Ves
nechowii	5	1	months	5	050	11		1	1-1.1	105	105	105	103
Fukomys	1	F	4 years 4 months	3	USB	н	I	F	T-Fi	Yes	Yes	Yes	Yes
mechowii		1			0.50	11		1		100	105	100	100
Fukomvs	177*	М	2 years, 3 months	3	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
mechowii			<i>j</i> =, <i>e</i> memili	-			-	-					
Fukomvs	497	F	13 years, 6	3	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
mechowii		1	months		_		1		_	_	_		
Fukomys	478*	М	3 years, 2 months	3	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
mechowii													

Fukomys	494	F	7 years, 1 month	3	USB	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
mechowii		_						_					
Fukomys	589	F	10 years, 7	3	USB	Н	U	F	T-F1	Yes	Yes	Yes	Yes
mechowii	0.40*	1	months	2	LICD			Б		N 7	37	N 7	N 7
Fukomys	242*	М	3 years	3	USB	Н	U	F	1-F1	Yes	Yes	Yes	Yes
mechowii	2*	1	1 0 1	2	LICD			Б		N 7	37	37	N 7
Fukomys	2*	М	I year, 8 months	3	USB	Н	U	F	1-F1	Yes	Yes	Yes	Yes
<i>mechowii</i>	521		1	2	LICD	TT	TT	Б	T E	V	V	V	V
Fukomys	551	-	1 year, 5 months	3	USB	н	U	Г	1-F1	Y es	Y es	Y es	r es
<i>mechowil</i>	ND227	Б		2	LID	TT	TT	Б	T E:	Vaa	Vaa	Vaa	V
Fukomys	NB227	Г		3	UP	п	U	Г	1-F1	res	res	res	res
Eukomus	ND228	Б		2	LID	п	II	Б	ты	Vac	Vac	Vac	Vas
r ukomys damaransis	IND220	г		5	Ur	п	0	Г	1-11	1 65	1 65	1 65	1 65
Eukomus	NB220	F		2	TID	н	II	F	T_Fi	Ves	Ves	Ves	Vec
damarensis	ND229	1		2	01	11	0	1.	1-11	105	105	105	105
Fukomys	NB230*	М		1_22	LIP	н	II	F	T-Fi	Ves	Ves	Ves	Ves
damarensis	110250	111		12.	01		Ŭ	1	1 1 1	105	105	105	105
Fukomys	NB231*	М		2	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
damarensis	110201			-	01		Ŭ	1		105	105	105	105
Fukomvs	NB232*	М		1	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
damarensis				-			_	_					
Fukomvs	NB233*	М		1	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
damarensis													
Fukomvs	NB238	-		3	UP	Н	U			Yes	Yes		
damarensis													
Fukomys	NB422	М	1 day	1	UP	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
damarensis													
Fukomys	NB423	-	1 day	1	UP	Η	U	F	T-Fi	Yes	Yes	Yes	No
damarensis			-										
Fukomys	GAP315	F		3	UCT	Η	U			Yes	Yes		
damarensis													
Fukomys	D11	Μ		3	UP	Н	U			Yes	Yes		
damarensis													
Fukomys	D12	Μ		3	UP	Н	U			Yes	Yes		
damarensis													
Fukomys	D13	F		3	UP	Н	U			Yes	Yes		
damarensis	244												
Fukomys	D14	М		3	UP	Н	U			Yes	Yes		
damarensis	D15	Г		2	LID	TT	TT			37	37		
r ukomys	כום	г		5	UP	Н	U			res	res		
aamarensis	D16	м		2	LID	TT	TT			Vaa	Vaa		
FUKOMYS	D10	IVI		3	UP	п	U			res	res		
Eukomus	D17	м		2	LID	п	II			Vac	Vac		
1 unomys damaronsis		11/1		5	Ur	11				105	105		
Fukomys	D18	F		3	TID	н	II			Ves	Ves		
damarensis		1		5		11				103	105		
Fukomys	D19	F		3	UP	Н	U			Yes	Yes		
damarensis	2.17	1								1.05	1.00		
Fukomvs	HD2	-		2-3?	UP	Н	U			Yes	Yes		
damarensis					_	1	-						
Fukomys	FD5	-		2	UP	Н	U	1		Yes	Yes		
damarensis						1							
Fukomys	GM039	-		1	UP	Н	1			Yes			
damarensis													

Fukomys	G3F035	F	1 Day	1	KRC	Η	U	F	T-Fi	Yes	Yes	Yes	No
Eukomys	G3M036	м	1 Dav	1	KRC	н	IJ	F	T-Fi	Ves	Ves	Ves	Ves
damarensis (ca)	*	141	1 Day	1	KKC	11	U	1	1-11	103	103	103	105
Fukomys	G4F030	F	1 Month. 29	1	KRC	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
damarensis (ca)	0.1.000	-	Davs	-	11110		0	-		1.00	1.05	1.00	
Fukomvs	G4F042	F	13 Months, 10	3	KRC	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
damarensis (ca)			Days										
Fukomys	G4M018	М	30 Months, 28	3	KRC	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
damarensis (ca)			Days										
Fukomys	G4M029	Μ	1 Month, 10	1	KRC	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
damarensis (ca)			Days										
Fukomys	G4M034	Μ	20 Months, 27	3	KRC	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
damarensis (ca)	*		Days										
Fukomys	G4M036	М	1 Month, 29	1	KRC	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
damarensis (ca)			Days	-				_					
Fukomys	G4M039	М	18 Months, 21	3	KRC	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
damarensis (ca)	*	3.6	Days		WDG			F					
Fukomys	G4M041	М	10 Months, 14	2	KRC	Н	U	F	T-F1	Yes	Yes	Yes	Yes
damarensis (ca)	*	N	Days	2	VDC	11	TT	Г		N/	17	N/	N
Fukomys	G4M047	М	7 Months, 0 Days	2	KRC	н	U	F	I-F1	Yes	Yes	Yes	Yes
<i>damarensis</i> (ca)	* E2M012*	м		1	VDC	TT	TI	Б	T E	V	V	V	V
Fukomys	F2M012*	M		1	KRU	н	U	Г	1-F1	Y es	Y es	Y es	r es
aamarensis	E2E012	Б		1	VDC	ш	TT	Б	тЕ	Var	Var	Var	Var
Fukomys damaransis	F2F013	Г		1	KKU	п	U	Г	1-F1	res	res	res	res
Eukomus	G7E013	Е		2	KPC	и	II	F	TE	Vac	Vac	Vac	Vac
damaransis	0/1/013	1		2	KKC	11	0	1.	1-11	1 05	1 05	1 05	105
Fukomys	F6F002	F		3	KRC	н	U	F	T-Fi	Ves	Ves	Ves	Ves
damarensis	101002	1		5	Rice	11	U	1	1 1 1	105	105	105	103
Fukomvs	G4M008	М		3	KRC	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
damarensis	*			-				_					
Fukomys	G5F003	F		3	KRC	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
damarensis													
Fukomys	L29F002	F		3	KRC	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
damarensis													
Fukomys	G4F012	F		3	KRC	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
damarensis													
Fukomys	G4F002	F		3	KRC	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
damarensis													
Fukomys	G4M009	М		3	KRC	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
damarensis	*			-				_					
Fukomys	G3M007	М		3	KRC	Н	U	F	T-Fi	Yes	Yes	Yes	Yes
damarensis	C 41 (001	N		2	VDC	11	TT	Г		37	N/	V	N
Fukomys	G4M001	М		3	KRC	Н	U	Г	1-F1	Yes	Yes	Yes	Y es
aamarensis	C2M001	м		2	VDC	TT	TT	Б	T E:	Vaa	Vaa	Vaa	V
г икотуs damanaraia	300001 *	IVI		3	KKU	н	U	г	1-F1	res	res	res	res
Eukomus	· 72M006*	м		2	VDC	Ш	TT	Б	тЕ	Var	Var	Var	Var
1 unomys damarensis	Z210000.	141		5	KKU	п		r	1-11	1 05	1 05	1 05	1 05
Heteroconhalus	11-402	-	3 days	1	ИСТ	н	I	F	T-Fi	No	Ves	Ves	No
olaher (ca)	JJ-702	-	Juays	1		11		L .	1-11	110	105	103	110
Heterocenhalus	JI-405	-	Perinatal	0	UCT	н	U	F	T-Fi	No	Yes	Yes	No
glaber (ca)	00 100		- ormanur	Ŭ		11		-			100	1 00	1,0
Heterocenhalus	JJ-416	-	2 Months. 2 days	1-2?	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
glaber (ca)	-		,, -		_				_			_	

