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Abstract

The beta generator technique, introduced by Eugene et al. (2002), entails con-
structing a univariate distribution function as a composite function of two distribu-
tion functions. The success of this technique in the univariate setting has prompted
research into the possibility of generalisation to the bivariate case. Such a generali-
sation, using copulas, can be found in Samanthi and Sepanski (2019).

In this paper, we construct bivariate distribution functions by passing a bivariate
distribution function as an argument to the univariate beta distribution function.
The class of distributions obtained is identical to that studied in Samanthi and
Sepanski (2019); however, the elementary elements of the two classes differ (i.e.,
some distributions are simple to construct using one of the techniques considered
and difficult to construct using the other). This paper provides a rigorous derivation
of the parameter space of the beta-generated distributions, as well as a result relating
to the dependence structure of the marginals. Finally, a practical example is included
demonstrating the use of a beta-generated distribution in the modelling of observed
losses in the energy market.

Keywords: Baseline distribution; Beta distribution; Bivariate normal distribu-
tion; Generator; Independence; Parameter space.

1 Introduction

The following technique for the construction of flexible univariate distributions is pre-
sented in Eugene et al. (2002). Let F denote the distribution function of a beta (a, b)

random variable with a > 0 and b > 0; i.e.,

F (x) =
1

B(a, b)

∫ x

0
ya−1 (1− y)b−1 dy, x ∈ (0, 1) ,
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where B(a, b) =
∫ 1
0 x

a−1(1− x)b−1dx (see Gradshteyn and Ryzhik (2007)). If G denotes
a distribution function, then

H (x) = F (G(x)) (1)

is a distribution function with the same support as that of G. G is generally referred
to as the baseline distribution, while F is known as the generator. Although various
distributions have been used as generators, the original, and most commonly used, choice
of F is the beta distribution function. We restrict our attention to this choice of F for
the remainder of this paper.

Note that, by its construction, G is a special case of H, obtained when a = b = 1.
A distribution obtained using the construction in (1) is more flexible than the baseline
distribution used for the construction; the beta-generator technique introduces two shape
parameters, denoted by a and b, into the new distribution. For more details on the
distributions that have been constructed using this technique, as well as their applications
and properties, the interested reader is referred to the following papers. In the context
of reliability, Nadarajah and Kots (2004) and Nadarajah and Kots (2006) respectively
introduce the beta-Gumbel and the beta-exponential distribution. The beta generalised-
exponential distribution is introduced in Barreto-Souza et al. (2010), while Nadarajah
and Gupta (2004) and Akinsete et al. (2008) respectively introduce and study the beta-
Fréchet and the beta-Pareto distributions.

The Kumaraswamy distribution is a beta-type distribution with certain advantages
in terms of tractability, such as a simple closed form expression for the distribution
function; see Jones (2009). This distribution has also been employed as a generator
when constructing distribution using the technique of Eugene et al. (2002). For example,
see Cordeiro et al. (2010) for the construction of the Kumaraswamy-Weibull distribution.

Alexander et al. (2010) introduces the class of generalised beta-generated distribu-
tions. These distributions have three shape parameters in the generator distribution as
opposed to the two provided by the beta distribution. Zografos and Balakrishnan (2009)
considers beta-generated distributions and also demonstrates the use of the generalised
gamma distribution as a generator (as an alternative of the beta distribution). A recent
review of the construction of distributions via compounding can be found in Tahir and
Cordeiro (2016).

The popularity of the construction technique in (1) for the univariate case has prompted
research into its use for the construction of higher dimensional distributions. Samanthi
and Sepanski (2019) generalised this construction technique by proposing that the uni-
variate baseline distribution be replaced by a bivariate copula function. If G1 and G2
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denote two univariate distribution functions, C : R2 → R denotes a copula function and
f is the density function of a beta (a, b) random variable, then

H(x1, x2) =

∫ C(G1(x1),G1(x2))

0
f(y)dy (2)

is a bivariate distribution function if, and only if, 1 ≤ a <∞ and 0 < b ≤ 1. Note that, in
the bivariate case, the use of the beta-generator technique requires additional restrictions
on the values of a and b, which is not the case when using univariate distributions.

There is ongoing interest in the construction of bivariate and multivariate distribu-
tions, using various techniques, as is witnessed by the following papers. Jones (2004)
introduces families of distributions arising from order statistics. Arnold et al. (2006)
introduces multivariate distributions based on the distributions in Jones (2004). The
beta-generated class of distributions is also closely related to the distribution of order
statistics; see Eugene et al. (2002).

