
Received: 14 April 2022 Revised: 26 September 2022 Accepted: 15 November 2022 IET Control Theory & Applications

DOI: 10.1049/cth2.12402

ORIGINAL RESEARCH

Adaptive finite-time control of multi-agent systems with partial

state constraints and input saturation via event-triggered strategy

Xiaoting Huang1,2 Hui Yu1,2 Xiaohua Xia3

1Three Gorges Mathematical Research Center,
China Three Gorges University, Yichang, China

2College of Science, China Three Gorges University,
Yichang, China

3Centre of New Energy Systems, Department of
Electrical, Electronics and Computer Engineering,
University of Pretoria, Pretoria, South Africa

Correspondence

Three Gorges Mathematical Research Center, China
Three Gorges University, Yichang 443002, China.
Email: yuhui@ctgu.edu.cn

Abstract

This paper focuses on the finite-time control problem of multi-agent systems with input
saturation, unknown nonlinear dynamics, external disturbances and partial state constraints
via output feedback. Fuzzy logic system and fuzzy state observer are introduced to approx-
imate the uncertain nonlinearities and estimate the unmeasurable states, respectively. The
partial state constraints are dealt with by using the barrier Lyapunov function, so that all
states of the system do not exceed the preset boundary values. In order to reduce the
computational complexity of the virtual controller and save communication resources, a
first-order filter and an event-triggered mechanism are introduced, respectively. It is proved
that the Zeno behavior does not occur via the proposed event-triggered controller. By sta-
bility analysis, the finite-time convergence of tracking error to a small neighborhood of the
origin is proven. The effectiveness of the theoretical results is verified by examples.

1 INTRODUCTION

In recent decades, coordination control for multi-agent systems
(MASs) has been widely applied to formation control, cluster
motion, sensor networks, ships, and so on [1–4]. More and
more scholars in related fields began to study it. The key prob-
lem in coordination control of MASs is the consensus problem,
which requires all agents’ states to reach the same value. A large
number of researches have been done in the field of coordi-
nation control of MASs, such as observer-based consensus of
MASs [5] with uncertainties from a new perspective, where
the interval observer of a MAS was developed to estimate the
interval on which the state of each agent locates, average con-
sensus of MASs [6–9], finite-time consensus [10–12], stochastic
consensus [13–16], adaptive consensus [17–20], to name just
a few.

In practical applications, such as robot control systems [21],
vehicle guidance systems [22] and teleoperation systems [23],
the system performance is often required to be reached in
finite-time. Finite-time control has better control performance
and faster convergence speed than infinite-time control, which
attracted much attention of scholars [24–26]. In [24], hetero-
geneous nonlinear MASs with adaptive finite-time control was
investigated. Finite-time adaptive neural networks controller for
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MASs was given in [25], and finally made the output of all fol-
lowers consistent with the output of leaders. In [26], the authors
addressed the finite-time consensus problem for high-order
MASs with uncertain nonlinearities, where the uncertainties are
assumed to satisfy the Hölder conditions.

In networked systems, continuous data communication may
bring great burden of communication and result in waste of
communication resources. Therefore, event-triggered control
(ETC) strategies are increasingly being adopted. Compared with
time-triggered strategy, ETC strategies can save the commu-
nication resources and improve efficiency [27–31]. For hybrid
MASs, a novel event-triggered strategy was proposed in [27]
to solve the second-order consensus problem. In [28], the
authors proposed a novel distributed ETC strategy for het-
erogeneous linear MASs. In [29], the authors investigated the
distributed adaptive ETC method for nonlinear MASs with
output constraints. The prescribed performance adaptive finite-
time control problem was studied in [30] for nonlinear systems
with an event-triggered strategy. In [31], the authors considered
the leader-following tracking finite-time controller for heteroge-
neous nonlinear MASs with output constraint, a fuzzy adaptive
ETC strategy was proposed.

Due to the limitations of physical devices in practical systems,
output and state constraints are becoming a major concern. An
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unsatisfactory control law will lead to poor transient perfor-
mance and instability of the system. Therefore, the problem of
full state constraints (FSCs) or partial state constraints (PSCs)
in systems has received considerable attention from scholars
[32–35]. By introducing the barrier Lyapunov function (BLF),
the authors studied the control problem of strict feedback sys-
tems subject to output constraint in [32]. On the basis of [32],
the BLF was also applied to systems with state constraints.
In [33], the authors studied the adaptive finite-time control
problem for non-triangular nonlinear systems with FSCs via
output-feedback using BLF. The fuzzy control method for
nonlinear systems with prescribed performance and FSCs was
proposed in [34]. In [35], the authors mainly studied the adaptive
ETC scheme of systems with nonlinearity and PSCs. Through
the above literature analysis, it can be observed that few works
are carried out on finite-time ETC problem of MASs subject to
output and PSCs via output feedback, which prompts us to do
the research of this paper.

In this work, we consider the problem of finite-time tracking
for MASs nonlinearity subject to output and PSCs in network
concluding a directed spanning tree (DST). An adaptive ETC
mechanism is presented to solve the tracking control problem
via output feedback, which can ensure the finite-time conver-
gence of tracking error to a small neighborhood of the origin.
Because system outputs are the only available information, a
state observer is then constructed. The input saturation and
external disturbances are also considered in this work. Com-
pared with existing researches, our main contributions of this
work can be summarized as follows:

(1) For MASs with unknown nonlinear dynamics, PSCs and
input saturation, an ETC scheme is proposed via output
feedback, which guarantees the boundedness of all resulting
signals and the finite-time stability of MASs with a bounded
error. Compared with [29, 35–38], in which asymptotic sta-
bility of systems were investigated, the finite-time stability
of MASs is considered in this work. Compared with [24, 33,
39, 40], in which time-triggered strategy was studied, the
ETC method is studied in this paper.

(2) The model in this paper is more general than those in
[29–31, 33, 34, 41–44]. The consensus problem of MASs
with external disturbance and unknown nonlinearity are
considered in directed networks concluding a DST via
output feedback. Fuzzy logic system (FLS) is utilized to
approximate the uncertain nonlinearities. A state observer
is designed to deal with the unmeasured states subject to
output feedback. The adaptive control method is applied to
estimate the unknown parameters. In the literatures men-
tioned above, some of them [29–31, 42] took external
disturbance into consideration, while others [33, 41, 43,
44] did not. Compared with the time-triggered strategy for
MASs [34, 41, 43, 44], the ETC scheme proposed in this
paper can reduce the communication burden. Compared
with [30, 31, 35], in which the case of state feedback was
considered, an adaptive control method via output feed-
back is presented in this paper. Compared with [29, 42], in

which the network topology was assumed to be undirected,
a more general case of directed networks concluding a DST
is considered in this paper.

(3) The BLF is introduced to handle the output and PSCs
and ensure that the constrained partial states and outputs
of the MAS will not exceed the time-varying boundaries.
In [33, 37–39], the case of FSCs with constant boundaries
was considered, which is a special case considered in this
work.

The remainder of this paper is arranged as follows. Some
preliminary knowledge and problem formulations are given in
Section 2. In Section 3, a state observer is constructed. In Sec-
tion 4, an adaptive fuzzy ETC strategy is given. The stability
analysis is presented in Section 5. Two examples are given in
Section 6. We conclude the paper in the last section.

Notations: +, n and m×n denote the set of positive
integers, n-dimensional Euclidean space and the set of m × n

real matrix, respectively. For matrix A, denote by 𝜆max(A) and
𝜆min(A) the largest and smallest eigenvalues, respectively. 1N =
(1, … , 1)T ∈ N . ‖ ⋅ ‖2 and ‖ ⋅ ‖∞ are the 2-norm and ∞-
norm of a matrix in m×n or a vector in n, respectively.
col(xi ) = [xT

1 (t ), xT
2 (t ), … , xT

N
(t )]T for xi ∈ n, i = 1, … ,N .

2 PRELIMINARIES AND PROBLEM
FORMULATIONS

2.1 Graph theory

For leader-following MASs with N + 1 agents, we use a
weighted directed graph  = ( ,  ,) to describe the inter-
connection relationship among agents.  = {0, … ,N } is the
node set of N + 1 agents, in which the leader is labeled by 0.
 ⊂  ×  is the set of edges and  the weighted adjacency
matrix. For an ordered pair ( j , i ) ∈  , we call agent j is agent
i’s neighbor, which means that i can get information from j . A
directed graph  includes a DST if there is an agent called the
root has at least one directed path to all other agents. Denote
 = [ai j ] ∈ (N+1)×(N+1) with aii = 0, ai j > 0, if ( j , i ) ∈  ,
otherwise, ai j = 0. The in-degree matrix  is a diagonal matrix

with diagonal element di =
∑N

j=0, j≠i
ai j . The Laplacian matrix

Ξ =  − = [Ξi j ](N+1)×(N+1) with Ξii = di and Ξi j = −ai j ,
i ≠ j .

Assumption 1. Graph  contains a DST and the leader is its root.

Lemma 1 [45]. Ξ has zero eigenvalues with 1N as its right eigenvector,

its other eigenvalues have positive real parts. In addition, zero eigenvalue of

Ξ is simple iff graph  has a DST.

Under Assumption 1, the Laplacian Ξ can be rewritten as

Ξ =

[
0 01×N

Ξ2 Ξ1

]
, (1)
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where Ξ1 ∈ N×N , Ξ2 ∈ N×1. It follows from Assumption
1 and Lemma 1, each eigenvalue of Ξ1 has a positive real part.

Lemma 2 [46]. (Young’s Inequality):

a1a2 ≤ â
â2
1

â2
|a1|â2 +

1

â3â
â3
1

|a2|â3 , (2)

for a1, a2 ∈ , â1 > 0, â2, â3 > 1 and (â2 − 1)(â3 − 1) = 1.

Lemma 3 [47].

|𝜓1|𝜈1 |𝜓2|𝜈2 ≤ 𝜈1

𝜈1 + 𝜈2
𝜈3|𝜓1|𝜈1+𝜈2 +

𝜈2

𝜈1 + 𝜈2
𝜈3

−
𝜈1
𝜈2 |𝜓2|𝜈1+𝜈2 ,

(3)
for 𝜓1, 𝜓2 ∈ , 𝜈1, 𝜈2 and 𝜈3 are positive constants.

Lemma 4 [48]. Consider a nonlinear system Ẋ = f (X ), X ∈  . If

there exists a positive definite function V (X ) ∶  →  with constants

d̂ > 0, 0 < ♭ < 1 and M̂ > 0, such that

V̇ ≤ −d̂V ♭(X ) + M̂ , t ≥ 0, (4)

then Ẋ = f (X ) is semiglobal practical finite-time stable (SGPFS).

Lemma 5 [49].(
n∑

i=1

|b̂i |)q

≤
n∑

i=1

|b̂i |q ≤ n1−q

(
n∑

i=1

|b̂i |)q

, (5)

for 0 < q ≤ 1, b̂i ∈ , i = 1, … , n.

Lemma 6 [35]. Let Π = {𝜔 = [𝜔1, … , 𝜔n1
]T ∈ n1 ∶ |𝜔i | <

1} ⊂ n1 , i = 1, … , n1 and Λ = Π ×n2 ⊂ n1+n2 be open sets.

Πi = {𝜔i ∈  ∶ |𝜔i | < 1} ⊂ . For the system

Ẋ = f (X , u), (6)

where X = (𝜔, v)T ∈ Λ and f ∶ + × Λ → n1+n2 are locally

Lipschitz in X , piecewise continuous in t and uniformly in t , on + × Λ.