Heterocephalus glaber (ca)	JJ-417	-	5 days	1	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus	JJ-557	-	Juvenile	1?	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus	JJ-559	-	Perinatal	0	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus	JJ-560	-	Perinatal	0	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus	JJ-001	F	~1 year, 6	2	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus	JJ-002	-		2	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus	JJ-008	F	~10 years	3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus	JJ-009	М		3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus	JJ-010	-	~4 months	1	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus	JJ-045*	М		2	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus	JJ-046*	F		2	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus	1200-047	-		2	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus	1200-048	М		3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus	1200-049	F		3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus	1200-050	М		3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus	1200-051	F		3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus	1200-	М		3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
<i>glaber</i> (ca) <i>Heterocephalus</i>	1200-053	М		3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
glaber (ca) Heterocephalus	1200-054	F		3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
glaber (ca) Heterocephalus	1200-055	М		3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
glaber (ca) Heterocephalus	1200-056	-		3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
glaber (ca) Heterocephalus	1200-057	М		3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
glaber (ca) Heterocephalus	1200-058	М		3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
glaber (ca) Heterocephalus	1200-059	F		3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
glaber (ca) Heterocephalus	1200-	М		3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
glaber (ca) Heterocephalus	060* 1200-	М		3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
glaber (ca) Heterocephalus	061* 1200-063	F		3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
glaber (ca) Heterocephalus	1200-064	F		3	UCT	H	U	F	T-Fi	No	Yes	Yes	No
glaber (ca)													

Heterocephalus glaber (ca)	1200-065	F	3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus glaber (ca)	1200-066	-	3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus glaber (ca)	1200- 067*	F	2	UCT	Η	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus glaber (ca)	1200-068	F	2	UCT	Н		F	T-Fi	No		Yes	No
Heterocephalus glaher (ca)	1200-069	-	3	UCT	Н	U	F	T-Fi	No	Yes	Yes	Yes
Heterocephalus glaber (ca)	1000-070	F	2	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus glaber (ca)	1000-071	F	3	UCT	Η	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus glaber (ca)	1000-073	М	3	UCT	Η	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus glaber (ca)	1000-074	М	3	UCT	Η	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus glaber (ca)	1000-075	-	3	UCT	Η	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus glaber (ca)	1000-076	F	3	UCT	Η	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus glaber (ca)	1000-077	F	3	UCT	Η	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus glaber (ca)	1000-078	F	3	UCT	Η	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus glaber (ca)	1000-079	F	3	UCT	Η	U	F	T-Fi	No	Yes	Yes	Yes
Heterocephalus glaber (ca)	1000-080	F	3	UCT	Η	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus glaber (ca)	1000- 081*	М	3	UCT	Η	U	F	T-Fi	No	Yes	Yes	Yes
Heterocephalus glaber (ca)	1000- 082*	М	3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus glaber (ca)	1000-083	F	3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus glaber (ca)	1000-084	F	3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus glaber (ca)	1000-085	М	3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus glaber (ca)	1000-086	F	3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus glaber (ca)	5000-087	М	3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus glaber (ca)	5000- 088*	М	2	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus glaber (ca)	5000-091	F	3	UCT	Η	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus glaber (ca)	5000- 092*	М	3	UCT	Η	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus glaber (ca)	5000-093	F	3	UCT	Η	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus glaber (ca)	5000-094	М	3	UCT	Η	U	F	T-Fi	No	Yes	Yes	No
Heterocephalus glaber (ca)	5000-095	М	2	UCT	Н	U	F	T-Fi	No	Yes	Yes	No

Heterocephalus	5000-096	F	3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
glaber (ca)												
Heterocephalus	5000-097	F	3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
glaber (ca)	5000.008	F	2	UCT	и	II	F	TE	No	Vac	Vac	No
alaber (ca)	5000-098	г	5	001	11	0	I.	1-11	INU	105	105	INO
Heterocenhalus	5000-099	М	3	UCT	н	U	F	T-Fi	No	Ves	Ves	No
glaber (ca)	5000 077	141	5	001	11	U	1	1 1 1	110	103	103	110
Heterocephalus	5000-100	F	3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
glaber (ca)												
Heterocephalus	5000-	М	3	UCT	Н	U	F	T-Fi	No	Yes	Yes	No
glaber (ca)	101*											
Heterocephalus	GM498	F	3	UP	Н	U	F	T-Fi	No	Yes	Yes	No
glaber (ca)												
Heterocephalus	GM499	М	3?	UP	Н	U	F	T-Fi	No	Yes	Yes	No
glaber (ca)	G1 (500	0	20	LID		T T	Б	T F '	N T	\$7	37),
Heterocephalus	GM500	?	3?	UP	Н	U	F	T-F1	No	Yes	Yes	No
glaber (ca)	CM501	Б	29	UD	п	TT	Б	тБ	No	Vas	Vac	No
alaber (ca)	01/1301	Г	5:	Ur	п	0	г	1-11	INO	1 65	105	INO
Heterocenhalus	GM505	М	39	UP	н	U	F	T-Fi	No	Ves	Yes	No
glaber (ca)	GM505	141	5.	01	11	U	1	1 1 1	110	103	103	110
Heterocephalus	GM506	F	3	UP	Н	U	F	T-Fi	No	Yes	Yes	No
glaber (ca)			-									
Heterocephalus	GM507	F	3?	UP	Н	U	F	T-Fi	No	Yes	Yes	No
glaber (ca)												
Heterocephalus	GM508	F	3?	UP	Н	U	F	T-Fi	No	Yes	Yes	No
glaber (ca)												
Heterocephalus	GM509	F	3?	UP	Н	U	F	T-Fi	No	Yes	Yes	No
glaber (ca)	G) (510		20	LID		* *	F					
Heterocephalus	GM510	F	3?	UP	Н	U	F	T-F1	No	Yes	Yes	No
glaber (ca)	GM511	F	29	IID	и	II	F	TE	No	Vac	Vac	No
alaber (ca)	GWIJII	Г	5:	Ur	п	0	г	1-11	INO	1 65	105	INO
Hystrix	38634			IZIK	Н	U	F	T-Fi	Yes	Yes	No	No
africaeaustralis	50051			0		Ŭ	-	1 1 1	105	105	110	110
Hystrix	36199			IZIK	Н	U	F	T-Fi	Yes	Yes	No	No
africaeaustralis				0								
Hystrix	38502			IZIK	Н	U	F	T-Fi	Yes	Yes	No	No
africaeaustralis				0								
Hystrix	38536			IZIK	Н	U	F	T-Fi	Yes	Yes	No	No
africaeaustralis				0								
Hystrix	36738			IZIK	Н	U	F	T-Fi	Yes	Yes	No	No
africaeaustralis	25099				TT	TT	Б	T E:	Vaa	Var	N-	N
Hysirix africacaustralis	33988				п	U	Г	1-F1	res	res	NO	INO
Hystrix	30666			1716	н	II	F	T_Fi	Ves	Ves	No	No
africaeaustralis	57000			0	11		T .	1-1,1	105	105	110	110
Hystrix	40427			IZIK	Н	U	F	T-Fi	Yes	Yes	No	No
africaeaustralis				0								
Hystrix	37705			IZIK	Н	U	F	T-Fi	Yes	Yes	No	No
africaeaustralis				0								
Hystrix	40403			IZIK	Н	U	F	T-Fi	Yes	Yes	No	No
africaeaustralis				0	<u> </u>							
Hystrix	35137			IZIK	Н	U	F		Yes	Yes	No	
africaeaustralis				0								

Hystrix africaeaustralis	40310		IZIK O	Н	U	F	T-Fi	Yes	Yes	No	No
Hystrix	36139		IZIK	Н	U			Yes	Yes		
africaeaustralis			0								
Hystrix	38525		IZIK	Н	U	F	T-Fi	Yes	Yes	No	No
africaeaustralis			0								
Hystrix	40429		IZIK	Н	U	F	T-Fi	Yes	Yes	No	No
africaeaustralis			0								
Hystrix	40744		IZIK	Н	U	F	T-Fi	Yes	Yes	No	No
africaeaustralis			0								
Hystrix	36060		IZIK	Н	U	F	T-Fi	Yes	Yes	No	No
africaeaustralis			0								
Hystrix	38256		IZIK	Н	U	F	T-Fi	Yes	Yes	No	No
africaeaustralis			0								
Petromus	40790		IZIK	Н	U	F	T-Fi	Yes	Yes	No	No
typicus			0								

Supplementary Table 2. Comparison of the out-of-sample predictive score by means of the Widely Applicable Information Criterion (WAIC) of models with and without body mass (BM). SE gives an approximate standard error of each score, Δ_i WAIC gives the difference between the *i*th model and the model with the lowest WAIC, Δ_i SE gives the approximate standard error of the difference between the *i*th model and the model with the lowest WAIC, and *wi* is the weight of the *i*th model and indicates a relative support for that model. Model with a subscript *I* indicates a model without BM (i.e. intercept-only), and model with a subscript BM is a model with BM. Relative position of the deltoid tuberosity (RDT); Index of fossorial ability (IFA); Tibio-fibular junction index (TJI).

Inde	Model	WAIC (SE)	$\Delta_i WAIC$		
х				$\Delta_i SE$	W_i
RDT					
	RDT_I	-572.71 (16.62)	0	NA	0.61
	RDT _{BM}	-571.78 (16.86)	0.93	2.38	0.39
TJI					
	TJI_I	-467.85 (20.04)	0	NA	0.62
	TJI _{BM}	-466.85 (21.03)	1.01	3.02	0.38
IFA					
	IFA _{BM}	-627.95 (24.41)	0	NA	0.96
	IFAI	-621.64 (24.64)	6.31	4.43	0.04

Supplementary Table 3. Summary of the phylogenetic varying effects regression with estimates of population-level parameters for three morpho-functional indices. Model for each index includes estimate of intercept mean (μ_{α}) and slope mean (μ_{β}), as well as estimates of phylogenetic (σ_{phy}) and species-specific (σ_{spp}) components, with 89% compatibility intervals (CI) in square brackets. Relative position of the deltoid tuberosity (RDT); Index of fossorial ability (IFA); Tibio-fibular junction index (TJI).

