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Liver and kidney oxidative status 

 

Due to the vulnerability of the liver and kidney tissue to oxidative stress, these organs typically have 

increased antioxidant activity [1]. Both tissues demonstrate vulnerability to heat and dehydration-

induced oxidative stress [2-6]. Liver and kidney tissues differ in their oxidative status in several aspects; 

firstly, differences in antioxidant capacity are apparent as glutathione, the main thiol used for 

antioxidant scavenging [7], is primarily produced and stored in the liver, resulting in the liver being 

generally higher in non-enzymatic antioxidant activity [8-11]. Enzymatic antioxidants also differ, with 

superoxide dismutase (SOD) existing in three different isoenzymes, namely: Cu/Zn SOD, MnSOD and 

FeSOD [12]. The Cu/Zn SOD is the most abundant isoenzyme, these isoenzymes varying not just within 

but between tissues depending on species, with the general trend being that total liver SOD is higher 

than kidney total SOD [13]. SOD levels can also vary depending on the stressor present within a tissue 

and the susceptibility of the tissue to the stressor; for example, heat stress will likely affect the liver 

more than the kidneys [14]. SOD markers and other antioxidant enzymes are generally affected by age, 

which can reduce observed enzyme activity levels [15,16]. Oxidative damage is also highly dependent 

on the rate of free radical production, with the liver and kidney being metabolically active tissues 

[13,17]. These tissues differ in their mitochondrial respiration rates [18], where respiration rates 

contribute to radical production as a by-product of respiration [19,20]. In Rattus norvegicus rats, the 

kidneys have a higher respiration rate compared to the liver [18]. This may explain why 

malondialdehyde (MDA), a marker of lipid damage following circadian variations, was higher in the 

kidneys compared to the liver [21]. For one mole-rat species where the liver and kidney were 

investigated, the liver and kidney had similar MDA levels, where MDA was slightly higher in the 

kidneys in non-breeding individuals [22]. In the same way, total oxidant status (TOS) will also be 

affected by the rate of free radical production, TOS being a measure of all hydroperoxides present as 

opposed to the single product of lipid peroxidation, such as MDA [23].  
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