If there exist Vi ∶ Πi → + and U ∶ n2 → +, which are posi-

tive definite, and continuously differentiable in Πi and n2 , respectively,

such that

Vi (𝜔i ) →∞ as |𝜔i |→ 1 , i = 1, 2, … , n1, (7)

and

𝛾1(‖v‖) ≤ U (v) ≤ 𝛾2(‖v‖), (8)

with 𝛾1, 𝛾2 ∈ ∞. Let V (X̌ ) =
∑n1

i=1 Vi (𝜔i ) +U (X ) and

𝜔i (0) ∈ Πi . If

V̇ =
𝜕V

𝜕X
f ≤ −d̂V ♭ + M̂ , (9)

holds, where d̂ > 0, 0 < ♭ < 1 and M̂ > 0, then 𝜔i (t ) ∈ Πi , ∀ t ∈
[0,∞).

Lemma 7 [50]. For any Δ1 > 0 and Δ2,

0 < |Δ2| − Δ2 tanh(
Δ2

Δ1
) ≤ 0.2785Δ1. (10)

2.2 Problem formulations

Consider MASs consisting of N follower agents and a leader
with external disturbances. The ith follower agent’s dynamics
is

⎧⎪⎨⎪⎩
ẋi

p = xi
p+1 + f i

p (x̄i
p) + wi

p(t ),

ẋi
n = sati (ui ) + f i

n (x̄i
n ) + wi

n(t ),

yi = xi
1, i = 1, 2, … ,N , p = 1, 2, … , n − 1,

(11)

where x̄i
p = (xi

1, x
i
2, … , xi

p)T ∈ p, p = 1, 2, … , n, yi ∈ n

are system state and output, respectively. The full state
x̄i

n = (xi
1, x

i
2, … , xi

n )T is divided into the constrained state
x̄i
𝓁
= (xi

1, x
i
2, … , xi

𝓁
)T and the unconstrained state xi

𝓁+1
=

(xi
𝓁+1, x

i
𝓁+2, … , xi

n )T . The constrained states xi
p, p = 1, 2, … , 𝓁,

are restricted by |xi
p| < k̄i

p(t ), where the boundary func-

tion k̄i
p(t ) > 0. Nonlinear functions f i

p (x̄i
p) are smooth and

unknown. wi
p(t ) ∈  is external disturbance satisfying |wi

p(t )| ≤
wi∗

p with wi∗
p > 0 being an unknown constant. Note that only

the output yi = xi
1 is the available information. sati (ui ) is the

saturation controller given as

sati (ui ) =

⎧⎪⎨⎪⎩
ui

M
, ui > ui

M
,

ui , −ui
m ≤ ui ≤ ui

M
,

−ui
m, ui < −ui

m,

(12)

where ui
m > 0 and ui

M
> 0 are constants. The saturation con-

trol function sati (ui ) can be transformed into the following
form:

sati (ui ) = 𝜁(ui )ui , (13)

where

𝜁(ui ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ui
M

ui
, ui > ui

M
,

1, −ui
m ≤ ui ≤ ui

M
,

−
ui

m

ui
, ui < −ui

m.

(14)

The coefficient 𝜁(ui ) ∈ (0, 1] represents the saturation
degree of the control signal. In particular, when 𝜁(ui ) = 1, there
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is no saturation phenomenon. As discussed in [51],

0 < 𝜚i ≤ min
t

[𝜁(ui (t ))] ≤ 1, (15)

for some constant 𝜚i and any ui not going to infinity. This
assumption is reasonable for practical applications. Mean-
while, the unknown lower bound of 𝜁(ui ) will be estimated
adaptively.

The BLF will be applied to deal with the constrained output
and states. A BLF is defined as

B(t ) =
1

2
log

k2(t )

k2(t )−e2(t )
, (16)

where e(t ) is a error variable, which is constrained by boundary
function k(t ).

Lemma 8 [52].

log
k2(t )

k2(t ) − e2(t )
<

e2(t )

k2(t ) − e2(t )
, (17)

for |e(t )| < k(t ) and ∀ k(t ) > 0.

The control objectives are to design a fuzzy adaptive ETC
mechanism for MASs (11) such that

(i) System outputs yi can converge to the given reference
signal yr with bounded errors in finite-time.

(ii) All resulting system signals are bounded in finite-time.
(iii) Output and partial state constraints are never violated, that

is |xi
p| < k̄i

p(t ), ∀ t > 0, p = 1, 2, … , 𝓁.
(iv) The Zeno behavior does not occur.

For the reference signal yr , we make the following assump-
tion.

Assumption 2. yr ∈  is smooth and bounded, ẏr and ÿr are bounded

and continuous, that is, |yr | ≤ r̂0, |ẏr | ≤ r̂1, and |ÿr | ≤ r̂2, for some

positive constants r̂0, r̂1 and r̂2.

2.3 FLS

FLS plays a key role in function approximation, which is estab-
lished by fuzzy IF-Then rule base, a fuzzifier and a defuzzifier
[53]. A fuzzy rule is expressed as

R𝜄: If ℑ1 is G 𝜄
1, ℑ2 is G 𝜄

2, …, ℑn is G 𝜄
n,

Then: Y is H 𝜄, 𝜄 = 1, 2, … , Γ.
where vector ℑ = (ℑ1, ℑ2, … ,ℑn )T ∈ n and Y are input

and output of FLS, respectively. G 𝜄
p and H 𝜄 are fuzzy sets. The

output Y of FLS can be calculated by

Y =

∑Γ

𝜄=1 Ȳ 𝜄∏n

p=1 𝜇G 𝜄
p
(ℑp)∑Γ

𝜄=1

∏n

p=1 𝜇G 𝜄
p
(ℑp)

, (18)

where 𝜇G 𝜄
p

and 𝜇H 𝜄 are fuzzy membership functions associ-

ated with G 𝜄
p and H 𝜄, and Ȳ 𝜄 is the maximum value of 𝜇H 𝜄 (Y ).

Define

Φ𝜄 (ℑ) =

∏n

p=1 𝜇G 𝜄
p
(ℑp)∑Γ

𝜄=1

∏n

p=1 𝜇G 𝜄
p
(ℑp)

. (19)

Let 𝜃 = (𝜃1, 𝜃2, … , 𝜃Γ )T = (Ȳ 1, Ȳ 2, … , Ȳ Γ )T and Φ =
(Φ1, Φ2, … , ΦΓ )T . A FLS has the following form

Y = 𝜃T Φ(ℑ). (20)

Lemma 9 [54]. Suppose that f (ℑ) is continuous in a compact set Ω.

For ∀ 𝜀 > 0, there exists a proper FLS such that

sup
ℑ∈Ω

| f (ℑ) − 𝜃T Φ(ℑ)| ≤ 𝜀. (21)

Remark 1. It follows from the definition and properties of Φ𝜄

andΦ that 0 < Φ𝜄 ≤ 1 and 0 < ΦT Φ ≤ 1, which will be applied
to the proof process of our theoretical results.

3 OBSERVER DESIGN

In order to estimate the unmeasurable states, a state observer is
constructed in this section. Let xi = x̄i

n, system (11) is rewritten
as follows

⎧⎪⎨⎪⎩
ẋi = Aix

i + Liy
i +

n∑
p=1

Ep f i
p (x̄i

p) + bsati (ui ) + wi (t ),

yi = Cxi ,

(22)

where

Ai =

⎛⎜⎜⎜⎜⎜⎝

−l i
1 1 ⋯ 0

⋮ ⋮ ⋱ ⋮

−l i
n−1 0 ⋯ 1

−l i
n 0 ⋯ 0

⎞⎟⎟⎟⎟⎟⎠
, (23)

Li = (l i
1 , … , l i

n )T , b = (0, … , 0, 1)T , Ep = (0, … , 0, 1
⏟⎴⏟⎴⏟

p

, 0, … , 0)T ,

wi (t ) = [wi
1(t ), … , wi

n(t )]T and C = (1, 0, … , 0). Ai is a strict
Hurwitz matrix by selecting parameters l i

1 , … , l i
n . Thus, for

given matrix Qi = QT
i > 0, there exists a matrix Fi = F T

i > 0,
satisfying

AT
i Fi + FiAi = −2Qi . (24)

Let ̂̄xi
p = (x̂i

1, … , x̂i
p)T and x̂i = ̂̄xi

n = (x̂i
1, … , x̂i

n )T be the

estimation of x̄i
p and xi , respectively. From Lemma 9, the
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uncertain function f i
p (x̄i

p), 1 ≤ p ≤ n, in (22) is approximated
by a FLS as

f̂ i
p ( ̂̄xi

p|�̂�i
p) = �̂�iT

p Φi
p( ̂̄xi

p). (25)

Let

𝜃i
p = arg min

�̂�i
p∈Ω�̂�i

p

[ sup
̂̄xi

p∈Ω̂̄xi
p
,x̄i

p∈Ωx̄i
p

| f̂ i
p ( ̂̄xi

p|�̂�i
p) − f i

p (x̄i
p)|], (26)

be the optimal parameter vector, where Ω�̂�i
p
, Ωx̄i

p
and Ω̂̄xi

p
are

some compact regions for �̂�i
p, x̄i

p and ̂̄xi
p, respectively, �̂�i

p is the

estimation of 𝜃i
p.

Let

𝜂i
p = f i

p (x̄i
p) − f i

p ( ̂̄xi
p|𝜃i

p), (27)

be the minimum approximation error, which is assumed to be
bounded, that is, |𝜂i

p| ≤ 𝜂i∗
p with constant 𝜂i∗

p > 0.
Since the states of (22) are unmeasurable, an observer is

constructed as

̇̂xi = Aix̂
i + Liy

i +

n∑
p=1

Ep f̂ i
p ( ̂̄xi

p|�̂�i
p) + bsati (ui ). (28)

Denote by x̃i = (x̃i
1, x̃

i
2, … , x̃i

n )T = xi − x̂i the observer
error vector. From (22) and (28), one gets

̇̃xi = ẋi − ̇̂xi

= Aix̃
i +

n∑
p=1

Ep

[
f i
p (x̄i

p) − f̂ i
p ( ̂̄xi

p|�̂�i
p)
]
+ wi

= Aix̃
i +

n∑
p=1

Ep�̃�
iT
p Φi

p( ̂̄xi
p) + wi + 𝜂i ,

(29)

where 𝜂i = (𝜂i
1, 𝜂

i
2, … , 𝜂i

n )T and �̃�i
p = 𝜃i

p − �̂�i
p.

Define

V i
0 =

1
2

x̃iT Fi x̃
i , (30)

and choose the Lyapunov function as

V0 =

N∑
i=1

V i
0 . (31)

Taking the time derivative of V i
0 yields

V̇ i
0 = x̃iT Fi ̇̃x

i

= x̃iT Fi

[
Aix̃

i +

n∑
p=1

Ep�̃�
iT
p Φi

p( ̂̄xi
p) + 𝜂i + wi

]

= −x̃iT Qi x̃
i + x̃iT Fi

[
n∑

p=1

Ep�̃�
iT
p Φi

p( ̂̄xi
p) + 𝜂i + wi

]
. (32)

By employing Lemma 2 and noting that 0 < Φi
p(⋅)T Φi

p(⋅) ≤
1, we have

x̃iT Fi

[
n∑

p=1

Ep�̃�
iT
p Φ

i
p( ̂̄xi

p) + 𝜂i + wi

]
≤ 3

2
‖x̃i‖2 +

‖Fi‖2

2

n∑
p=1

�̃�iT
p �̃�

i
p

+
1
2
‖Fi‖2 ⋅ (‖𝜂i∗‖2 + ‖wi∗‖2 ), (33)

where 𝜂i∗ = (𝜂i∗
1 , 𝜂

i∗
2 , … , 𝜂i∗

n )T and wi∗ = (wi∗
1 , w

i∗
2 , … , wi∗

n )T .
Combining (32) and (33), yields

V̇ i
0 ≤ −x̃iT Qi x̃

i +
3
2
‖x̃i‖2 +

1
2

n∑
p=1

‖Fi‖2�̃�iT
p �̃�i

p

+
1
2
‖Fi‖2 ⋅ (‖𝜂i∗‖2 + ‖wi∗‖2).