In addition to considering a detailed treatment of the distributions proposed in Zo-
grafos and Balakrishnan (2009), Nadarajah et al. (2015) proposes bivariate generalisation
of the mentioned distributions. Sarabia et al. (2014) proposes three bivariate and multi-
variate distributions with beta-generated marginals as well as providing a discussion on
bivariate distributions related to the beta-generator technique. This discussion includes
the work contained in Arnold et al. (1999), Arnold et al. (2001) as well as Sarabia and
Gómez-Déniz (2008), all of which relate to the construction of distributions based on
marginal and conditional distributions. The discussion also makes reference to the dis-
tributions proposed in Jones and Larsen (2004) and Arnold et al. (2006). While both of
these papers propose multivariate versions of the beta-generated distributions, the first is
only suitable for modelling data above the diagonal and the second does not, in general,
have beta-generated marginals.

The current paper proposes a construction technique which is similar to the construc-
tion provided in Samanthi and Sepanski (2019); i.e., we replace the copula function in the
upperbound of the integral in (2) with a bivariate distribution function. Although the
class of distributions obtained using the newly proposed method is identical to the class
of distributions obtained using (2), certain distributions are much simpler to construct
using one method or the other. This is explained in more detail in Section 2.

The remainder of the paper is structured as follows. In Section 2, we propose an
alternative technique for the construction of the class of beta-generated distributions
which does not require any knowledge of the theory of copulas. This section contains a
rigorous derivation of the parameter space of the proposed class of distributions. Saman-
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thi and Sepanski (2019) also provides a derivation of this parameter space; however,
the mentioned derivation relies heavily on the theory of copulas, whereas an elementary
proof is here. Samanthi and Sepanski (2019) provides a sufficient condition for the in-
dependence of random variables with distribution function given by (2). In Section 3,
we prove that the mentioned condition is also necessary for independence. Some com-
ments regarding the link between the value of b and the dependence structure are also
included in this section. Although the aim of this paper is not to provide a detailed look
at the computational aspects associated with the beta-generated class of distributions,
a numerical example demonstrating the use of these distributions in the modelling of
observed losses in the energy market is provided in Section 4. Finally, Section 5 provides
some conclusions as well as directions for future research.

2 Construction technique

We begin this section by considering the parameter space of the bivariate beta-generated
distributions. In order to proceed, we need to consider the concept of two-increasingness
of a of a bivariate function. A bivariate function, γ : Ω → R, with Ω = Ω1 ⊗ Ω2 is said
to be two-increasing if, for every x1, x2 and positive δ1, δ2 such that x1, x1 + δ1 ∈ Ω1 and
x2, x2 + δ2 ∈ Ω2, we have that

γ(x1 + δ1, x2 + δ2) + γ(x1, x2) ≥ γ(x1 + δ1, x2) + γ(x1, x2 + δ2). (3)

It is well-known that a bivariate distribution function is required to be two-increasing.
Note that, if γ is a distribution function of the two random variables X1 and X2, then
the difference between the left and right hand sides of (3) is the following probability;
P (x1 ≤ X1 ≤ x1 + δ1, x2 ≤ X2 ≤ x2 + δ2).

Theorem 1. Let
H(x1, x2) = F (G(x1, x2)), (4)

where F is a (non-degenerate) beta(a, b) distribution function and G is a continuous
bivariate distribution function. H is two-increasing and therefore a bivariate distribution
function if, and only if, a ∈ [1,∞) and b ∈ (0, 1].

A proof of this theorem can be found in the Appendix.
We are thankful to an anonymous referee for pointing out a possible relaxation of

the assumptions required to prove the above theorem. Although a formal proof of the
statement below is still lacking, we believe that the following conjecture may hold.

4



Conjecture 1 Let H(x1, x2) = F (G(x1, x2)), where F is a distribution function and
G is a continuous bivariate distribution function. H is two-increasing if, and only if, the
derivative of F is convex.

The support of the random variables with distribution functions H and G are iden-
tical. As was the case when using univariate distribution functions, G is a special case
of H, obtained when a = b = 1 and H is a generalisation of G containing two shape
parameters; a and b. The marginals of H are univariate beta-generated distributions (the
proof of this statement is trivial and it is omitted here). As a result, the mathematical
properties of the marginals can be found in the statistical literature mentioned in the
previous section.