Inde	μ_{α} [89% CI]	μ_{β} [89% CI]	$\sigma_{phy_{\alpha}}$ [89% CI]	$\sigma_{phy_{\beta}}[89\% \text{ CI}]$	σ_{spp} [89% CI]
Х				. , ,	* *
RDT	-0.58 [-0.70, -0.45]	0.01 [-0.01, 0.03]	0.02 [0.00, 0.09]	0.00 [0.00, 0.00]	0.07 [0.00, 0.19]
TJI	-0.68 [-0.82, -0.51]	0.01 [-0.01, 0.04]	0.03 [0.00, 0.13]	0.00 [0.00, 0.00]	0.08 [0.01, 0.24]
IFA	-1.31 [-1.49, -1.05]	0.02 [-0.01, 0.06]	0.06 [0.00, 0.23]	0.00 [0.00, 0.01]	0.11 [0.01, 0.33]

Supplementary Table 4. Summary of the phylogenetic varying effects regression for three morpho-functional indices. Each species *j* has its own estimate of intercept (α_j) and slope (β_j), with 89% compatibility intervals (CI) in square brackets. Relative position of the deltoid tuberosity (RDT); Index of fossorial ability (IFA); Tibio-fibular junction index (TJI).

Index	Species	α_i [89% CI]	β_i [89% CI]
RDT			
	B. suillus	-0.58 [-0.71, -0.45]	0.01 [-0.01, 0.03]
	C. hottentotus	-0.60 [-0.74, -0.47]	0.02 [0.00, 0.05]
	F. damarensis	-0.60 [-0.73, -0.46]	0.00 [-0.02, 0.02]
	F. mechowii	-0.63 [-0.80, -0.49]	0.01 [-0.01, 0.04]
	G. capensis	-0.58 [-0.70, -0.45]	0.01 [-0.01, 0.03]
	H. argenteocinereus	-0.53 [-0.66, -0.37]	0.00 [-0.02, 0.03]
TJI			
	B. suillus	-0.63 [-0.80, -0.44]	0.01 [-0.01, 0.04]
	C. hottentotus	-0.71 [-0.88, -0.55]	0.02 [-0.01, 0.05]
	F. damarensis	-0.66 [-0.82, -0.47]	0.00 [-0.03, 0.03]
	F. mechowii	-0.69 [-0.86, -0.51]	0.01 [-0.02, 0.04]
	G. capensis	-0.72 [-0.89, -0.56]	0.02 [-0.01, 0.04]
	H. argenteocinereus	-0.73 [-0.92, -0.56]	0.02 [0.00, 0.06]
IFA			
	B. suillus	-1.25 [-1.49, -0.94]	-0.03 [-0.07, 0.01]
	C. hottentotus	-1.41 [-1.69, -1.17]	0.04 [0.00, 0.10]
	F. damarensis	-1.41 [-1.67, -1.17]	0.04 [0.00, 0.09]
	F. mechowii	-1.29 [-1.53, -0.99]	0.02 [-0.03, 0.06]
	G. capensis	-1.40 [-1.62, -1.17]	0.02 [-0.01, 0.06]
	H. argenteocinereus	-1.31 [-1.53, -1.05]	0.02 [-0.02, 0.07]
	H. glaber	-1.36 [-1.54, -1.16]	0.02 [-0.01, 0.06]

Supplementary Table 5. Bone superstructures analyzed in this study and their fossorial functional significance. Data obtained from several sources (see Supplementary References 1-23).

Bone	Character	Morpho-Function	References
Humerus (Stylopod)	Deltoid tuberosity (DT)	An enlarged, protuberant and distally located DT increases the area for the insertion of <i>mm. deltoidei</i> and <i>mm. pectorales</i> , and increases the in-lever arm distance from muscle attachment to joint. This produces a powerful stroke (flexion) of the humerus on the scapula and subsequent retraction of the arm during parasagittal scratch-digging.	1,6,7,9,10,11,13,14,20,2 1
Ulna (Zeugopod)	Olecranon process (OP)	An enlarged OP increases the area for the insertion of the <i>mm. triceps brachii</i> , hence increase the in-lever arm of forearm extensors and enables greater outforces during scratch-digging.	4,8,17,22,23
Femur (Stylopod)	Third trochanter (TT)	A mediolaterally enlarged and distally positioned TT increases the insertion area for the <i>m. gluteus superficialis</i> for powerful leg extension and some degree of abduction (to brace against a tunnel or pushing back soil while digging), as well as increases medioalteral cortical thicknss of the diaphysis, which reduces bending strains on the femoral shaft due to rearward motion.	12,16,18
Tibia-Fibula (Zeugopods)	Distal fusion of tibia-fibula (DFTF)	Distal fusion provides a powerful bony base for the attachment of the muscles acting on the paws, as well as increases stabilization of the foot to better withstand load-bearing and bending strains during heavy-impact activities against a resistant medium such as earth.	2,3,5,6,15,18,19,20

Supplementary Table 6. Ecological and morpho-functional characteristics of fossorial rodents including 17 genera and 35 species, and the non-fossorial closest relatives of Bathyergidae. All fossorial taxa present a well-developed and projected deltoid tuberosity (DT), except *Heterocephalus glaber*, where such trait is highly reduced. Ecological and morphological data obtained from several sources (see Supplementary References 22,24,28,30,38,40-75).

Family	Genus	Species	Locomotor mode	Digging mode	Social organization	DT
Ctenohystrica						
Bathyergidae	Heterocephalu s	glaber	Fossorial	Chisel-tooth	Highly social	No
Bathyergidae	Heliophobius	argenteocinereu s	Fossorial	Chisel-tooth	Solitary	Ye s
Bathyergidae	Bathyergus	suillus	Fossorial	Scratch	Solitary	Ye s
Bathyergidae	Bathyergus	janetta	Fossorial	Scratch	Solitary	Ye s
Bathyergidae	Georychus	capensis	Fossorial	Chisel-tooth	Solitary	Ye s
Bathyergidae	Cryptomys	hottentotus pretoriae	Fossorial	Chisel-tooth	Social	Ye
Bathyergidae	Cryptomys	hottentotus natalensis	Fossorial	Chisel-tooth	Social	Ye s
Bathyergidae	Cryptomys	hottentotus mahali	Fossorial	Chisel-tooth	Social	Ye
Bathyergidae	Fukomys	damarensis	Fossorial	Chisel-tooth	Highly social	Ye
Bathyergidae	Fukomys	mechowii	Fossorial	Chisel-tooth	Highly social	Ye
Hystricidae	Atherurus	macrourus	Semifossorial	Scratch	Gregarious/Solitar	Ye
Hystricidae	Atherurus	africanus	Ambulatory		Solitary	Ye
Hystricidae	Hystrix	africaeaustralis	Semifossorial	Scratch	Gregarious/Social	Ye
Hystricidae	Hystrix	cristata	Semifossorial	Scratch	Gregarious/Solitar	Ye
Hystricidae	Hystrix	indica	Semifossorial	Scratch	Gregarious/Solitar	Ye
Petromuridae	Petromus	typicus	Rock climber		Gregarious/Solitar	Ye
Thryonomyida	Thryonomys	swinderianus	Semiaquatic/Semifossoria	Scratch	Gregarious/Solitar	Ye
Ctenomyidae	Ctenomys	flamarioni	Fossorial	Scratch/Chisel	Solitary	Ye
Ctenomyidae	Ctenomys	lewisi	Fossorial	Scratch/Chisel	Solitary	Ye
Ctenomyidae	Ctenomys	talarum	Fossorial	Scratch/Chisel	Solitary	Ye
Ctenomyidae	Ctenomys	rionegrensis	Fossorial	Scratch/Chisel	Solitary	Ye
Ctenomyidae	Ctenomys	leucodon	Fossorial	Scratch/Chisel	Solitary	Ye
Ctenomyidae	Ctenomys	minutus	Fossorial	Scratch/Chisel -tooth	Solitary	Ye s