(34)

Invoking (31) and (34), we have

V̇0 =

N∑
i=1

V̇ i
0

≤
N∑

i=1

[
− x̃iT Qi x̃

i +
3
2
‖x̃i‖2 +

1
2

n∑
p=1

‖Fi‖2�̃�iT
p �̃�

i
p

+
1
2
‖Fi‖2 ⋅ (‖𝜂i∗‖2 + ‖wi∗‖2)

]

≤ −

N∑
i=1

𝜆0‖x̃‖2 +
1
2

N∑
i=1

n∑
p=1

‖Fi‖2�̃�iT
p �̃�

i
p + M0, (35)

where 𝜆0 = 𝜆min(Qi ) −
3

2
and M0 =

1

2

∑N

i=1 ‖Fi‖2 ⋅ (‖𝜂i∗‖2 +‖wi∗‖2).

4 CONTROL DESIGN

4.1 Back-stepping design

In this subsection, the back-stepping method is utilized to
construct the finite-time controller. For MASs, the distributed
characteristics of the controller is a very important aspect, so
we first do the following coordinate transformation.

Let

ei
1 =

N∑
j=1

ai j (y
i − y j ) + ai0(yi − yr ),

ei
p = x̂i

p − �̄�i
p,

𝜉i
p = �̄�i

p − 𝛼i
p−1, p = 2, … , n,

(36)

where ei
1 is the local tracking error, ei

p the error surface, �̄�i
p the

output of the following first-order filter{
𝜐i

p
̇̄𝛼i

p + �̄�i
p = 𝛼i

p−1,

�̄�i
p(0) = 𝛼i

p−1(0), p = 2, … , n,
(37)
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where 𝛼i
p−1 is a virtual control function, 𝜐i

p a positive constant

and 𝜉i
p the error between �̄�i

p and 𝛼i
p−1.

From (36) and (37), we have

̇̄𝛼i
p = −

𝜉i
p

𝜐i
p

, p = 2, … , n. (38)

Remark 2. In the traditional backstepping approach, comput-
ing the high-order derivatives of virtual control signal 𝛼i

p−1 will
increase computational complexity. Thus, a first-order auxiliary
filter (37) with backstepping technique is introduced to over-
come this weakness. The virtual control signal 𝛼i

p−1 generates a

new signal �̄�i
p through the filter and is used in the design of the

next controller. Therefore, repeated differentiation is avoided.

Step 1: According to (36), the time derivative of ei
1 is

ėi
1 =

∑
j∈Ni

ai j ẏ
i −

N∑
j=1

ai j ẏ
j − ai0 ẏr

= di

[
ei
2 + 𝜉i

2 + 𝛼i
1 + x̃i

2 + 𝜂i
1 + 𝜃iT

1 Φi
1(x̂i

1) + wi
1

]
−

N∑
j=1

ai j

[
e

j

2 + 𝜉
j

2 + 𝛼
j

1 + x̃
j

2 + 𝜂
j

1 + 𝜃
jT

1 Φ
j

1(x̂ j

1 )

+w
j

1

]
− ai0 ẏr .

(39)

We assume that the local consensus error ei
1 is constrained

by |ei
1| < ki

1(t ), where ki
1(t ) is a boundary function. The BLF

defined in (16) is used to construct the Lyapunov function
candidate:

V1 = V0 +

N∑
i=1

V i
1

= V0 +
1
2

N∑
i=1

[
log

(ki
1(t ))2

(ki
1(t ))2 − (ei

1 )2
+

1

𝜍i
1

�̃�iT
1 �̃�i

1 +

N∑
j=1

ai j

𝜛
j

1

�̃�
jT

1 �̃�
j

1

]
,

(40)

where 𝜍i
1 > 0 and 𝜛 j

1 > 0 are constants.
Thus,

V̇1 = V̇0 +

N∑
i=1

[
ei
1 ėi

1

(ki
1 )2 − (ei

1 )2
−

1

𝜍i
1

�̃�iT
1
̇̂𝜃i
1 −

N∑
j=1

ai j

𝜛
j

1

�̃�
jT

1
̇̂𝜃

j

1

−
k̇i

1(ei
1 )2

ki
1((ki

1 )2 − (ei
1 )2 )

]

= V̇0 +

N∑
i=1

{
di e

i
1

(ki
1 )2 − (ei

1 )2

[
ei
2 + 𝜉 i

2 + 𝛼i
1 + x̃i

2 + 𝜂i
1 + wi

1 + �̂�iT
1 Φi

1(x̂i
1 )

−
ai0

di

ẏr −
k̇i

1ei
1

di k
i
1

]
−

1

𝜍i
1

�̃�iT
1

[
̇̂𝜃i
1 −

di𝜍
i
1ei

1

(ki
1 )2 − (ei

1 )2
Φi

1(x̂i
1 )

]

−

N∑
j=1

ai j

𝜛
j

1

�̃�
jT

1

[
̇̂𝜃

j

1 +
𝜛

j

1 ei
1

(ki
1 )2 − (ei

1 )2
Φ

j

1(x̂ j

1 )

]

−
ei
1

(ki
1 )2 − (ei

1 )2

N∑
j=1

ai j

[
x̂

j

2 + x̃
j

2 + 𝜂
j

1 + w
j

1 + �̂�
jT

1 Φ
j

1(x̂ j

1 )
]}

.

(41)

Noting that 0 < Φi
p(⋅)T Φi

p(⋅) ≤ 1 and from Lemma 2, we have

di e
i
1

(ki
1 )2 − (ei

1 )2
(x̃i

2 + 𝜂i
1 + wi

1 ) ≤ 3d 2
i

2

(ei
1 )2

((ki
1 )2 − (ei

1 )2 )2

+
1
2

[‖x̃i‖2 + (𝜂i∗
1 )2 + (wi∗

1 )2
]
,

(42)

di e
i
1𝜉

i
2

(ki
1)2 − (ei

1)2
≤ d 2

i

2

ei
1

2

((ki
1)2 − (ei

1)2)2
+

1
2

(𝜉i
2)2, (43)

and

−
ei
1

(ki
1)2 − (ei

1)2

N∑
j=1

ai j (x̃
j

2 + 𝜂
j

1 + w
j

1 )

≤ 3
2

(ei
1)2

((ki
1)2 − (ei

1)2)2
+

1
2

N∑
j=1

a2
i j

[‖x̃‖2 + (𝜂 j∗
1 )2 + (w j∗

1 )2
]
.

(44)

Substituting (35), (42)–(44) into (41), one gets

V̇1 ≤
N∑

i=1

(
−𝜆0‖x̃‖2 +

1
2

n∑
p=1

‖Fi‖2�̃�iT
p �̃�i

p

)
+ M0

+

N∑
i=1

|{ di e
i
1

(ki
1 )2 − (ei

1 )2

[
𝛼i

1 + �̂�iT
1 Φi

1

(
x̂i

1

)
−

ai0

di
ẏr +

2di e
i
1(

ki
1

)2
−
(
ei
1

)2

−
1
di

N∑
j=1

ai j

(
x̂

j

2 + �̂�
jT

1 Φ
j

1(x̂ j

1 )
)
+

3
2di

ei
1

(ki
1 )2 − (ei

1 )2
−

k̇i
1ei

1

di k
i
1

]

+
di e

i
1ei

2

(ki
1 )2 − (ei

1 )2
−

1

𝜍i
1

�̃�iT
1

[
̇̂𝜃i
1 −

di𝜍
i
1ei

1

(ki
1 )2 − (ei

1 )2
Φi

1(x̂i
1 )

]

−

N∑
j=1

ai j

𝜛
j

1

�̃�
jT

1

[
̇̂𝜃

j

1 +
𝜛

j

1 ei
1

(ki
1 )2 − (ei

1 )2
Φ

j

1(x̂ j

1 )

]
+

1
2

[‖x̃i‖2

+(𝜂i∗
1 )2 + (wi∗

1 )2
]
+

1
2

(𝜉i
2 )2 +

1
2

N∑
j=1

a2
i j

[‖x̃‖2

+(𝜂 j∗
1 )2 + (w j∗

1 )2

]}
. (45)

Select the virtual controller 𝛼i
1 and the adaptive laws ̇̂𝜃i

1 and
̇̂𝜃

j

1 as

𝛼i
1 = −�̂�iT

1 Φi
1(x̂i

1 ) +
ai0

di

ẏr −
2di e

i
1

(ki
1 )2 − (ei

1 )2
+

1
di

N∑
j=1

ai j [x̂
j

2

+�̂�
jT

1 Φ
j

1(x̂ j

1 )] −
3

2di

ei
1

(ki
1 )2 − (ei

1 )2
−

ci
1(ei

1 )2𝛽−1

di ((k
i
1 )2 − (ei

1 )2 )𝛽−1
+

k̇i
1ei

1

dik
i
1

,

(46)
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̇̂𝜃i
1 =

di𝜍
i
1ei

1

(ki
1)2 − (ei

1)2
Φi

1(x̂i
1) − 𝛿i

1�̂�
i
1, (47)

and

̇̂𝜃
j

1 = −
𝜛

j

1ei
1

(ki
1)2 − (ei

1)2
Φ

j

1(x̂ j

1 ) − 𝛾
j

1�̂�
j

1, (48)

where ci
1 > 0, 𝛿i

1 > 0 and 𝛾 j

1 > 0 are constants.
From (45)-(48), one has

V̇1 ≤ −

N∑
i=1

𝜆1‖x̃‖2 +
1
2

N∑
i=1

n∑
p=1

‖Fi‖2�̃�iT
p �̃�i

p

+

N∑
i=1

[
−

ci
1(ei

1)2𝛽

((ki
1)2 − (ei

1)2)𝛽
+

di e
i
1ei

2

(ki
1)2 − (ei

1)2
+
𝛿i

1

𝜍i
1

�̃�iT
1 �̂�i

1

+

N∑
j=1

ai j

𝛾
j

1

𝜛
j

1

�̃�
jT

1 �̂�
j

1 +
1
2

(𝜉i
2)2

]
+ M1, (49)

where 𝜆1 = −
1

2

∑N

j=1 a2
i j
−

1

2
+𝜆0 and M1 = M0 +

1

2

∑N

i=1[(𝜂i∗
1 )2+

(wi∗
1 )2+

∑N

j=1 a2
i j

((𝜂
j∗
1 )2+(w

j∗
1 )2 )].

Step 2: The time derivative of ei
2 is

ėi
2 =

̇̂xi
2 − ̇̄𝛼i

2 (50)

= ei
3 + 𝜉i

3 + 𝛼i
2 + l i

2 x̃i
1 + �̂�iT

2 Φi
2( ̂̄xi

2)

+�̃�iT
2 Φi

2( ̂̄xi
2) − �̃�iT

2 Φi
2( ̂̄xi

2) − ̇̄𝛼i
2. (50)

Define

V i
2 =

1
2

[
log

(ki
2(t ))2

(ki
2(t ))2 − (ei

2)2
+

1

𝜍i
2

�̃�iT
2 �̃�i

2 + (𝜉i
2)2

]
, (51)

and construct the Lyapunov function as

V2 = V1 +

N∑
i=1

V i
2 , (52)

where 𝜍i
2 > 0 is a constant and the error variable ei

2 is
constrained by |ei

2| < ki
2(t ) with ki

2(t ) > 0 being a bound-
ary function.