It can be shown that the density function corresponding to the distribution function
in (4) is given by

h(x1, x2) = f(G(x1, x2))g(x1, x2) + f ′(G(x1, x2))
∂

∂x1
G(x1, x2)

∂

∂x2
G(x1, x2), (5)

where f ′ denotes the derivative of the beta density function.
As a specific example, consider the bivariate beta-normal distribution. Let µ1, µ2 ∈ R,

σ1, σ2 > 0, ρ ∈ [−1, 1], z1 = (x1−µ1)/σ1 and z1 = (x2−µ2)/σ2. In this case, the bivariate
normal distribution can be expressed as

G(y1, y2) =
1

2πσ1σ2
√

1− ρ2

∫ y1

−∞

∫ y2

−∞
exp

(
− 1

2(1− ρ2)
(z21 + z22 − 2ρz1z2)

)
dx2dx1.

Below we refer to a distribution as standard bivariate beta-normal if µ1 = µ2 = 0 and
σ1 = σ2 = 1. Using G above as the baseline distribution, we obtain the bivariate beta-
normal distribution function

H(x1, x2) = F (G(x1, x2)) =
B(Φρ(z1, z2; a, b))

B(a, b)
,

with Φρ(·, ·) denoting the standard normal distribution function with correlation ρ and
B(x; a, b) =

∫ x
0 t

a−1(1 − t)b−1 the upper incomplete beta integral. The bivariate beta-
normal density function is

h(x1, x2) =
(Φρ(z1, z2))

a−1

B(a, b)

[
(φρ(z1, z2))

a−1(1− Φρ(z1, z2)φρ(z1, z2))
b−1

+
1

σ1σ2

(
a− 1

Φρ(z1, z2)
+

1− b
1− Φρ(z1, z2)

)
(1− Φρ(z1, z2))

b−1 φρ(z1, z2)

]
,
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with φρ(·, ·) denoting the standard normal density function.
Let Φ(·) and φ(·) respectively denote the standard normal distribution and density

functions in the univariate case. The marginal of h evaluated in x1 can be expressed as

h(x1,∞) =
1

σ1
f(Φ(z1))φ(z1) =

Φ(z1)
a−1(1− Φ(z1))

b−1φ(z1)

σ1B(a, b)
, (6)

with a similar result holding for x2. The equation in (6) can be recognised as the den-
sity function of the beta-normal distribution studied in Eugene et al. (2002). Although
the moments of the beta-normal distribution are generally not available in closed form,
certain parameter combinations allow closed form expressions, see Eugene et al. (2002).

In order to evaluate the effect of the parameters a and b on the shape of the bivariate
beta-normal distribution we include several graphs showing densities and contour plots.
All calculations are performed using MATLAB (2019). In each case we set µ1 = µ2 =

0 and σ1 = σ2 = 1 while the values of a, b and ρ are varied. Figures 1, 2 and 3
show the resulting densities and contour plots. While it is not possible to draw exact
conclusions regarding the exact effect that the values of a and b have on the moments
of the distribution or on the dependence structure from the graphs, we can gain some
insight. For instance increasing the value of a reduces the variance of the marginal
distributions, while reducing the value of b increases the correlation as well as the tail
dependence between the marginals.

In the univariate case, the beta-exponential distribution has been showed to be bi-
modal for certain parameter sets, see Famoye and Eugene (2004). Note that the corre-
sponding bivariate distribution is unimodal for all parameter sets. This difference can be
attributed to the difference between the parameter spaces of these distributions; Famoye
and Eugene (2004) reports that the maximum value of a which results in bimodality in
the univariate case is approximately 0.214, while the minimum value for a in the bivariate
case is 1.

As was mentioned above, the class of distributions obtained using the techniques
described in Samanthi and Sepanski (2019) and the current paper are identical. This can
easily be shown to be the case using Sklar’s theorem, see Sklar (1959), which asserts in
the bivariate case that, for every distribution there exists a corresponding copula and for
every copula there exists a corresponding distribution. However, it is worth noting that
even though the two classes contain the same distributions, the elementary elements
in each class differ. For example, if we use the Dirichlet distribution as the baseline,
then constructing the beta-Dirichlet distribution is conceptually simple when using the
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Figure 1. Density functions and contour plots of the standard bivariate beta-normal with
ρ = 0.
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Figure 2. Density functions and contour plots of the standard bivariate beta-normal with
ρ = 0.5.
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Figure 3. Density functions and contour plots of the standard bivariate beta-normal with
ρ = −0.5.
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technique proposed in the current paper. I.e., let the baseline density be Dirichlet;

g(x1, x2) =
Γ(θ0 + θ1 + θ2)