Ctenomyidae	Ctenomys	lami	Fossorial	Scratch/Chisel -tooth	Solitary	Ye s
Ctenomyidae	Ctenomys	torquatus	Fossorial	Scratch/Chisel -tooth	Solitary	Ye s
Ctenomyidae	Ctenomys	fulvus	Fossorial	Scratch/Chisel -tooth	Solitary	Ye s
Octodontidae	Spalacopus	cyanus	Fossorial	Chisel-tooth	Social	Ye s
Geomyoidea/My	yomorpha					
Geomyidae	Geomys	bursarius	Fossorial	Scratch	Solitary	Ye s
Geomyidae	Thomomys	bottae	Fossorial	Chisel- Tooth/Scratch	Solitary	Ye s
Geomyidae	Thomomys	talpoides	Fossorial	Chisel- Tooth/Scratch	Solitary	Ye s
Geomyidae	Thomomys	mazama	Fossorial	Chisel- Tooth/Scratch	Solitary	Ye s
Geomyidae	Thomomys	towsendii	Fossorial	Chisel- Tooth/Scratch	Solitary	Ye s
Spalacidae	Myospalax	myospalax	Fossorial	Scratch/Head- Lift	Solitary	Ye s
Spalacidae	Rhizomys	pruinosus	Fossorial	Chisel- Tooth/Scratch	Solitary	Ye s
Spalacidae	Rhizomys	sinensis	Fossorial	Chisel- Tooth/Scratch	Solitary	Ye s
Spalacidae	Rhizomys	sumatrensis	Fossorial	Chisel- Tooth/Scratch	Solitary	Ye s
Spalacidae	Spalax	ehrenbergi	Fossorial	Head- Lift/Chisel- tooth	Solitary	Ye s
Spalacidae	Spalax	microphthalmus	Fossorial	Head- Lift/Chisel- tooth	Solitary/Gregariou s	Ye s
Spalacidae	Nannospalax	nehringi	Fossorial	Head- Lift/Chisel- tooth	Solitary	Ye s
Cricetidae	Arvicola	(terrestri) scherman	Fossorial	Chisel-tooth	Solitary	Ye s
Cricetidae	Ellobius	lutescens	Fossorial	Chisel-tooth	Solitary/Gregariou	Ye s
Sciuroidea						
Aplodontidae	Aplodontia	rufa	Fossorial	Scratch	Solitary/Gregariou	Ye s

Supplementary Table 7. Morpho-functional indices and body masses (BM) of individuals analyzed in this study. Body mass in grams (g). Relative position of the deltoid tuberosity (RDT); Index of fossorial ability (IFA); Tibio-fibular junction index (TJI).

Species	ID	BM (g)	IFA	RDP	ΤJI
B. suillus	314	998	0.246	0.596	0.595
B. suillus	365	804	0.266	0.594	0.584
B. suillus	366	748	0.237	0.620	0.584
B. suillus	377	918	0.223	0.583	0.583
B. suillus	717	1110	0.233	0.569	0.553
B. suillus	721	640	0.220	0.585	0.612
B. suillus	911	1152	0.231	0.581	0.598
B. suillus	913	366	0.264	0.572	0.580
B. suillus	938	468	0.259	0.570	0.603
B. suillus	982	422	0.263	0.607	0.602
B. suillus	1085	778	0.253	0.612	0.616
B. suillus	1138	1138	0.248	0.603	0.601
B. suillus	1144	914	0.236	0.584	0.606
B. suillus	1153	882	0.265	0.625	0.590
B. suillus	1155	1066	0.240	0.572	0.621
B. suillus	1163	760	0.261	0.632	0.594
B. suillus	1169	910	0.226	0.608	0.631
B. suillus	1171	1346	0.233	0.616	0.576
B. suillus	1332	958	0.232	0.593	0.595
B. suillus	1336	508	0.258	0.578	0.603
B. suillus	217	1278	0.253	0.586	0.616
B. suillus	220	1726	0.232	0.586	0.602
B. suillus	313	1072	0.243	0.585	0.557
B. suillus	713	1614	0.228	0.606	0.630
B. suillus	765	830	0.257	0.607	0.628
B. suillus	861	1636	0.224	0.593	0.593
B. suillus	910	662	0.246	0.567	0.597
B. suillus	964	584	0.280	0.589	0.608
B. suillus	965	1228	0.251	0.582	0.589
B. suillus	1039	1336	0.215	0.604	0.596
B. suillus	1050	1332	0.243	0.629	0.578
B. suillus	1139	752	0.264	0.557	0.613
B. suillus	1154	780	0.271	0.601	0.628
B. suillus	1338	1450	0.246	0.574	0.614
B. suillus	1339	788	0.252	0.597	0.620
B. suillus	GM282	603	0.250	0.572	0.597
B. suillus	GM283	227	0.234	0.596	0.576
B. suillus	GM284	1201	0.232	0.619	0.588
B. suillus	GM285	658	0.253	0.614	0.593

G.capensis	NB21	141	0.280	0.581	0.554
G.capensis	GM530	121	0.277	0.616	0.510
G.capensis	JO402	180	0.268	0.573	
G.capensis	GM295	260	0.255	0.610	
G.capensis	GM296	105	0.212	0.566	
G.capensis	GM297	185	0.271	0.573	
G.capensis	GM298	210	0.265	0.593	
G.capensis	Z4	225	0.261	0.568	
G.capensis	Z9	223.1	0.292	0.573	
G.capensis	Z10	210.2	0.286	0.594	
G.capensis	Z11	105.8	0.251	0.566	
G.capensis	Z12	169.8	0.247	0.605	
G.capensis	Z22	149	0.290	0.594	
G.capensis	Z23	167	0.249	0.562	
G.capensis	Z25	190	0.227	0.574	
G.capensis	Z27	300.8	0.305	0.581	
G.capensis	Z28	171.1	0.262	0.588	
G.capensis	Z31	235.1	0.295	0.595	
G.capensis	Z32	197.4	0.292	0.614	
G.capensis	Z33	126.6	0.267	0.593	
G.capensis	Z35	170.2	0.273	0.573	
G.capensis	Z36	229.5	0.318	0.587	
G.capensis	Z37	135.5		0.577	
G.capensis	Z38	116.6	0.238	0.552	
G.capensis	Z210	141	0.274	0.562	
G.capensis	Z212	156.7	0.269		
G.capensis	Z214	150.8	0.279	0.557	
G.capensis	Z215	298	0.245	0.536	
G.capensis	Z216	175	0.244	0.563	
G.capensis	Z225	75.49	0.277	0.613	0.514
G.capensis	A01	91.85	0.255	0.567	0.537
G.capensis	A03	89.21	0.269	0.566	0.492
G.capensis	A06	95.99	0.270	0.599	0.490
G.capensis	A19	78.05	0.281	0.584	0.515
G.capensis	A35	164.72	0.270	0.572	0.485
G.capensis	A40	166.18	0.283	0.543	0.536
G.capensis	A43	176.27	0.265	0.632	0.508
G.capensis	A51	163.39	0.292	0.581	0.507
G.capensis	A95	175.86	0.273	0.578	0.500
G.capensis	A97	277.75	0.276	0.634	0.496
G.capensis	A99	284.02	0.281	0.587	0.522
G.capensis	A100	274.39	0.288	0.569	0.544
G.capensis	A115	283.3	0.258	0.613	0.533
G.capensis	A118	272.63	0.263	0.595	0.537
G.capensis	A128	177.39	0.260	0.618	0.484

G.capensis	A130	168.25	0.273	0.578	0.532
G.capensis	A131	100.42	0.281	0.606	0.481
H.argenteocinereus	526	101.4	0.311	0.631	0.530
H.argenteocinereus	26	122	0.293	0.621	0.526
H.argenteocinereus	11	129	0.318	0.631	0.537
H.argenteocinereus	387	130	0.307	0.599	0.487
H.argenteocinereus	27	135	0.289	0.590	0.505
H.argenteocinereus	386	145	0.290	0.622	0.501
H.argenteocinereus	8	149	0.283	0.639	0.508
H.argenteocinereus	6	160	0.291	0.620	0.542
H.argenteocinereus	516	166.5	0.330	0.612	0.549
H.argenteocinereus	361	181	0.291	0.573	0.573
H.argenteocinereus	517	190	0.301	0.627	0.583
H.argenteocinereus	585	206	0.305	0.626	0.548
H.argenteocinereus	377	210	0.345	0.607	0.543
H.argenteocinereus	451	235.8	0.285	0.581	0.559
H.argenteocinereus	5	249	0.303	0.601	0.455
H.argenteocinereus	18	298	0.290	0.598	0.592
H.argenteocinereus	473	231	0.325	0.616	0.589
H.argenteocinereus	476	137.6	0.298	0.637	0.579
H.argenteocinereus	508	225.4	0.352	0.612	0.549
H.argenteocinereus	525	112	0.297	0.598	0.539
H.argenteocinereus	492	138.4	0.318	0.625	0.548
H.argenteocinereus	479	176.2	0.293	0.648	0.550
H.argenteocinereus	244	207.5	0.303	0.600	0.528
H.argenteocinereus	590	251.5	0.326	0.607	0.517
H.argenteocinereus	241	100.2	0.298	0.597	0.497
H.argenteocinereus	242	107.3	0.317	0.611	0.480
H.argenteocinereus	243	218.24	0.281	0.630	0.509
H.argenteocinereus	244	187	0.321	0.584	0.454
C.hottentotus	GM102	51	0.255	0.613	0.483
C.hottentotus	GM103	65	0.247	0.582	0.546
C.hottentotus	GM104	78	0.253	0.611	0.511
C.hottentotus	GM105	78	0.277	0.602	0.515
C.hottentotus	GM106	98	0.291	0.602	0.524
C.hottentotus	GM108	62	0.278	0.569	0.510
C.hottentotus	GM109	110	0.283	0.587	0.539
C.hottentotus	GM110	54	0.259	0.605	0.540
C.hottentotus	GM111	68	0.267	0.612	0.478
C.hottentotus	GM112	61	0.274	0.649	0.519
C.hottentotus	GM114	73	0.291	0.638	0.545
C.hottentotus	GM115	52	0.265	0.564	0.509
C.hottentotus	GM116	89	0.290	0.640	0.554
C.hottentotus	GM117	72	0.283	0.572	0.543
C.hottentotus	GM122	77	0.301	0.567	0.480