Thus,

V̇2 = V̇1 +

N∑
i=1

[
ei
2 ėi

2

(ki
2 )2 − (ei

2 )2
−

1

𝜍i
2

�̃�iT
2
̇̂𝜃i
2 + 𝜉 i

2�̇�
i
2 −

k̇i
2(ei

2 )2

ki
2((ki

2 )2 − (ei
2 )2 )

]

= V̇1 +

N∑
i=1

{
ei
2

(ki
2 )2 − (ei

2 )2

[
ei
3 + 𝜉 i

3 + 𝛼i
2 + l i

2 (yi − x̂i
1 ) + �̂�iT

2 Φi
2( ̂̄xi

2 )

− ̇̄𝛼i
2−

k̇i
2ei

2

ki
2

]
−

ei
2�̃�

iT
2 Φi

2( ̂̄xi
2 )

(ki
2 )2 − (ei

2 )2
−

1

𝜍i
2

�̃�iT
2

[
̇̂𝜃i
2 −

𝜍i
2ei

2

(ki
2 )2 − (ei

2 )2
Φi

2( ̂̄xi
2 )

]
+𝜉 i

2�̇�
i
2

}
.

(53)

In view of Young’s inequality, one gets

ei
2𝜉

i
3

(ki
2)2 − (ei

2)2
≤ (ei

2)2

2((ki
2)2 − (ei

2)2)2
+

1
2

(𝜉i
3)2, (54)

and

−
ei
2�̃�

iT
2 Φi

2( ̂̄xi
2)

(ki
2)2 − (ei

2)2
≤ (ei

2)2

2((ki
2)2 − (ei

2)2)2
+

1
2
�̃�iT

2 �̃�i
2. (55)

From (36) to (38), one has

�̇�i
2 = ̇̄𝛼i

2 − �̇�i
1 = −

𝜉i
2

𝜐i
2

+ 𝜀i
2(⋅), (56)

where 𝜀i
2(⋅) is a bounded function satisfying |𝜀i

2| ≤ 𝜀i
2 with

constant 𝜀i
2 > 0.

Choose the virtual controller 𝛼i
2 as

𝛼i
2 = −l i

2 (yi − x̂i
1) − �̂�iT

2 Φi
2( ̂̄xi

2) + ̇̄𝛼i
2 −

di e
i
1((ki

2)2 − (ei
2)2)

(ki
1)2 − (ei

1)2

−
ei
2

(ki
2)2 − (ei

2)2
−

ci
2(ei

2)2𝛽−1

((ki
2)2 − (ei

2)2)𝛽−1
+

k̇i
2ei

2

ki
2

, (57)

and the adaptive law ̇̂𝜃i
2 as

̇̂𝜃i
2 =

𝜍i
2ei

2

(ki
2)2 − (ei

2)2
Φi

2( ̂̄xi
2) − 𝛿i

2�̂�
i
2, (58)

where ci
2 > 0 and 𝛿i

2 > 0 are constants. From (53) to (58), one
has

V̇2 ≤
N∑

i=1

[
−𝜆1‖x̃‖2 +

1
2

n∑
p=1

‖Fi‖2�̃�iT
p �̃�i

p

−
ci
1(ei

1)2𝛽

((ki
1)2 − (ei

1)2)𝛽
+
𝛿i

1

𝜍i
1

�̃�iT
1 �̂�i

1 +

N∑
j=1

ai j

𝛾
j

1

𝜛
j

1

�̃�
jT

1 �̂�
j

1

+
1
2

(𝜉i
2)2 −

ci
2(ei

2)2𝛽

((ki
2)2 − (ei

2)2)𝛽
+

1
2

(𝜉i
3)2 +

1
2
�̃�iT

2 �̃�i
2

+
ei
2ei

3

(ki
2)2 − (ei

2)2
+
𝛿i

2

𝜍i
2

�̃�iT
2 �̂�i

2 −
(𝜉i

2)2

𝜐i
2

+ 𝜉i
2𝜀

i
2(⋅)

]
+ M2,

(59)

where M2 = M1.
Step s (3 ≤ s ≤ 𝓁): The derivative of ei

s is

ėi
s = ̇̂xi

s − ̇̄𝛼i
s

= ei
s+1 + 𝜉i

s+1 + 𝛼i
s + l i

s x̃i
1 + �̂�iT

s Φi
s ( ̂̄x

i
s )

−�̃�iT
s Φi

s ( ̂̄x
i
s ) + �̃�iT

s Φi
s ( ̂̄x

i
s ) − ̇̄𝛼i

s . (60)



566 HUANG ET AL.

Choose the Lyapunov function as

Vs = Vs−1 +
1
2

N∑
i=1

[
log

(ki
s (t ))2

(ki
s (t ))2 − (ei

s )2
+

1

𝜍i
s

�̃�iT
s �̃�i

s + (𝜉i
s )2

]
,

(61)

where 𝜍i
s > 0 is a constant, the error variable ei

s is constrained by|ei
s| < ki

s (t ), where ki
s (t ) is a boundary function. Similarly, one

has

ei
s𝜉

i
s+1

(ki
s )2 − (ei

s )2
≤ (ei

s )2

2((ki
s )2 − (ei

s )2)2
+

1
2

(𝜉i
s+1)2, (62)

and

−
ei
s �̃�

iT
s Φi

s ( ̂̄x
i
s )

(ki
s )2 − (ei

s )2
≤ (ei

s )2

2((ki
s )2 − (ei

s )2)2
+

1
2
�̃�iT

s �̃�i
s . (63)

Bearing in mind (36)-(38), one gets

�̇�i
s = ̇̄𝛼i

s − �̇�i
s−1 = −

𝜉i
s

𝜐i
s

+ 𝜀i
s (⋅), (64)

where 𝜀i
s (⋅) is a bounded function satisfying |𝜀i

s| ≤ 𝜀i
s with

constant 𝜀i
s > 0.

Choose the virtual controller 𝛼i
s as

𝛼i
s = −l i

s (yi − x̂i
1) − �̂�iT

s Φi
s ( ̂̄x

i
s ) + ̇̄𝛼i

s −
ei
s−1((ki

s )2 − (ei
s )2)

(ki
s−1)2 − (ei

s−1)2

−
ei
s

(ki
s )2 − (ei

s )2
−

ci
s (ei

s )2𝛽−1

((ki
s )2 − (ei

s )2)𝛽−1
+

k̇i
s e

i
s

ki
s

, (65)

and the adaptive law ̇̂𝜃i
s as

̇̂𝜃i
s =

𝜍i
s e

i
s

(ki
s )2 − (ei

s )2
Φi

s ( ̂̄x
i
s ) − 𝛿i

s �̂�
i
s , (66)

where ci
s > 0 and 𝛿i

s > 0 are constants.
Thus,

V̇s ≤
N∑

i=1

[
−𝜆1‖x̃‖2 +

1
2

n∑
p=1

‖Fi‖2�̃�iT
p �̃�

i
p

+

s∑
p=1

1
2

(𝜉 i
p+1)2 −

s∑
p=1

ci
p(ei

p)2𝛽

((ki
p)2 − (ei

p)2 )𝛽
+

s∑
p=1

𝛿i
p

𝜍i
p

�̃�iT
p �̂�

i
p

+

N∑
j=1

ai j

𝛾
j

1

𝜛
j

1

�̃�
jT

1 �̂�
j

1 +

s∑
p=2

1
2
�̃�iT

p �̃�
i
p +

ei
s e

i
s+1

(ki
s )2 − (ei

s )2

−

s∑
p=2

(𝜉 i
p)2

𝜐i
p

+

s∑
p=2

𝜉 i
p𝜀

i
p(⋅)

]
+ Ms , (67)

where Ms = Ms−1.

Step 𝓁 + 1: According to (28) and (36), we have

ėi
𝓁+1 =

̇̂xi
𝓁+1 − ̇̄𝛼i

𝓁+1

= ei
𝓁+2 + 𝜉 i

𝓁+2 + 𝛼i
𝓁+1 − ̇̄𝛼i

𝓁+1 + l i
𝓁+1x̃i

1 + �̂�iT
𝓁+1Φ

i
𝓁+1( ̂̄xi

𝓁+1)

−�̃�iT
𝓁+1Φ

i
𝓁+1( ̂̄xi

𝓁+1) + �̃�iT
𝓁+1Φ

i
𝓁+1( ̂̄xi

𝓁+1). (68)

Choose the Lyapunov function as

V𝓁+1 = V𝓁 +
1
2

N∑
i=1

[
(ei
𝓁+1)2 +

1

𝜍i
𝓁+1

�̃�iT
𝓁+1�̃�

i
𝓁+1 + (𝜉 i

𝓁+1)2

]
, (69)

where 𝜍i
𝓁+1 > 0 is a constant.

The time derivative of V i
𝓁+1 is

V̇𝓁+1 = V̇𝓁 +

N∑
i=1

(
ei
𝓁+1 ėi

𝓁+1 −
1

𝜍i
𝓁+1

�̃�iT
𝓁+1

̇̂𝜃i
𝓁+1 + 𝜉 i

𝓁+1�̇�
i
𝓁+1

)

= V̇𝓁 +

N∑
i=1

{
ei
𝓁+1

[
ei
𝓁+2 + 𝜉 i

𝓁+2 + 𝛼i
𝓁+1 + l i

𝓁+1(yi − x̂i
1 )

+ �̂�iT
𝓁+1Φ

i
𝓁+1( ̂̄xi

𝓁+1) − ̇̄𝛼i
𝓁+1

]
− ei

𝓁+1�̃�
iT
𝓁+1Φ

i
𝓁+1( ̂̄xi

𝓁+1)

−
1

𝜍i
𝓁+1

�̃�iT
𝓁+1

[
̇̂𝜃i
𝓁+1 − 𝜍i

𝓁+1ei
𝓁+1Φ

i
𝓁+1( ̂̄xi

𝓁+1)
]
+ 𝜉 i

𝓁+1�̇�
i
𝓁+1

}
.

(70)

Similarly, one gets

ei
𝓁+1𝜉

i
𝓁+2 ≤ 1

2
(ei
𝓁+1)2 +

1
2

(𝜉i
𝓁+2)2, (71)

−ei
𝓁+1�̃�

iT
𝓁+1Φ

i
𝓁+1( ̂̄xi

𝓁+1) ≤ 1
2

(ei
𝓁+1)2 +

1
2
�̃�iT
𝓁+1�̃�

i
𝓁+1, (72)

and

�̇�i
𝓁+1 =

̇̄𝛼i
𝓁+1 − �̇�i

𝓁
= −

𝜉i
𝓁+1

𝜐i
𝓁+1

+ 𝜀i
𝓁+1(⋅), (73)

where 𝜀i
𝓁+1(⋅) is a bounded function satisfying |𝜀i

𝓁+1| ≤ 𝜀i
𝓁+1

with constant 𝜀i
𝓁+1 > 0.