C.hottentotus	GM123	102	0.278	0.595	0.522
C.hottentotus	GM126	67	0.294	0.565	0.563
C.hottentotus	GM127	61	0.290	0.584	0.587
C.hottentotus	GM128	80	0.303	0.613	0.513
C.hottentotus	GM129	130	0.300	0.618	0.569
C.hottentotus	GM136	60.53	0.293	0.581	0.474
C.hottentotus	GM137	76	0.275	0.570	0.509
C.hottentotus	GM138	84	0.296	0.595	0.524
C.hottentotus	GM139	53	0.300	0.588	0.539
C.hottentotus	GM140	54	0.270	0.564	0.527
C.hottentotus	GM142	47	0.276	0.561	0.555
C.hottentotus	GM143	57	0.256	0.571	0.532
C.hottentotus	GM144	71	0.305	0.594	0.528
C.hottentotus	GM145	92	0.260	0.552	0.561
C.hottentotus	GM146	50	0.250	0.607	0.510
C.hottentotus	GM147	68.15	0.263	0.578	0.513
C.hottentotus	GM150	69	0.255	0.571	0.555
C.hottentotus	GM151	70	0.287	0.540	0.533
C.hottentotus	GM152	68	0.256	0.601	0.510
C.hottentotus	GM153	80	0.286	0.611	0.516
F.damarensis	G4F042	87	0.274	0.540	0.506
F.damarensis	G4M018	148	0.260	0.533	0.493
F.damarensis	G4M034	155	0.299	0.563	0.528
F.damarensis	G4M039	141	0.286	0.559	0.497
F.damarensis	G4M041	71	0.281	0.594	0.533
F.damarensis	G4M008	56	0.251	0.530	0.516
F.damarensis	G5F003	71	0.295	0.530	0.561
F.damarensis	L29F002	87	0.299	0.536	0.514
F.damarensis	G4F012	128	0.265	0.529	0.564
F.damarensis	G4F002	133	0.299	0.535	0.553
F.damarensis	G4M009	141	0.318	0.552	0.528
F.damarensis	G3M007	142	0.278	0.533	0.532
F.damarensis	G4M001	147	0.308	0.529	0.536
F.damarensis	G3M001	173	0.298	0.546	0.517
F.damarensis	Z3M006	226	0.305	0.545	0.534
F.damarensis	NB227	67.46	0.278	0.546	0.553
F.damarensis	NB228	63.48	0.256	0.559	0.574
F.damarensis	GAP315	113	0.303	0.567	
F.mechowii	23	133	0.302	0.547	0.535
F.mechowii	179	139	0.325	0.545	0.529
F.mechowii	3	144	0.314	0.538	0.548
F.mechowii	1	158	0.304	0.559	0.536
F.mechowii	177	232	0.278	0.570	0.578
F.mechowii	497	268	0.318	0.592	0.474
F.mechowii	478	380.7	0.303	0.566	0.556

F.mechowii	494	208.8	0.300	0.569	0.501
F.mechowii	589	277.8	0.311	0.557	0.524
F.mechowii	242	405.5	0.295	0.567	0.564
F.mechowii	2	193.4	0.260	0.532	0.590
F.mechowii	531	262.2	0.321	0.570	0.554
H.glaber	JJ-001	32.29	0.245		
H.glaber	JJ-002	14.96	0.246		
H.glaber	JJ-045	56.38	0.256		
H.glaber	JJ-046	16.41	0.265		
H.glaber	1200-047	14.9	0.246		
H.glaber	1200-048	29.84	0.251		
H.glaber	1200-049	19.82	0.288		
H.glaber	1200-050	20.82	0.253		
H.glaber	1200-051	22.41	0.296		
H.glaber	1200-052	16.37	0.267		
H.glaber	1200-053	32.14	0.281		
H.glaber	1200-054	31.5	0.267		
H.glaber	1200-055	26.82	0.260		
H.glaber	1200-056	24.027	0.222		
H.glaber	1200-057	32.47	0.269		
H.glaber	1200-058	30.24	0.279		
H.glaber	1200-059	17.72	0.279		
H.glaber	1200-060	35.81	0.297		
H.glaber	1200-061	39.91	0.247		
H.glaber	1200-063	22.85	0.280		
H.glaber	1200-064	31.29	0.278		
H.glaber	1200-065	32.71	0.287		
H.glaber	1200-066	19.08	0.261		
H.glaber	1200-067	19.72	0.282		
H.glaber	1200-068	23.45			
H.glaber	1200-069	15.29	0.300		
H.glaber	1000-070	31.94	0.275		
H.glaber	1000-071	34.58	0.273		
H.glaber	1000-072	26.77	0.268		
H.glaber	1000-073	28.56	0.281		
H.glaber	1000-074	26.44	0.291		
H.glaber	1000-075	23.95	0.262		
H.glaber	1000-076	29.54	0.258		
H.glaber	1000-077	44.58	0.320		
H.glaber	1000-078	36.08	0.255		
H.glaber	1000-079	23.88	0.271		
H.glaber	1000-080	41.44	0.294		
H.glaber	1000-081	34.45	0.281		
H.glaber	1000-082	43.97	0.302		
H.glaber	1000-083	23.43	0.289		

1000 004	24.40	0.262		
1000-084	34.49	0.203		
1000-085	27.19	0.254		
1000-086	28.72	0.275		
5000-087	31.06	0.266		
5000-088	22.57	0.264		
5000-089	22.3	0.277		
5000-090	35.17	0.297		
5000-091	28.51	0.259		
5000-092	34.4	0.293		
5000-093	30.4	0.258		
5000-094	33.83	0.275		
5000-095	28.86	0.261		
5000-096	24.63	0.215		
5000-097	31.13	0.292		
5000-098	29.36	0.276		
5000-099	29.82	0.273		
5000-100	21.64	0.297		
5000-101	19.21	0.261		
GM420	22.92	0.264		
GM498	47	0.247		
GM499	66	0.293		
GM500	17.93	0.259		
GM501	63	0.265		
GM505	19.58	0.282		
GM506	16.04	0.263		
GM507	41	0.270		
GM508	35	0.245		
GM509	39	0.272		
GM510	30	0.244		
GM511	33	0.257		
	1000-084 1000-085 5000-087 5000-087 5000-089 5000-090 5000-091 5000-093 5000-093 5000-093 5000-094 5000-093 5000-095 5000-095 5000-097 5000-097 5000-098 5000-097 5000-098 5000-098 5000-097 5000-098 5000-097 5000-098 5000-098 5000-097 5000-098 5000-098 5000-097 5000-098 500000000000000000000000000000000000	1000-08434.491000-08527.191000-08628.725000-08731.065000-08822.575000-08922.35000-09035.175000-09128.515000-09234.45000-09330.45000-09433.835000-09528.865000-09624.635000-09731.135000-09731.135000-09829.365000-09929.825000-09929.825000-10021.645000-10119.21GM42022.92GM49847GM49966GM50017.93GM50163GM50519.58GM50616.04GM50741GM50835GM50939GM51030GM51133	1000-08434.490.2631000-08527.190.2541000-08628.720.2755000-08731.060.2665000-08822.570.2645000-08922.30.2775000-09035.170.2975000-09128.510.2595000-09234.40.2935000-09330.40.2585000-09433.830.2755000-09528.860.2615000-09624.630.2155000-09731.130.2925000-09829.360.2765000-09929.820.2735000-10021.640.2975000-10119.210.261GM42022.920.264GM498470.247GM499660.293GM501630.265GM50519.580.282GM50616.040.263GM507410.270GM508350.245GM509390.272GM510300.244GM511330.257	1000-08434.490.2631000-08527.190.2541000-08628.720.2755000-08731.060.2665000-08822.570.2645000-08922.30.2775000-09035.170.2975000-09128.510.2595000-09234.40.2935000-09330.40.2585000-09433.830.2755000-09528.860.2615000-09624.630.2155000-09731.130.2925000-09829.360.2765000-09929.820.2735000-09929.820.2735000-09929.820.2735000-10119.210.261GM42022.920.264GM498470.247GM499660.293GM501630.265GM50519.580.282GM50616.040.263GM507410.270GM508350.245GM509390.272GM510300.244GM511330.257

SUPPLEMENTARY FIGURES

Supplementary Figure 1. Humeral phenotype of African mole-rats analyzed here. a) Posterior view. b) Lateral view. Bones ordered same as in "a". Abbreviations: anterior (a); deltoid tuberosity (DT); dorsal (d), greater tubercle (GTu); humeral head (HH); medial (m).