Choose the virtual controller 𝛼i
𝓁+1 as

𝛼i
𝓁+1 = −l i

𝓁+1(yi − x̂i
1) − �̂�iT

𝓁+1Φ
i
𝓁+1( ̂̄xi

𝓁+1) + ̇̄𝛼i
𝓁+1

−
ei
𝓁

(ki
𝓁

)2 − (ei
𝓁

)2
− ei

𝓁+1 − ci
𝓁+1(ei

𝓁+1)2𝛽−1, (74)

and the adaptive law ̇̂𝜃i
𝓁+1 as

̇̂𝜃i
𝓁+1 = 𝜍i

𝓁+1ei
𝓁+1Φ

i
𝓁+1( ̂̄xi

𝓁+1) − 𝛿i
𝓁+1�̂�

i
𝓁+1,

(75)

where ci
𝓁+1 > 0 and 𝛿i

𝓁+1 > 0 are constants.
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Thus,

V̇𝓁+1 ≤
N∑

i=1

[
−𝜆1‖x̃‖2 +

1
2

n∑
p=1

‖Fi‖2�̃�iT
p �̃�i

p

−

𝓁∑
p=1

ci
p(ei

p)2𝛽

((ki
p)2 − (ei

p)2)𝛽
+

𝓁+1∑
p=1

𝛿i
p

𝜍i
p

�̃�iT
p �̂�i

p

+

𝓁+1∑
p=1

1
2

(𝜉i
p+1)2 +

N∑
j=1

ai j

𝛾
j

1

𝜛
j

1

�̃�
jT

1 �̂�
j

1

+

𝓁+1∑
p=2

1
2
�̃�iT

p �̃�i
p + ei

𝓁+1ei
𝓁+2 − ci

𝓁+1(ei
𝓁+1)2𝛽

−

𝓁+1∑
p=2

(𝜉i
p)2

𝜐i
p

+

𝓁+1∑
p=2

𝜉i
p𝜀

i
p(⋅)

]
+ M𝓁+1, (76)

where M𝓁+1 = M𝓁.
Step m (m = 𝓁 + 2, … , n − 1): The derivative of ei

m is

ėi
m = ̇̂xi

m − ̇̄𝛼i
m

= ei
m+1 + 𝜉i

m+1 + 𝛼i
m + l i

mx̃i
1 + �̂�iT

m Φi
m ( ̂̄xi

m )

−�̃�iT
m Φi

m ( ̂̄xi
m ) + �̃�iT

m Φi
m ( ̂̄xi

m ) − ̇̄𝛼i
m. (77)

The Lyapunov function is chosen as

Vm = Vm−1 +
1
2

N∑
i=1

[(ei
m )2 +

1

𝜍i
m

�̃�iT
m �̃�i

m + (𝜉i
m )2], (78)

where 𝜍i
m > 0 is a constant. Similarly, we have

ei
m𝜉

i
m+1 ≤ 1

2
(ei

m )2 +
1
2

(𝜉i
m+1)2, (79)

−ei
m�̃�

iT
m Φi

m ( ̂̄xi
m ) ≤ 1

2
(ei

m )2 +
1
2
�̃�iT

m �̃�i
m. (80)

and

�̇�i
m = ̇̄𝛼i

m − �̇�i
m−1 = −

𝜉i
m

𝜐i
m

+ 𝜀i
m (⋅), (81)

where 𝜀i
m (⋅) is a bounded function satisfying |𝜀i

m| ≤ 𝜀i
m with

constant 𝜀i
m > 0.

Choose the virtual controller 𝛼i
m as

𝛼i
m = −l i

m (yi − x̂i
1) − �̂�iT

m Φi
m ( ̂̄xi

m ) + ̇̄𝛼i
m

−ei
m−1 − ei

m − ci
m (ei

m )2𝛽−1, (82)

and the adaptive law ̇̂𝜃i
m as

̇̂𝜃i
m = 𝜍i

mei
mΦ

i
m ( ̂̄xi

m ) − 𝛿i
m�̂�

i
m, (83)

where ci
m > 0 and 𝛿i

m > 0 are constants.

Thus,

V̇m ≤
N∑

i=1

[
−𝜆1‖x̃‖2 +

1
2

n∑
p=1

‖Fi‖2�̃�iT
p �̃�i

p

−

𝓁∑
p=1

ci
p(ei

p)2𝛽

((ki
p)2 − (ei

p)2)𝛽
+

m∑
p=1

𝛿i
p

𝜍i
p

�̃�iT
p �̂�i

p

+

m∑
p=1

1
2

(𝜉i
p+1)2 +

N∑
j=1

ai j

𝛾
j

1

𝜛
j

1

�̃�
jT

1 �̂�
j

1

+

m∑
p=2

1
2
�̃�iT

p �̃�i
p + ei

mei
m+1 −

m∑
p=𝓁+1

ci
p(ei

p)2𝛽

−

m∑
p=2

(𝜉i
p)2

𝜐i
p

+

m∑
p=2

𝜉i
p𝜀

i
p(⋅)

]
+ Mm, (84)

where Mm = Mm−1.
Step n: The derivative of ei

n is

ėi
n = ̇̂xi

n − ̇̄𝛼i
n

= sati (ui ) + l i
n x̃i

1 + �̂�iT
n Φi

n(x̂i ) − �̃�iT
n Φi

n(x̂i )

+�̃�iT
n Φi

n(x̂i ) − ̇̄𝛼i
n. (85)

Select the Lyapunov function as

Vn = Vn−1 +
1
2

N∑
i=1

V i
n

= Vn−1 +
1
2

N∑
i=1

[
(ei

n )2 +
1

𝜍i
n

�̃�iT
n �̃�i

n +
𝜚i

ri
ℏ̃2

i
+ (𝜉i

n )2

]
, (86)

where 𝜍i
n > 0 and ri > 0 are constants, ℏ̃i = ℏi − ℏ̂i denotes

the estimation error between ℏi =
1
𝜚i

and ℏ̂i , in which ℏi is

unknown and will be estimated adaptively.
Thus,

V̇n = V̇n−1 +

N∑
i=1

(ei
nėi

n −
1

𝜍i
n

�̃�iT
n
̇̂𝜃i
n −

𝜚i

ri

ℏ̃i
̇̂ℏi + 𝜉 i

n�̇�
i
n )

= V̇n−1 +

N∑
i=1

{ei
n[sati (ui ) + l i

n x̃i
1 + �̂�iT

n Φi
n(x̂i ) − ̇̄𝛼i

n]

−ei
n�̃�

iT
n Φi

n(x̂i ) −
1

𝜍i
n

�̃�iT
n [ ̇̂𝜃i

n − 𝜍i
nei

nΦ
i
n(x̂i )] + 𝜉 i

n�̇�
i
n −

𝜚i

ri

ℏ̃i
̇̂ℏi}.

(87)
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4.2 ETC design

In this subsection, an adaptive ETC scheme will be estab-
lished for system (11) to track the reference signal yr (t ) and
ensure SGPFS.

Let

ui (t ) = 𝜏i (t
i
k

), ∀t ∈ [t i
k
, t i

k+1), (88)

where {t i
k
, k ∈ +} is a trigger time instant sequence. The trig-

ger time instant will be updated as t i
k+1, when the following

designed trigger condition

t i
k+1 = inf{t ∈ R||Θi (t )| ≥ qi |ui (t )| + hi}, (89)

is satisfied, where Θi (t ) = 𝜏i (t ) − ui (t ), 0 < qi < 1 and hi > 0
are constants. Note that the control input ui (t ) will remain
constant in time interval [t i

k
, t i

k+1).

Remark 3. By selecting appropriate parameters qi and hi , the
number of transmissions can be adjusted via the ETC scheme.
The smaller the parameter values, the more times the trig-
ger occurs. Instead, the trigger times will decrease. Specially, it
becomes time-triggered when qi = 0 and hi = 0.

Remark 4. The ETC mechanism presented in (88) and (89) can
be updated according to the value of the control signal. When
the control input ui (t ) is large, a larger threshold will be gener-
ated, which can reduce the times of information transmission.
When the control input ui (t ) is small, a smaller threshold will
be generated, so as to obtain better system performance. If
the measurement error of the system meets the event-triggered
conditions, the controller will be updated.

Similar to the discussion in [55], one gets

𝜏i (t ) = (1 + 𝜅1(t )qi )ui (t ) + 𝜅2(t )hi , t ∈
[
t i
k
, t i

k+1

]
, (90)

where 𝜅1(t ) and 𝜅2(t ) satisfy |𝜅1(t )| ≤ 1 and |𝜅2(t )| ≤
1, respectively.

Further, one has

ui (t ) =
𝜏i (t )

1 + 𝜅1(t )qi
−

𝜅2(t )hi

1 + 𝜅1(t )qi
. (91)

The control function 𝜏i (t ) in (88) is designed as

𝜏i (t ) = −(1 + qi )

[
𝛼i

nℏ̂i tanh

(
ei
n𝛼

i
nℏ̂i

𝜖i

)
+

hi

1 − qi

tanh

(
hi e

i
n

(1 − qi )𝜖i

)]
,

(92)

where 𝜖i > 0 is a constant.
According to Lemma 7, we have

𝜁(ui )𝜏i (t )ei
n

1 + 𝜅1(t )qi
≤ −ei

n𝛼
i
n + 𝜚i ℏ̃i |ei

n𝛼
i
n| + 0.2785𝜖i

−
hi𝜁(ui )e

i
n

1 − qi
tanh(

hi e
i
n

(1 − qi )𝜖i
), (93)

and

−
hi𝜁(ui )𝜅2(t )ei

n

1 + 𝜅1(t )qi
≤ hi𝜁(ui )𝜅2(t )|ei

n|
1 + 𝜅1(t )qi

≤ hi𝜁(ui )|ei
n|

1 − qi
. (94)

It follows (91)–(94), (87) that

V̇n ≤ V̇n−1 +

N∑
i=1

{
ei
n

[
l i
n x̃i

1 + �̂�iT
n Φi

n(x̂i ) − ̇̄𝛼i
n − 𝛼i

n

]
−ei

n�̃�
iT
n Φi

n(x̂i ) −
1

𝜍i
n

�̃�iT
n

[
̇̂𝜃i
n − 𝜍i

nei
nΦ

i
n(x̂i )

]
+ 𝜉i

n�̇�
i
n

+
𝜚i ℏ̃i

ri

(
ri |ei

n𝛼
i
n| − ̇̂ℏi

)
+ 0.557𝜖i

}
. (95)

Similarly, we have

−ei
n�̃�

iT
n Φi

n(x̂i ) ≤ 1
2

(ei
n )2 +

1
2
�̃�iT

n �̃�i
n, (96)

and

�̇�i
n = ̇̄𝛼i

n − �̇�i
n−1 = −

𝜉i
n

𝜐i
n

+ 𝜀i
n(⋅), (97)

where 𝜀i
n(⋅) is a bounded function satisfying |𝜀i

n| ≤ 𝜀i
n with

constant 𝜀i
n > 0.

The tuning function 𝛼i
n is designed as

𝛼i
n = l i

n (yi − x̂i
1) + �̂�iT

n Φi
n(x̂i ) − ̇̄𝛼i

n + ei
n−1

+
1
2

ei
n + ci

n(ei
n )2𝛽−1, (98)

where ci
n is a positive constant.

Select ̇̂𝜃i
n as

̇̂𝜃i
n = 𝜍i

nei
nΦ

i
n(x̂i ) − 𝛿i

n�̂�
i
n, (99)

and ̇̂ℏi as

̇̂ℏi = ri |ei
n𝛼

i
n| − 𝚤i ℏ̂i , (100)

where 𝛿i
n > 0, 𝚤i > 0 are constants.

From (95)-(100), we have

V̇n ≤
N∑

i=1

[
−𝜆1‖x̃‖2 +

1
2

n∑
p=1

‖Fi‖2�̃�iT
p �̃�

i
p

−

𝓁∑
p=1

ci
p(ei

p)2𝛽

((ki
p)2 − (ei

p)2 )𝛽
+

n∑
p=1

𝛿i
p

𝜍i
p

�̃�iT
p �̂�

i
p +

n−1∑
p=1

1
2

(𝜉 i
p+1)2

+

N∑
j=1

ai j

𝛾
j

1

𝜛
j

1

�̃�
jT

1 �̂�
j

1 + 0.557𝜖i +

n∑
p=2

1
2
�̃�iT

p �̃�
i
p −

n∑
p=2

(𝜉 i
p)2

𝜐i
p

+

n∑
p=2

𝜉 i
p𝜀

i
p(⋅) −

n∑
p=𝓁+1

ci
p(ei

p)2𝛽 +
𝚤i𝜚i ℏ̃i ℏ̂i

ri

]
+ Mn−1. (101)
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By Young’s inequality, we have

𝚤i𝜚i ℏ̃i ℏ̂i

ri
≤ −

𝚤i𝜚i ℏ̃
2
i

2ri
+
𝚤i𝜚iℏ

2
i

2ri
. (102)

From (101) and (102), one gets

V̇n ≤
N∑

i=1

[
−𝜆1‖x̃‖2 +

1
2

n∑
p=1

‖Fi‖2�̃�iT
p �̃�i

p

−

𝓁∑
p=1

ci
p(ei

p)2𝛽

((ki
p)2 − (ei

p)2)𝛽
+

n∑
p=1

𝛿i
p

𝜍i
p

�̃�iT
p �̂�i

p

+

n−1∑
p=1

1
2

(𝜉i
p+1)2 +

N∑
j=1

ai j

𝛾
j

1

𝜛
j

1

�̃�
jT

1 �̂�
j

1

+

n∑
p=2

1
2
�̃�iT

p �̃�i
p −

n∑
p=2

(𝜉i
p)2

𝜐i
p

+

n∑
p=2

𝜉i
p𝜀

i
p(⋅)

−

n∑
p=𝓁+1

ci
p(ei

p)2𝛽 −
𝚤i𝜚i ℏ̃

2
i

2ri

⎤⎥⎥⎦ + Mn, (103)

where Mn = 0.557𝜖i +
𝚤i𝜚iℏ

2
i

2ri
+ Mn−1.

5 STABILITY ANALYSIS

In this section, we give our main results in Theorem 1, which
shows that the proposed scheme can achieve the control
objectives mentioned in Subsection 2.2.

Theorem 1. For MASs (11) with virtual controller (46), (57), (65),

(74), (82), (98) and adaptive laws (47), (48), (58), (66), (75), (83),

(99), (100) subject to ETC mechanism (88), (89), under Assumptions 1,

the closed-loop system is SGPFS and the finite-time convergence of tracking

error to a small neighborhood of the origin is ensured. The settling time is

given as

T ∗ =
1

d (1 − 𝛽)𝜌

⎡⎢⎢⎢⎣V
1−𝛽

n (0) −

(
M

(2)
n

d (1 − 𝜌)

) 1−𝛽

𝛽
⎤⎥⎥⎥⎦ . (104)

In addition, the following results are guaranteed.

(i) The error signals ei
p, the adaptive parameter errors �̃�i

p, ℏ̃i , the observer

errors x̃i and the filter errors 𝜉i
p for i = 1, … ,N , are bounded in

finite-time and satisfy

|ei
p| ≤ ki

p(t )[1 − e
−2(

M
(2)
n

d (1−𝜌)
)

1
𝛽

]
1

2 , p = 1, 2, … , 𝓁, (105)

|ei
p| ≤

√√√√√2

[
M

(2)
n

d (1 − 𝜌)

] 1

𝛽

, p = 𝓁 + 1, … , n, (106)

‖�̃�i
p‖2 ≤

√√√√√2𝜍i
p

[
M

(2)
n

d (1 − 𝜌)

] 1

𝛽

, p = 1, 2, … , n, (107)

|ℏ̃i | ≤
√√√√√ ri

𝜚i

[
M

(2)
n

d (1 − 𝜌)

] 1

𝛽

, (108)

‖x̃i‖2 ≤
√√√√√ 2

𝜆min(Fi )

[
M

(2)
n

d (1 − 𝜌)

] 1

𝛽

(109)

and

|𝜉i
p| ≤

√√√√√2

[
M

(2)
n

d (1 − 𝜌)

] 1

𝛽

, p = 2, … , n, (110)

for t > T ∗.

(ii) The constrained partial states do not exceed the preset boundary, that

is, |xi
p| < k̄i

p(t ), ∀ t > 0, p = 1, … , 𝓁.

(iii) All the system signals are bounded.

(iv) The Zeno behavior does not occur.

Proof. Since

�̃�iT
p �̂�i

p ≤ 1
2
𝜃iT

p 𝜃i
p −

1
2
�̃�iT

p �̃�i
p, (111)

thus
n∑

p=1

𝛿i
p

𝜍i
p

�̃�iT
p �̂�i

p ≤
n∑

p=1

𝛿i
p

2𝜍i
p

𝜃iT
p 𝜃i

p −

n∑
p=1

𝛿i
p

2𝜍i
p

�̃�iT
p �̃�i

p. (112)

In addition, 𝜀i
p(⋅) is a bounded function satisfying |𝜀i

p| ≤ 𝜀i
p.

From Lemma 2, we have

|𝜉i
p𝜀

i
p| ≤ (𝜉i

p)2(𝜀i
p)2

2𝚥
+

𝚥

2
, (113)

where 𝚥 > 0 is a constant.
Thus,

V̇n ≤
N∑

i=1

⎧⎪⎨⎪⎩−
𝜆1

𝜆max(Fi )
x̃iT Fi x̃

i −

𝓁∑
p=1

2𝛽 ci
p

[
(ei

p)2

2((ki
p)2 − (ei

p)2 )

]𝛽

−

[
(𝛿i

1 − ‖Fi‖2𝜍i
1 )

1

2𝜍i
1

�̃�iT
1 �̃�i

1 +

n∑
p=2

(𝛿i
p − 𝜍i

p

−‖Fi‖2𝜍i
p)

1

2𝜍i
p

�̃�iT
p �̃�

i
p +

n∑
p=2

[
2

𝜐i
p

−
(𝜀i

p)2

𝚥
− 1

]
1
2

(𝜉 i
p)2

+

N∑
j=1

ai j

𝛾
j

1

2𝜛 j

1

�̃�
jT

1 �̃�
j

1 +
𝚤i𝜚i ℏ̃

2
i

2ri

+

n∑
p=𝓁+1

ci
p(ei

p)2𝛽

]}
+ M

(1)
n ,

(114)
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where M
(1)
n = Mn +

∑N

i=1[
∑n

p=1

𝛿i
p

2𝜍i
p

𝜃iT
p 𝜃i

p +
𝚥

2
(n − 1)] +∑N

j=1 ai j
𝛾

j

1

2𝜛
j

1

𝜃
jT

1 𝜃
j

1.

Let

𝜎 = min
i=1,…,N
p=2,…,n

{
2𝛽ci

1, 2
𝛽ci

p, 𝛿
i
1 − ‖Fi‖2𝜍i

1, 𝛿
i
p − 𝜍i

p − ‖Fi‖2𝜍i
p,

2

𝜐i
p

−
(𝜀i

p)2

𝚥
− 1,

𝛾
j

1

𝜛
j

1

,
𝚤i𝜚i

ri

}
, (115)

where 𝛿i
1 − ‖Fi‖2𝜍i

1 > 0, 𝛿i
p − 𝜍i

p − ‖Fi‖2𝜍i
p > 0,

2

𝜐i
p

−
(𝜀i

p )2

𝚥
−

1 > 0, by selecting appropriate parameters.
Thus,

V̇n ≤ −

N∑
i=1

2𝜆1

𝜆max(Fi )

1
2

x̃iT Fi x̃
i − 𝜎

N∑
i=1

⎧⎪⎨⎪⎩
𝓁∑

p=1

[
(ei

p)2

2((ki
p)2 − (ei

p)2 )

]𝛽

+

n∑
p=1

1

2𝜍i
p

�̃�iT
p �̃�

i
p +

n−1∑
p=1

1
2

(𝜉 i
p+1)2 +

N∑
j=1

ai j

2
�̃�

jT

1 �̃�
j

1 +
ℏ̃2

i

2

+

n∑
p=𝓁+1

(ei
p)2𝛽

2𝛽

}
+ M

(1)
n . (116)

According to Lemma 3, choose 𝜓1 = 1, 𝜓2 =∑n

p=1
1

2𝜍i
p

�̃�iT
p �̃�i

p, 𝜈1 = 1 − 𝛽, 𝜈2 = 𝛽 and 𝜈3 = 𝛽
𝛽

1−𝛽 , one

gets

(
n∑

p=1

1

2𝜍i
p

�̃�iT
p �̃�i

p

)𝛽

≤ (1 − 𝛽)𝜈3 +

n∑
p=1

1

2𝜍i
p

�̃�iT
p �̃�i

p. (117)

Similar to (117), the following inequalities hold

[∑n−1
p=1

1
2

(𝜉i
p+1)2

]𝛽 ≤ (1 − 𝛽)𝜈3 +

n−1∑
p=1

1
2

(𝜉i
p+1)2, (118)

(1
2

x̃iT Fi x̃
i
)𝛽 ≤ (1 − 𝛽)𝜈3 +

1
2

x̃iT Fi x̃
i , (119)

(
N∑
j=1

ai j

2
�̃�

jT

1 �̃�
j

1

)𝛽

≤ (1 − 𝛽)𝜈3 +

N∑
j=1

ai j

2
�̃�

jT

1 �̃�
j

1,
(120)

and

(
ℏ̃2

i

2

)𝛽

≤ (1 − 𝛽)𝜈3 +
ℏ̃2

i

2
. (121)

Noting that log
(ki

p )2

(ki
p )2−(ei

p )2
≤ (ei

p )2

(ki
p )2−(ei

p )2
when |ei

p| < ki
p and

from (117)-(121), we have

V̇n ≤ −

N∑
i=1

2𝜆1

𝜆max(Fi )

( 1
2

x̃iT Fi x̃
i
)𝛽

−

N∑
i=1

⎧⎪⎨⎪⎩𝜎
[

𝓁∑
p=1

1
2

(ei
p)2

(ki
p)2 − (ei

p)2

]𝛽

+𝜎

(
n∑

p=1

1

2𝜍i
p

�̃�iT
p �̃�

i
p

)𝛽

+ 𝜎

[
n−1∑
p=1

1
2

(𝜉 i
p+1 )2

]𝛽

+ 𝜎

(
N∑
j=1

ai j

2
�̃�

jT

1 �̃�
j

1

)𝛽

+ 𝜎

(
ℏ̃2

i

2

)𝛽

+ 𝜎

[
n∑

p=𝓁+1

(ei
p)2

2

]𝛽⎫⎪⎬⎪⎭ + M
(2)
n , (122)

where M
(2)
n = M

(1)
n +

∑N

i=1[4𝜎(1 − 𝛽)𝜈3 +
2𝜆1

𝜆max(Fi )
(1 −

𝛽)𝜈3] > 0. Let d = min{
2𝜆1

𝜆max(Fi )
, 𝜎}, we have

V̇n ≤ −dV
𝛽

n + M
(2)
n . (123)

Therefore, from (123) and Lemma 4, the closed-loop system
is SGPFS.

Now, we obtain the settling time T ∗. Let ei =
(ei

1, … , ei
n )T , �̃�i = (�̃�i

1, … , �̃�i
n )T , 𝜉i = (𝜉i

2, … , 𝜉i
n )T and

X = [colT (x̃i ), colT (ei ), colT (�̃�i ), colT (𝜉i ), colT (ℏ̃i )]
T for

i = 1, … ,N . From (123), one gets

V̇n(X ) ≤ −d𝜌V
𝛽

n (X ) − d (1 − 𝜌)V 𝛽
n (X ) + M

(2)
n , (124)

where 0 < 𝜌 < 1.