SUPPLEMENTARY METHODS

Ontogenetic stages

Individuals were classified as newborns, pups, and adults based on chronological age, patterns of molar eruption and tooth wear, and degree of skeletal development (Supplementary Table 1). The ontogeny of H. argenteocinereus and F. mechowii was based on chronological age. Gomes Rodrigues et al. (76) described that the third molar of H. argenteocinereus erupts after the second month of life and the full cheek teeth (four molars) are already developed at two years old, so that individuals older than two years in this study were considered adults and assumed to have developed the fourth molar. Similar classification was used for F. mechowii. Newborns are one day old and pups are a few days old. For the rest of the species, individuals having full eruption of all upper or lower molars were considered adults. Almost all genera have four molars (77-80), although Heterocephalus has three (sometimes two) (11,81) and some populations of Heliophobius argenteocinereus exhibit 4-7 molars and continuous dental replacement (76,82,83). Determination of molar eruption in Bathyergus was based on Hart et al. (79) and Montoya-Sanhueza et al. (84): age-classes 5-9 are considered as adults. The classification of F. damarensis was based on patterns of molar eruption described for Fukomys mechowii: ageclasses 5-9 were considered as adults (80). In Cryptomys hottentotus, individuals of age-class 3-4 are considered as adults (78). Individuals of *H. glaber* with full molar eruption were considered adults (85). For younger ontogenetic stages (pups), other anatomical features indicating skeletal immaturity were used, including poor development of secondary centers of ossification, presence of chondroepiphyses and unfused distal epiphysis in the humerus (84). Perinatal individuals of unknown age were determined as newborns/pups based on their very small size and incipient skeletal development.

Bone superstructures

Presence/absence of bone superstructures are presented in Supplementary Table 1. Among the bone superstructures analyzed, the projected and distally located DT is one of the most extensively studied adaptations among fossorial animals, which is principally adapted to accommodate enlarged pectoral and deltoid muscles to increase the power-stroke (retraction) of the arm (Supplementary Table 5). This structure is often referred to in multiple ways, such as tubercle, crest, ridge or process, although proper definition of such terms and the differences among them are rather ambiguous. We define the deltoid tuberosity (= tubercle/process) as a localized and conspicuous protrusion of bone projecting from the diaphysis, with a variable location and size in the diaphysis among mammals. The DT differs from a deltoid crest (DC) (= ridge), which represents an extended bony surface along the diaphysis associated with a wide muscular attachment, but usually not forming a localized protuberance. The DC is observed in some taxa such as tubulidentates, hystricids, tenrecids and solenodontids (34,86). Such structures are not mutually exclusive and a DC can appear at the proximal region of the diaphysis (below the greater tubercle) and extend towards the middle part of the diaphysis fusing with the DT around the midshaft (24), as occurs in hystricids. Two conditions for the DT were recorded in this study: i) the humerus has a smooth diaphyseal surface lacking a projected DT (but not precluding of showing a reduced DT, a small scar for the attachment of the *mm. deltoidei* or a DC); and ii) the humerus has a diaphysis with a conspicuously localized and projected DT.

Regarding the DFTFi, this character has typically been associated with fossoriality, although it is not exclusive to fossorial taxa. Barnett and Napier (19) analyzed the type of tibio-fibular articulation of a wide variety of mammals and found that the fibula of fossorial and aquatic mammals is immobile and united to the tibia at its upper and lower ends by bone (or fibrous) tissue, thus conferring increased robustness and rigidness (Supplementary Table 5). Two conditions were measured: i) tibia and fibula are not distally fused (non-ossified); and ii) tibia and fibula are distally fused and ossified.

Regarding the OP and TT, these features are easily recognizable bony projections, the first located at the proximal ulna, beginning at the base of the anconeal process, and the second located in the proximal femur between the greater trochanter and the midshaft region. Two conditions for these features were recorded, presence or absence, regardless of their cartilaginous or ossified tissue condition.

Morpho-functional indices

Seven linear measurements were used to calculate morpho-functional indices: total lengths of humerus (HL), ulna (UL) and tibia-fibula (TL); length of the deltoid tuberosity (DLH); length of the olecranon process (OL), functional length of

the ulna (FUL) and length of the distal tibio-fibular junction (DTFJ). Total bone lengths are the maximum distance from the proximal articular surface to the distal articular surface. OL is the length from the tip of the olecranon to the center of the trochlear notch. FUL is the difference between UL and OL. DLH and DTFJ were measured from the proximal articular surface of the bone to the distal origin of the deltoid tuberosity and to the tibio-fibular junction, respectively. All measurements were recorded to the nearest 0.01 mm using a digital caliper. The relative position of the deltoid tuberosity (RDT = DLH/HL) and the index of fossorial ability (IFA = OL/FUL) were calculated following a previous study and references therein (84) (Supplementary Table 7). The tibio-fibular junction index (TJI = DTFJ/TL) is a novel ecomorphological index modified from Montoya-Sanhueza et al. (84) and implemented for the first time in this study to reflect the extension of the distal tibio-fibular fusion, so that lower values (i.e. a more proximal and larger fusion of the tibia and fibula) would suggest a longer bony base and more robust bone diaphysis to increase bone resistance to muscles acting on the paws.

Phylogenetic varying effects regression

The amount of change in a given index, for example RDT, in response to a one unit increase in BM for individual *i* belonging to species *j*, was modelled as:

$$\begin{split} & logRDT_i \sim Normal(\mu_i, \sigma) \\ & \mu_i = \alpha_{j[i]} + \beta_{j[i]} logBM_i + \varepsilon_{j[i]} \\ & \alpha_j \sim MVNormal(\mu_\alpha, S_\alpha) \\ & S_\alpha = \sigma_{phy_\alpha}R \\ & \beta_j \sim MVNormal(\mu_\beta, S_\beta) \\ & S_\beta = \sigma_{phy_\beta}R \\ & \varepsilon_j \sim Normal(0, \sigma_{spp}) \end{split}$$

with intercepts α_j , i.e. species mean phenotypes, and slopes β_j , i.e. species scaling effects, drawn from multivariate Gaussian distributions, where μ_{α} and μ_{β} are intercept mean and slope mean, and S_{α} and S_{β} are covariance matrices for species' intercepts and slopes, respectively. Covariance in both intercepts and slopes was defined as the product of a phylogenetic correlation matrix R, with expected correlations among species determined by an Ornstein-Uhlenbeck model of trait evolution (87,88), and variance parameter σ_{phy} , giving the magnitude of phylogenetic effect (89). Species-specific effects were captured by a vector of residuals, where each species j had its own residual ϵ_j , modeled as a normally distributed random variable with mean zero and standard deviation σ_{spp} , giving an overall magnitude of species-specific effects, or in other words, the variation unaccounted for by the phylogenetic component (90,91).

We assigned regularizing priors to all sampled parameters, which reduce the risk of overfitting the data and give more accurate predictions (92). Priors for the sampled parameters were drawn from the following distributions:

 $\mu_{\alpha} \sim Normal(0,0.5)$ $\mu_{\beta} \sim Normal(0,0.5)$ $\sigma \sim Exponential(2)$ $\sigma_{phy_{\alpha}} \sim Exponential(2)$ $\sigma_{spp} \sim Exponential(2)$

SUPPLEMENTARY REFERENCES

1. Caspar, K.R, H. Burda, & S. Begall. Fukomys mechowii (Rodentia: Bathyergidae), Mammalian Species 53(1011): 145–159 (2021).

- 2. Bennett, NC. Cryptomys hottentotus Common Mole-Rat in Mammals of Africa: Volume III (ed. Happold, D. C. D.) 659-660 (Bloomsbury Publishing, 2013).
- 3. Bennett & Burda. *Cryptomys mechowi* Giant Mole-Rat in *Mammals of Africa: Volume III* (ed. Happold, D. C. D) 659-660 (Bloomsbury Publishing, 2013).
- 4. Bennett, N.C. & Jarvis, J.U.M. The reproductive biology of the Cape mole-rat, *Georychus capensis* (Rodentia, Bathyergidae). Journal of Zoology, 214: 95-106 (1988).
- 5. Bennett, N.C. The social structure and reproductive biology of the common mole-rat, *Cryptomys h. hottentotus* and remarks on the trends in reproduction and sociality in the family Bathyergidae. Journal of Zoology, 219: 45-59 (1989).
- 6. Brett, R. A. The population structure of naked mole-rat colonies in *The biology of the naked mole-rat* (eds. P. W. Sherman, J. U. M. Jarvis, & R. D. Alexander) 97-136 (Princeton University Press, 1991).
- 7. Burda, H., R. L. Honeycutt, S. Begall, O. Grütjen, & A. Scharff. Are naked and common mole-rats eusocial and if so, why? Behavioral Ecology and Sociobiology 47:293–303 (2000).
- 8. Burda H, & Kawalika M. Evolution of eusociality in the Bathyergidae: the case of the giant mole-rats. *Cryptomys mechowi*. Naturwissenschaften 80:235–237 (1993).
- 9. Herbst, M. The biology and population ecology of the Namaqua dune molerat, *Bathyergus janetta* from the Northern Cape Province, South Africa. MSc thesis, University of Pretoria, South Africa (2002).
- Jarvis, JUM. Bathyergus suillus Cape Dune Mole-Rat in Mammals of Africa: Volume III (ed. Happold, D. C. D.) 646-648 (Bloomsbury Publishing, 2013).
- 11. Jarvis JUM., & PW. Sherman. Heterocephalus glaber. Mammalian Species, No. 706: 1-9 (2002).
- 12. Jarvis, J. U. M. Eusociality in a mammal: Cooperative breeding in naked mole-rat colonies. Science 212:571-573 (1981).
- 13. Jarvis JUM, O'Riain MJ, Bennett NC, & Sherman PW. Mammalian eusociality: a family affair. Trends Ecol Evol 9:47-51 (1994).
- 14. Jarvis JUM, Bennett NC Eusociality has evolved independently in two genera of bathyergid mole-rats but occurs in no other subterranean mammal. Behav Ecol Sociobiol 33:253–260 (1993).
- 15. Kawalika M., Burda H. Giant Mole-rats, *Fukomys mechowii*, 13 Years on the Stage in *Subterranean Rodents* (eds. Begall S., Burda H., Schleich C.E.) (Springer, 2007).
- 16. Scharff A, O. Locker-Grütjen, M. Kawalika, & H. Burda. Natural History of the Giant Mole-Rat, *Cryptomys mechowi* (Rodentia: Bathyergidae), from Zambia. Journal of Mammalogy, 82(4): 1003–1015 (2001).
- 17. Šumbera, R., Burda, H., Chitaukali, W.N. Reproductive biology of a solitary subterranean bathyergid rodent, the silvery mole-rat (*Heliophobius argenteocinereus*). J. Mammal. 84, 278–287 (2003).
- 18. Alvarez GI, Díaz AO, Longo MV, Becerra F, & Vassallo AI. Histochemical and morphometric analyses of the musculature of the forelimb of the subterranean rodent Ctenomys talarum (Octodontoidea). Anat Histol Embryol; 41(5):317-25 (2012).
- 19. Barnett CH, & Napier JR. The rotatory mobility of the fibula in eutherian mammals. J Anat.; 87(1):11-21 (1953).
- 20. Carleton, A. A comparative study of the inferior tibio-fibular joint. J. Anat., Lond., 76, 45-55 (1941).
- 21. Fernández ME, Vassallo AI, & Zárate M. Functional morphology and paleobiology of the Pliocene rodent Actenomys (Caviomorpha: Octodontidae): the evolution to a subterranean mode of life. Biological Journal of the Linnean Society 71: 71–90 (2000).
- 22. Hildebrand M. Digging of quadrupeds In *Functional Vertebrate Morphology* (eds. Hildebrand M, Bramble D, Liem K, & Wake DB) 89–109 (The Belknap Press of Harvard University Press, 1985).
- 23. Hildebrand M. Insertions and functions of certain flexor muscles in the hind leg of rodents. Journal of Morphology 155(1):111-122 (1978).
- 24. Holliger, C.D. Anatomical adaptations in the thoracic limb of the California pocket gopher and other rodents. Univ. California Publ. Zool., vol. 13, pp. 447-495 (1916).
- 25. Goldstein B. Allometric Analysis of Relative Humerus Width and Olecranon Length in Some Unspecialized Burrowing Mammals. Journal of Mammalogy, 53(1): 148-156 (1972).
- Lagaria A, & Youlatos D. Anatomical correlates to scratch digging in the forelimb of european ground squirrels (Spermophilus citellus). Journal of Mammalogy 87: 563–570 (2006).
- 27. Lessa EP, & Stein BR. Morphological constraints in the digging apparatus of pocket gophers (Mammalia, Geomyidae). Biological Journal of the Linnean Society 47: 439–453 (1992).
- Lessa EP, Vassallo AI, Verzi DH, & Mora MS. Evolution of morphological adaptations for digging in living and extinct ctenomyid and octodontid rodents. Biological Journal of the Linnean Society 95: 267–283 (2008).
- 29. Milne N, & O'Higgins P. Scaling of form and function in the xenarthran femur: a 100-fold increase in body mass is mitigated by repositioning of the third trochanter. Proc Biol Sci. 7; 279(1742):3449-56 (2012).
- 30. Morgan CC, & Verzi DH. Morphological diversity of the humerus of the South American subterranean rodent Ctenomys (Rodentia, Ctenomyidae). Journal of Mammalogy 87: 1252–1260 (2006).

- 31. Morgan, C.C. & Álvarez, A. Shape variation of humerus of caviomorph rodents. J Zool, 290: 107-116 (2013).
- 32. Parsons, F. G. Myology of rodents. Part 11, an account of the myology of the Myomorpha, together with a comparison of the muscles of various suborders of rodents. Proc. zool. SOC. Lund. 1896: 159-192 (1896).
- Samuels JX, & Valkenburgh B Van. Skeletal Indicators of Locomotor Adaptations in Living and Extinct Rodents. Journal of Morphology 269: 1387–1411 (2008).
- 34. Salton JA, & Sargis EJ. Evolutionary Morphology of the Tenrecoidea (Mammalia) Forelimb Skeleton. In: Sargis E, Dagosto M, eds. Mammalian Evolutionary Morphology, A Tribute to Frederick S. Szalay. Dordrecht: Springer Netherlands, 51–72 (2008).
- 35. Salton, J.A. & Sargis, E.J. Evolutionary morphology of the Tenrecoidea (Mammalia) hindlimb skeleton. J. Morphol., 270: 367-387 (2009).
- 36. Silva MJ, Brodt MD, & Hucker WJ. Finite element analysis of the mouse tibia: estimating endocortical strain during three-point bending in SAMP6 osteoporotic mice. Anat Rec 283, 380– 390 (2005).
- 37. Stein B. Morphology of Subterranean Rodents in *Life Underground: the biology of subterranean rodents* (eds. Lacey EA, Patton J, Cameron GN) 19–61 (The University of Chicago Press, 2000).
- 38. Steiner-Souza, F., De Freitas, T.R.O. & Cordeiro-Estrela, P. Inferring adaptation within shape diversity of the humerus of subterranean rodent *Ctenomys*. Biological Journal of the Linnean Society, 100: 353-367 (2010).
- 39. Vassallo AI. Functional morphology, comparative behaviour, and adaptation in two sympatric subterranean rodents genus Ctenomys (Caviomorpha: Octodontidae). J Zool, 244:415–427 (1998).
- 40. Vizcaíno SF, Fariña RA, & Mazzetta G V. Ulnar dimensions and fossoriality in armadillos. Acta Theriologica 44: 309-320 (1999).
- 41. Arjo W.M. 2007. Mountain Beaver: A Primitive Fossorial Rodent. In: Begall S., Burda H., Schleich C.E. (eds) Subterranean Rodents. Springer, Berlin, Heidelberg.
- 42. Begall, S., Burda, H., & M. H. Gallardo. Reproduction, postnatal development and growth of social coruros, *Spalacopus cyanus* (Octodontidae, Rodentia) from Chile. Journal of Mammalogy 80:210–217 (1999).
- 43. Blumstein, D. Chapter 27, The Evolution of Alarm Communication in Rodents: Structure, Function, and the Puzzle of Apparently Altruistic Calling in *Rodent Societies* (eds. Wolff, J. and Sherman, P.) 317-327 (University of Chicago Press, 2008).
- 44. Corti M., Fadda C., Simson S., & Nevo E. Size and Shape Variation in the Mandible of the Fossorial Rodent *Spalax ehrenbergi* in *Advances in Morphometrics. NATO ASI Series (Series A: Life Sciences)* vol 284 (eds. Marcus L.F., Corti M., Loy A., Naylor G.J.P., Slice D.E.) (Springer, 1996).
- 45. Coşkun, Y. On distribution, morphology and biology of the Mole Vole, *Ellobius lutescens* Thomas, 1897 (Mammalia: Rodentia) in eastern Turkey. Zoology in the Middle East, 23(1), 5–12 (2001).
- 46. Durão, AF, Muñoz-Muñoz, F, & Ventura, J. Three-dimensional geometric morphometric analysis of the humerus: Comparative postweaning ontogeny between fossorial and semiaquatic water voles (*Arvicola*). Journal of Morphology; 281: 1679–1692 (2020).
- 47. Echeverría AI, Becerra F, & Vassallo A. Postnatal Ontogeny of Limb Proportions and Functional Indices in the Subterranean Rodent *Ctenomys talarum* (Rodentia: Ctenomyidae). Journal of Morphology 275: 902–913 (2014).
- El-Shafey, A.A, Akraiem A, & A.S.A Abdel-Galil. Radiological Investigation of the African Brush-tailed Porcupine (*Atherurus africanus*) Appendicular Skeleton. 1st Scientific conference Omar ElMokhtar University, 1-15 (2010).
- 49. Faulkes, C. & Bennett, N. Chapter 36, African Mole-Rats: Social and Ecological Diversity in *Rodent Societies* (eds. J. Wolff & P. Sherman) 427-437 (University of Chicago Press, 2008).
- 50. Gambaryan, P.P. & Kielan-Jaworowska, Z. Sprawling versus parasagittal stance in multituberculate mammals. Acta Palaeontolosica Polonica 42, 1,13-44 (1997).
- 51. Gambaryan, P.P. & Gasc J.P. Adaptive properties of the musculoskeletal system in the mole-rat *Myospalax* (Marnmalia, Rodentia), cinefluorographical, anatomical and biomechanical analyses of the burrowing. Zoologische Jahrbuch, Anatomie 123, 363401 (1993).
- 52. Gambaryan, P.P. Prisposobitel'nie osobennosti organov dvigenia rojuschich mlekopitajuschich (*Adaptive features of locomotion organs in burrowing mammals*). Yerevan, Akad. Nauk Armenian SSR Publ. Office, 195 p. (1960) (In Russian).
- 53. Gambaryan P.P. Adaptive peculiarities of the forelimb in mole rat (*Spalax leucodon nehringi* Satunin) Zoologicheskii Sbornik AN Armyanskoi SSR. 8:67–125 (1953) (in Russian).
- 54. Hedrick, B.P. *et al.* The evolutionary diversity of locomotor innovation in rodents is not linked to proximal limb morphology. Sci Rep 10, 717. (2020)
- 55. Kubiak BB, *et al.* Evolution in action: soil hardness influences morphology in a subterranean rodent (Rodentia: Ctenomyidae). Biol J Linn Soc 20:1–11 (2018).
- 56. Lacey, EA. Spatial and Social Systems of Subterranean Rodents (Ch. 7.) in *Life Underground: the biology of subterranean rodents* (eds. Lacey EA, Patton J, & Cameron GN) 257-296 (The University of Chicago Press, 2000).
- 57. Lewis TH. The morphology of the pectoral girdle and anterior limb in Aplodontia. J Morphol.; 85(3): 533-558 (1949).