Let ΩX = {X |V 𝛽
n (X ) ≤ M

(2)
n

d (1−𝜌)
} and Ω̄X = {X |V 𝛽

n (X ) >

M
(2)
n

d (1−𝜌)
}. If X ∈ Ω̄X , then

V̇n(X ) ≤ −d𝜌V
𝛽

n (X ). (125)

Integrating on both sides of (125) from 0 to T , one has

∫
T

0

V̇n(X )

V
𝛽

n (X )
dt ≤ −d ∫

T

0
𝜌dt , (126)

which yields

1
1 − 𝛽

V
1−𝛽

n (X (T )) −
1

1 − 𝛽
V

1−𝛽
n (X (0)) ≤ −d𝜌T . (127)

Let

T ∗ =
1

d (1 − 𝛽)𝜌

⎡⎢⎢⎢⎣V
1−𝛽

n (0) −

(
M

(2)
n

d (1 − 𝜌)

) 1−𝛽

𝛽
⎤⎥⎥⎥⎦ . (128)

From (127), one has x ∈ ΩX for ∀ t ≥ T ∗.
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By the definitions of Vn and ΩX , for t ≥ T ∗, one has

V
𝛽

n ≤ M
(2)
n

d (1 − 𝜌)
. (129)

For the error variable ei
p, p = 1, … , 𝓁, it follows from (61) and

(129) that

1
2

log
(ki

p)2

(ki
p)2 − (ei

p)2
≤ Vn ≤

[
M

(2)
n

d (1 − 𝜌)

] 1

𝛽

. (130)

Thus,

|ei
p| ≤ ki

p(t )

⎡⎢⎢⎢⎣1 − e
−2

(
M

(2)
n

d (1−𝜌)

) 1
𝛽 ⎤⎥⎥⎥⎦

1

2

< ki
p(t ), p = 1, … , 𝓁. (131)

For the error variable ei
p, p = 𝓁 + 1, … , n, it follows from (86)

and (129) that

1
2

(ei
p)2 ≤ Vn ≤

[
M

(2)
n

d (1 − 𝜌)

] 1

𝛽

. (132)

Thus,

|ei
p| ≤

√√√√√2

[
M

(2)
n

d (1 − 𝜌)

] 1

𝛽

, p = 𝓁 + 1, … , n. (133)

Let ē1 = [e1
1, … , eN

1 ]T . It is obvious that ē1 = Ξ1(y − 1N yr ).
From Lemma 1, one has

‖y − 1N yr‖2 ≤ 1
𝜎(Ξ1)

ki
1(t )

⎡⎢⎢⎢⎢⎢⎣
1 − e

−2
⎛⎜⎜⎝

M
(2)
n

d (1 − 𝜌)

⎞⎟⎟⎠
1
𝛽 ⎤⎥⎥⎥⎥⎥⎦

1

2

, (134)

where 𝜎(Ξ1) =
√
𝜆min(ΞH

1 Ξ1) and ΞH
1 is the conjugate trans-

pose of Ξ1.
Therefore, the finite-time convergence of tracking error to

a small neighborhood of the origin with settling time T ∗ is
ensured.

(i) For the adaptive parameters estimation errors �̃�i
p, i =

1, … ,N , p = 1, … , n, it follows from (86) and (129) that

1

2𝜍i
p

�̃�iT
p �̃�i

p ≤ Vn ≤
[

M
(2)
n

d (1 − 𝜌)

] 1

𝛽

, (135)

which means that �̃�i
p is bounded and

‖�̃�i
p‖2 ≤

√√√√√2𝜍i
p

[
M

(2)
n

d (1 − 𝜌)

] 1

𝛽

, t > T ∗. (136)

For the estimation errors ℏ̃i , i = 1, … ,N , it follows from
(86) and (129) that

𝜚i

ri
ℏ̃2

i
≤ Vn ≤

[
M

(2)
n

d (1 − 𝜌)

] 1

𝛽

, (137)

which means that ℏ̃i is bounded and

|ℏ̃i | ≤
√√√√√ ri

𝜚i

[
M

(2)
n

d (1 − 𝜌)

] 1

𝛽

, t > T ∗. (138)

For observer errors x̃i , according to (31) and (129), one
has

1
2

x̃iT Fi x̃
i ≤ Vn ≤

[
M

(2)
n

d (1 − 𝜌)

] 1

𝛽

. (139)

Thus, for i = 1, … ,N ,

‖x̃i‖2 ≤
√√√√√ 2

𝜆min(Fi )

[
M

(2)
n

d (1 − 𝜌)

] 1

𝛽

, t > T ∗. (140)

Therefore, the observer error x̃i is bounded.
For the filter errors 𝜉i

p, i = 1, … ,N , p = 2, … , n, it follows
from (86) and (129) that

1
2

(𝜉i
p)2 ≤ Vn ≤

[
M

(2)
n

d (1 − 𝜌)

] 1

𝛽

, (141)

which means that 𝜉i
p is bounded and

|𝜉i
p| ≤

√√√√√2

[
M

(2)
n

d (1 − 𝜌)

] 1

𝛽

, t > T ∗. (142)

From (131), (133), (140), (136), (138) and (142), the bound-
edness of the error signals ei

p, �̃�i
p, ℏ̃i , x̃i , 𝜉i

p and the bound
conditions given in (i) are ensured.

(ii) It follows from Lemma 8 that |ei
p| < ki

p(t ). Since y =

Ξ−1
1 ē1 + 1N yr , thus |xi

1| ≤ ‖y‖∞ ≤ ‖Ξ−1
1 ‖∞‖ē1‖∞ + r̂0 ≤‖Ξ−1

1 ‖∞ ⋅ maxi=1,…,N {k
i
1(t )} + r̂0. Choose ki

1(t ) ≤
k̄i

1(t )−r̂0‖Ξ−1
1 ‖∞ , we have |xi

1| ≤ k̄i
1(t ), which means that

the state xi
1 do not exceed the constraint bound-

ary. Since ei
2 = x̂i

2 − �̄�i
2 = xi

2 − x̃i
2 − 𝜉i

2 − 𝛼i
1, thus
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|xi
2| ≤ |ei

2| + |x̃i
2| + |𝜉i

2| + |𝛼i
1|. Since 𝛼i

1 is a contin-
uous function in a compact set, thus |𝛼i

1| < �̌�i
1 with

�̌�i
1 > 0 being a constant. It follows from (140) and (142)

that |x̃i
2| < ‖x̃i‖2 ≤

√
2

𝜆min(Fi )
[

M
(2)
n

d (1−𝜌)
]

1

𝛽 = Υ̂i
2 and |𝜉i

p| ≤√
2[

M
(2)
n

d (1−𝜌)
]

1

𝛽 = Υ̌i
2. Thus, |xi

2| ≤ ki
2(t ) + Υ̂i

2 + Υ̌i
2 + �̌�i

1.

Choose ki
2(t ) = k̄i

2(t ) − Υ̂i
2 − Υ̌i

2 − �̌�i
1, one gets|xi

2| < k̄i
2(t ), thus state xi

2 do not exceed the constraint
boundary. Similar to the deduction of xi

2, and choosing
ki

p(t ) = k̄i
p(t ) − Υ̂i

p − Υ̌i
p − �̌�i

p−1, we have |xi
p| < k̄i

p(t ),
p = 3, … , 𝓁, ∀ t > 0.
Therefore, the constrained partial states do not exceed the
preset boundary, that is, |xi

p| < k̄i
p(t ), p = 1, 2, … , 𝓁, ∀ t >

0.
(iii) Since ei

p = x̂i
p − �̄�i

p = xi
p − x̃i

p − 𝜉i
p − 𝛼i

p−1, p =

𝓁 + 1, … , n, thus the unconstrained state xi
p satisfy|xi

p| ≤ |ei
p| + |x̃i

p| + |𝜉i
p| + |𝛼i

p−1|. Similar to the deduc-

tion in (ii), we have ei
p, x̃i

p, 𝜉i
p and 𝛼i

p−1 are bounded,

thus xi
p is bounded. That is, the unconstrained states

are bounded. Since |x̂i
p| ≤ |xi

p| + |x̃i
p| ≤ k̄i

p(t ) + Υ̂i
p,

p = 1, … , n, thus observer state x̂i
p is bounded. Since

‖�̂�i
p‖2 ≤ ‖𝜃i

p‖2 + ‖�̃�i
p‖2 ≤ ‖𝜃i

p‖2 +

√
2𝜍i

p[
M

(2)
n

d (1−𝜌)
]

1

𝛽 ,

p = 1, … , n, and 𝜃i
p is a constant vector, thus �̂�i

p is bounded.

Since |�̄�i
p| ≤ |𝜉i

p| + |𝛼i
p−1| ≤ √

2[
M

(2)
n

d (1−𝜌)
]

1

𝛽 + |𝛼i
p−1|,

p = 2, … , n, and 𝛼i
p−1 is bounded, thus �̄�i

p is bounded.

Since |ℏ̂i | ≤ |ℏi | + |ℏ̃i | ≤ |ℏi | +√
ri

𝜚i

[
M

(2)
n

d (1−𝜌)
]

1

𝛽 and ℏi is

a positive constant, thus ℏ̂i is bounded.
Therefore, (iii) is guaranteed.

(iv) Now, we prove that the inter-event time t i
k+1 − t i

k
≥ ť i > 0,

∀ k ∈ +. For t ∈ [t i
k
, t i

k+1),

d

dt
|Θi | = d

dt
(Θi × Θi )

1

2 = sign(Θi )Θ̇i ≤ |�̇�i |. (143)

From (92), one gets

�̇�i = −(1 + qi )

⎡⎢⎢⎢⎢⎢⎣
�̇�i

nℏ̂i tanh

(
ei
n𝛼

i
nℏ̂i

𝜖i

)
+
𝛼i

nℏ̂i

𝜖i

(
ėi
n𝛼

i
nℏ̂i + ei

n�̇�
i
nℏ̂i + ei

n𝛼
i
n
̇̂ℏi

)
cosh2

(
ei
n𝛼

i
nℏ̂i

𝜖i

)

+ 𝛼i
n
̇̂ℏi tanh

(
ei
n𝛼

i
nℏ̂i

𝜖i

)
+

h2
i

(1 − qi )2𝜖i

ėi
n

cosh2
(

hi e
i
n

(1 − qi )𝜖i

)
⎤⎥⎥⎥⎥⎦
. (144)

From (144) and Theorem 1, one gets �̇�i is bounded and
continuous. Thus, |�̇�i | ≤ �̆� with �̆� being some positive con-
stant. Since limt→t i

k+1
Θi (t ) = qi |ui (t )| + hi and Θi (t

i
k

) =

0, thus, the lower bound ť i satisfies ť i ≥ qi |ui (t )|+hi

�̆�
> 0.

FIGURE 1 Communication graph

As a consequence, the Zeno behavior can be avoided
successfully. □

Remark 5. The stability of the closed-loop system (123) is guar-
anteed by choosing appropriate parameters. From (123), larger
d and smaller M

(2)
n can make the system have a good perfor-

mance. According to (115), smaller parameters 𝜍i
1, 𝜍i

p, 𝜀
i
p,𝜛 j

1 and

ri , and larger parameters ci
1, ci

p, 𝛿i
1, 𝛿i

p, 𝛾 j

1, 𝚥 and 𝚤i𝜚i , i = 1, … ,N ,
p = 2, … , n, can accelerate the convergence of the system, but
may result in larger error bounds. As a result, it is important to
acquire a balance between tolerable errors and convergence rate.

6 SIMULATIONS

In this section, the validity of our theoretical results is verified
by two examples.

Example 1:
The dynamic equation of four agents are described by

⎧⎪⎨⎪⎩
ẋi

1 = xi
2 + (xi

1)2 sin(xi
1) + 0.1 cos(2t ),

ẋi
2 = sati (ui ) + [1 + (xi

1)2](xi
2)2 + 0.1 sin(t ),

yi = xi
1, i = 1, … , 4.

(145)

The leader signal is given as yr (t ) = 0.5 sin(t ). Set x̂i
1(0) = 0.8,

x̂i
2(0) = 0.1, xi

1(0) = 0.3, the other initial values are set to zeros.
The interconnected relationships of a leader and four follow-
ers are shown in Figure 1. Figure 1 shows that a directed graph
concludes a DST satisfying Assumption 1. The corresponding
adjacency matrix, in-degree matrix and the Laplacian matrix of



HUANG ET AL. 573

Figure 1 are

 =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 1 0 0

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠
, =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
, (146)

and

Ξ =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 1 −1 0 0

−1 0 1 0 0

0 0 −1 1 0

0 0 0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎠
, (147)

respectively.
The fuzzy membership functions are given as

𝜇i,F 𝜄
1

(x̂i
1) = exp

[
−

(x̂i
1 + 𝜄)2

4

]
, (148)

and

𝜇i,F 𝜄
2

(x̂i
1, x̂

i
2) = exp

[
−

(x̂i
1 + 𝜄)2

4

]
× exp

[
−

(x̂i
2 + 𝜄)2

4

]
,

(149)
where i = 1, … , 4, 𝜄 = −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5.

The parameters are chosen as 𝛽 =
99

101
, ci

1 = 9, ci
2 = 16,

l i
1 = 30, l i

2 = 80, 𝛿i
1 = 𝛿i

2 = 0.01, 𝜍i
1 = 𝜍i

2 = 0.01, ri = 0.5,
𝚤i = 2, qi = 0.5, hi = 0.5, for i = 1, … , 4, u1

M
= u2

M
= u3

M
=

4 and u4
M
= 5. The time-varying boundary functions of the

constrained local consensus errors ei
1 are given as ki

1(t ) =
2e−t + 1, for i = 1, … , 4. The time-varying boundary func-
tions of the constrained states x1

1 , x2
1 , x3

1 and x4
1 are chosen

as k̄1
1(t ) = 4e−t + 2, k̄2

1(t ) = 2e−t + 1, k̄3
1(t ) = 4e−t + 2 and

k̄4
1(t ) = 6e−t + 3, respectively.

Figures 2–12 show the simulation results. The responses of
the output yi , i = 1, … , 4 and the reference signal yr (t ) are
shown in Figure 2. It is clear that the finite-time convergence
of tracking error to a small neighborhood around the origin
is guaranteed. The curves of the local consensus errors ei

1,
i = 1, … , 4 are shown in Figure 3, which are constrained within
time-varying boundaries. From Figure 3, we can see that the
local consensus errors do not exceed the preset boundary func-
tions. The trajectories of the states xi

1, x̂i
1, xi

2, x̂i
2, i = 1, … , 4 and

the observer errors x̃i
1, x̃i

2, i = 1, … , 4 are shown in Figures 4–7.
It can be seen from Figures 4–7 that a small observer errors is
achieved as time evolving and the constrained outputs xi

1, x̂i
1 do

not exceed the time-varying boundary. Figures 8–11 show the
trajectories of the saturation controller sati (ui ) and controller ui ,
i = 1, … , 4. From the enlarged view of Figures 8–11, it can be
seen that the saturation control input does not exceed saturation
boundary. The inter-event time t i

k+1 − t i
k
, i = 1, … , 4 of the ith
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FIGURE 2 The trajectories of yi and yr in (145) (i = 1, … , 4)
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FIGURE 3 The trajectories of the errors ei
1 in Example 1 (i = 1, … , 4)
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FIGURE 4 The trajectories of xi
1 and x̂i

1 in Example 1 (i = 1, … , 4)
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2 in Example 1 (i = 1, … , 4)
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FIGURE 6 The observer errors x̃i
1 in Example 1 (i = 1, … , 4)
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FIGURE 7 The observer errors x̃i
2 in Example 1 (i = 1, … , 4)
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FIGURE 8 The trajectories of the saturation controller sat1(u1 ) and
controller u1 in Example 1
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FIGURE 9 The trajectories of the saturation controller sat2(u2 ) and
controller u2 in Example 1
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FIGURE 10 The trajectories of the saturation controller sat3(u3 ) and
controller u3 in Example 1
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FIGURE 11 The trajectories of the saturation controller sat4(u4 ) and
controller u4 in Example 1
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FIGURE 12 The inter-event time t i
k+1 − t i

k
in Example 1 (i = 1, … , 4)

agents are displayed in Figure 12. It is clear that the ETC scheme
only updates when an event is triggered and can avoid the occur-
rence of the Zeno behavior. In this manner, the proposed ETC
scheme can save communication resources.

Example 2: A practical application example is given to ver-
ify the validity of our theoretical results. Consider four one-link
manipulators with motor described by{

Di ℏ̈i + Ii ℏ̇i + Ni sin(ℏi ) = 𝜗i + 𝜗id ,

Ki �̇�i + Pi𝜗i = sati (ui ) − Ji ℏ̇i ,
(150)

where ℏ, ℏ̇i and ℏ̈i are the link position, velocity and accel-
eration, respectively. 𝜗i and 𝜗id are the torque and torque
disturbance, respectively. The parameters are set as Di=1 kg
m2, Ii=1 Nm s/rad, Ni = 10, Ki = 1, Pi = 1Ω, Ji=0.2 Nm A
and 𝜗id = 0.1 sin(10t ), for i = 1, … , 4.

Let xi
1 = ℏi , xi

2 = ℏ̇i , and xi
3 = 𝜗i , the above systems

become

⎧⎪⎪⎨⎪⎪⎩

ẋi
1 = xi

2,

ẋi
2 =

1

Di

xi
3 −

Ii

Di

xi
2 −

Ni

Di

sin
(
xi

1

)
+

1

Di

𝜗id ,

ẋi
3 =

1

Ki

sati (ui ) −
Ji

Ki

xi
2 −

Pi

Ki

xi
3.

(151)

The reference signal is given as yr (t ) = − cos(1.5t ) + sin(0.5t ).
Set all initial states to zeros except for x̂i

1(0) = −0.9, x̂i
2(0) = 0.5

and xi
2(0) = 0.6.

The fuzzy membership functions are selected as

𝜇i,F 𝜄
1

(x̂i
1) = exp

[
−

(x̂i
1 + 𝜄)2

16

]
, (152)

𝜇i,F 𝜄
2

(x̂i
1, x̂

i
2) =

2∏
p=1

exp

[
−

(x̂i
p + 𝜄)2

16

]
, (153)

and

𝜇i,F 𝜄
3

(x̂i
1, x̂

i
2, x̂

i
3) =

3∏
p=1

exp

[
−

(x̂i
p + 𝜄)2

16

]
, (154)

where i = 1, … , 4, 𝜄 = −4, −3, −2, −1, 0, 1, 2, 3, 4.
The parameters are defined as 𝛽 =

99

101
, ci

1 = 3, ci
2 = 5, ci

3 =

5, l i
1 = 3, l i

2 = 3, l 1
3 = l 3

3 = l 4
3 = 80, l 2

3 = 60, 𝛿i
1 = 𝛿i

2 = 𝛿i
3 =

0.01, 𝜍i
1 = 𝜍i

2 = 𝜍i
3 = 0.01, ri = 0.5, 𝚤i = 5, qi = 0.1, hi = 0.5

and ui
M
= 40, for i = 1, … , 4. The time-varying boundary func-

tions of the constrained local consensus errors ei
1 are given as

ki
1(t ) = 0.5e−t + 4, for i = 1, … , 4. The time-varying bound-

ary functions of the constrained states x1
1 , x2

1 , x3
1 , x4

1 and
xi

2 are given as k̄1
1(t ) = e−t + 8, k̄2

1(t ) = 0.5e−t + 4, k̄3
1(t ) =

e−t + 8, k̄4
1(t ) = 1.5e−t + 12 and k̄i

2(t ) = 2e−t + 8.1, for i =
1, … , 4, respectively.

Figures 13–22 show the simulation results. The curves of
the output yi , i = 1, … , 4 and the reference signal yr (t ) are
depicted in Figure 13. The curves of the local consensus errors
ei
1, i = 1, … , 4 are shown in Figure 14, which are constrained

within time-varying boundaries. From Figures 13 to 14, it can
be seen that the system outputs yi can converge to the given
reference signal yr (t ) with bounded errors. Figures 15–17 show
the trajectories of the states xi

1, xi
2, xi

3 and the corresponding
observer states x̂i

1, x̂i
2, x̂i

3, i = 1, … , 4. It is obvious that the
constrained states xi

1, x̂i
1, xi

2, x̂i
2 do not exceed the constraint

boundary and the state observer works well. Figures 18–21
exhibit the trajectories of the saturation controller sati (ui ) and
controller ui , i = 1, … , 4. As you can see from Figures 18 to 21
that the saturation controllers work well. The inter-event time
t i
k+1 − t i

k
, i = 1, … , 4 are shown in Figure 22. As you can see

from Figure 22 that the ETC mechanism works well and the
Zeno behavior does not occur.

The simulation results of the two examples demonstrate the
effectiveness of the algorithm proposed in this paper.
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FIGURE 13 The trajectories of yi and yr in (151) (i = 1, … , 4)
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FIGURE 14 The trajectories of the errors ei
1 in Example 2 (i = 1, … , 4)
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FIGURE 15 The trajectories of xi
1 and x̂i

1 in Example 2 (i = 1, … , 4)
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FIGURE 16 The trajectories of xi
2 and x̂i

2 in Example 2 (i = 1, … , 4)
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FIGURE 17 The trajectories of xi
3 and x̂i

3 in Example 2 (i = 1, … , 4)
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FIGURE 18 The trajectories of the saturation controller sat1(u1 ) and
controller u1 in Example 2
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FIGURE 19 The trajectories of the saturation controller sat2(u2 ) and
controller u2 in Example 2
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FIGURE 20 The trajectories of the saturation controller sat3(u3 ) and
controller u3 in Example 2

7 CONCLUSION

This work mainly investigates the finite-time ETC problem
for MASs with input saturation, unknown nonlinear dynam-
ics, external disturbances and partial state constraints via output
feedback. FLS and fuzzy state observer are utilized to approx-
imate the uncertain nonlinearities and obtain the unmeasured
states, respectively. The BLF is introduced to deal with PSCs
and ensure that all states will not exceed the preset boundary
values. A fuzzy adaptive tracking controller is proposed by using
backstepping technique with a filter. In order to save commu-
nication resource, the ETC strategy is also considered, which
can avoid the occurrence of the Zeno behavior. By stability
analysis, the presented ETC mechanism guarantees the finite-
time convergence of tracking error to a small neighborhood of
the origin, partial states can be constrained within preset time-
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FIGURE 21 The trajectories of the saturation controller sat4(u4 ) and
controller u4 in Example 2
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FIGURE 22 The inter-event time t i
k+1 − t i

k
in Example 2 (i = 1, … , 4)

varying boundaries and all resulting system signals are bounded.
Finally, the simulation results verify the rationality of the theo-
retical results. In the future, the above problem for stochastic
MASs will be considered.
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