- Lyon, MW Jr. Notes on the porcupines of the Malay Peninsula and Archipelago. Proceedings of the United States National Museum. 32 (1552):575–594, 4 pls (1907).
- Marcy AE, Hadly EA, Sherratt E, Garland K, & Weisbecker V. Getting a head in hard soils: Convergent skull evolution and divergent allometric patterns explain shape variation in a highly diverse genus of pocket gophers (*Thomomys*). BMC Evolutionary Biology: 1–16 (2016).
- 60. Molur, S. *Atherurus macrourus* (amended version of 2016 assessment). The IUCN Red List of Threatened Species 2020: e.T2354A166518819. https://dx.doi.org/10.2305/IUCN.UK.2020-1.RLTS.T2354A166518819.en. Downloaded on 22 March 2021.
- 61. Monadjem, A., Taylor, P., Denys, C. & Cotterill, F. Rodents of Sub-Saharan Africa. Berlin, München, Boston: De Gruyter. 1092 pp (2015).
- 62. Morgan CC, Verzi DH, Olivares AI, & Vieytes EC. Craniodental and forelimb specializations for digging in the South American subterranean rodent *Ctenomys* (Hystricomorpha, Ctenomyidae). Mamm Biol 87:118–124 (2017).
- 63. Morgan CC. The postcranial skeleton of caviomorphs: morphological diversity, adaptations and patterns. Ch 5. SAREM Series A Mammalogical Research, Vol 1: 167-198 (2015).
- Nevo, E. Chapter 25. Evolution of Pacifism and Sociality in Blind Mole-Rats in *Rodent Societies* (eds. Wolff, J. & Sherman, P) 291-302 (University of Chicago Press, 2008).
- 65. Nevo E. Adaptive convergence and divergence of subterranean mammals. Annu Rev Ecol Evol Syst, 10:269–308 (1979).
- 66. Orcutt E E. Studies on the muscles of the head, neck and pectoral appendages of Geomys bursarius. J. Mamm., 21(1): 37-52 (1940).
- 67. Özkan, ZE. Macro-anatomical investigations on the hind limb skeleton of mole-rat (*Spalax leucodon* Nordmann). Veterinarski Arhiv 72 (2), 91-99 (2002).
- 68. Pérez, MJ; & Díaz, MM. Postcranial skeleton of *Spalacopus cyanus* (Rodentia: Octodontidae): description and functional aspects; Asociación Mexicana de Mastozoología; Therya; 11; 3; 407-422 (2020).
- 69. Puzachenko, A. Social organization in the mole rat population, *Spalax microphthalmus* (Rodentia, Spalacidae). Zoologicheskii Zhurnal 72(5):123-131 (1993).
- 70. Skinner J, & Chimimba CT. The mammals of the Southern African Region. Cape Town, South Africa: Cambridge University Press (2005).
- 71. Stein, B. R. Phylogenetic relationships among four arvicolid genera. Zeitschrift für Sdugetierkunde 52: 140-156 (1987).
- 72. Tobechukwu OK, Adeniyi OS, Olajide HJ, Tavershima D, & Sulaiman SO. Macro-anatomical and morphometric studies of the Grasscutter (*Thryonomyss winderianus*) forelimb skeleton. Int J Vet Sci Anim Husb, 2, 1, 6-12 (2015).
- 73. Topachevskii, VA. Fauna of the USSR: mammals. Mole rats, Spalacidae. New Delhi: Amerind Publishers. 308 pp (1976).
- Ventura J, & Götzens V. Prevalence of anomalies in the appendicular skeleton of a fossorial rodent population. J Wildl Dis.; 41(4):728-734 (2005).
- Yilmaz, S., Z. E. Özkan & D. Özdemir. Oklu Kirpi (*Hystrix cristata*) iskelet Sistemi Uzerinde Makro-Anatomik Araştinnalar. I. Ossa Membri Thoracici. Tr. J. Vet. Anim. Sci. 22:289-392 (1998).
- 76. Gomes Rodrigues H, *et al.* Continuous dental replacement in a hyper-chisel tooth digging rodent. Proceedings of the National Academy of Sciences of the United States of America 108:17355–17359 (2011).
- Taylor P, Jarvis J, Crowe T, Davies KC. Age determination in the Cape molerat *Georhychus capensis*. S.-Afr. Tydskr. Dierk. 20: 261–267 (1985).
- Bennett, N. C., Jarvis, J. U. M. & Wallace, D. B. The relative age structure and body masses of complete wild-captured colonies of two social mole-rats, the common mole-rat, *Cryptomys hottentotus hottentotus* and the Damaraland mole-rat, *Cryptomys damarensis*. J. Zool. 220, 469–485 (1990).
- 79. Hart L, Chimimba CT, Jarvis JUM, O'Riain J, & Bennett NC. Craniometric Sexual Dimorphism and Age Variation in the South African Cape Dune Mole-Rat (*Bathyergus suillus*). Journal of Mammalogy 88: 657–666 (2007).
- 80. Chimimba, C.T., A.M. Sichilima, C.G. Faulkes & N.C. Bennett. Ontogenetic variation and craniometric sexual dimorphism in the social giant mole-rat, *Fukomys mechowii* (Rodentia: Bathyergidae), from Zambia, African Zoology, 45:2, 160-176 (2010).
- 81. Hamilton, W J Jr. *Heterocephalus*, the Remarkable African Burrowing Rodent. The museum of the brooklyn institute of arts and sciences, Vol 3(5) (1928).
- Gomes Rodrigues H, & Sumbera, R. Dental peculiarities in the silvery mole-rat: an original model for studying the evolutionary and biological origins of continuous dental generation in mammals. PeerJ 3:e1233; DOI 10.7717/peerj.1233 (2015).
- 83. Katandukila J. Craniometrics analysis for ontogenetic physiognomy and sexual dimorphism in Emin's silvery Mole-Rats (*Heliophobius argenteocinereus emini*: Bathyergidae) from Tanzania. Tanz J Sci 46 (3):647-660 (2020).
- 84. Montoya-Sanhueza, G, Wilson LAB & Chinsamy A. Postnatal development of the largest subterranean mammal (*Bathyergus suillus*): Morphology, osteogenesis, and modularity of the appendicular skeleton. Developmental Dynamics. 1-28. DOI: 10.1002/dvdy.81 (2019).

- Montoya-Sanhueza, G, Bennett, NC, Oosthuizen, MK, Dengler-Crish, CM, & Chinsamy, A. Long bone histomorphogenesis of the naked mole-rat: histodiversity and intraspecific variation. J Anat.: 1–25 (2021).
- Lehmann T, Vignaud P, Likius A, Mackaye HT, & Brunet M. A sub-complete fossil aardvark (Mammalia, Tubulidentata) from the Upper Miocene of Chad. Comptes Rendus Palevol 5(5):693–703 (2006).
- 87. Martins, E. P., & Hansen, T. F. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. The American Naturalist, 149(4), 646-667 (1997).
- 88. Butler, M. A., & King, A. A. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. The American Naturalist, 164(6), 683-695 (2004).
- 89. Ives, A. R., & Helmus, M. R. Generalized linear mixed models for phylogenetic analyses of community structure. Ecological Monographs, 81(3), 511-525 (2011).
- 90. Lynch, M. Methods for the analysis of comparative data in evolutionary biology. Evolution, 45(5), 1065-1080 (1991).
- 91. Gallinat, A. S., & Pearse, W. D. Phylogenetic generalized linear mixed modeling presents novel opportunities for eco-evolutionary synthesis. Oikos, 130(5), 669-679 (2021).
- 92. McElreath, R. Statistical rethinking: A Bayesian course with examples in R and Stan. In Statistical Rethinking: A Bayesian Course with Examples in R and Stan. CRC press (2020).