Γ(θ1)Γ(θ2)Γ(θ3)
xθ1−11 xθ2−12 (1− x1 − x2)θ0−1,

with θ0, θ1, θ2 > 0 and 0 ≤ x1 + x2 ≤ 1, see Kotz et al. (2000). The beta-Dirichlet
distribution can be constructed by setting

H(x1, x2) = F

(∫ x1

0

∫ min(x2,1−x1)

0
g(y1, y2)dy2dy1

)
. (7)

Although the calculation of the distribution function in (7) requires numerical integration,
the implementation of the methodology is straightforward. The same distribution can,
theoretically, be constructed using the copula-based approach of Samanthi and Sepanski
(2019). However, this requires that we use a copula with the same dependence structure
as that of the Dirichlet distribution. By Sklar’s theorem, we know that such a copula
exists. However this copula is not known in closed form. Although both construction
methods mentioned may be used in order to construct the beta-Dirichlet distribution, the
method advocated for in the current paper proves simpler to understand and implement
in the case of this specific distribution.

3 Dependence structure

The application of the beta-generator technique alters the dependence structure of the
distribution. Samanthi and Sepanski (2019) investigates the dependence structure of a
random variable with distribution function H in the case where the baseline distribution
has independent marginals. The mentioned paper shows that, in this case, b = 1 is a
sufficient condition in order for H to possess independent marginals. Below, we show
that b = 1 is also a necessary condition for independence to hold. In order to prove this
result, we shall make use of the following result.

Theorem 2. If F is a continuous distribution function with support (0, 1), then F (x1x2) =

F (x1)F (x2) if, and only if, F (x) = xt, for some t > 0.

For a proof, see Engel (1998), pages 274 and 275. Using the result in Theorem 2, we
can now prove the following theorem.

Theorem 3. If G (x1, x2) = G (x1,∞)G (∞, x2), then b = 1 is a necessary and sufficient
condition for H(x1, x2) = F (G(x1, x2)) to have independent marginals.
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Proof. X1 and X2 are independent if, and only if, for all (x1, x2) in the support of H,

H(x1, x2) = H(x1,∞)H(∞, x2)

⇐⇒ F (G(x1, x2)) = F (G(x1,∞))F (G(∞, x2))

⇐⇒ F (x) = xt, (8)

for all x ∈ (0, 1) and some t > 0, by Theorem 1. Note that (8) holds if, and only if, the
density, f , has the following form;

f(x) = txt−1, (9)

for some t > 0.
If b 6= 1, then f is clearly not in the form given in (9). On the other hand, if b = 1,

then

f(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1

=
Γ(a+ 1)

Γ(a)
xa−1

= axa−1,

which is of the form given in (9).

The result above shows that, in the case whereG possesses independent marginals, the
value of a does not influence the dependence structure of the beta-generated distribution.
This is especially interesting since we have seen in Figures 1, 2 and 3 above that the value
of a alters the shape of both marginal distributions.

Although we are unable to provide a mathematical proof, we conjecture the following
results relating to the dependence structure of beta-generated distributions based on
numerical results obtained.

Conjecture 2 Let ρ1 and ρ2 respectively denote the correlation between the marginal
distributions of the generator distribution G(x1, x2) and those of the beta-generated dis-
tribution H(x1, x2) = F (G(x1, x2)) where F (x) is the beta distribution function with
parameters a ≥ 1 and 0 < b ≤ 0. In this case, ρ1 ≤ ρ2, with equality holding only for
b = 1. Furthermore,

lim
b↓0

ρ2 = 1,

for every G and for every value of a ≥ 1.
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4 Practical application

As was mentioned above, the aim of this section is not to study the computational
aspects of the class of distributions discussed above (we plan to discuss these aspects in a
forthcoming publication). As a result, we adopt a somewhat unorthodox approach below.
Instead of considering observed data and then showing that the proposed models fit these
data better than standard models, we opt to use a dataset that can readily be modelled
using standard techniques. We then demonstrate that the distributions proposed above
can be used in order to model this dataset without introducing an inordinate amount of
complexity and computational difficulties.

Below we use the beta-bivariate normal distribution, discussed in Section 2, to model
the joint distribution of the daily log-losses of oil (denoted by X1 below) and gas prices
(denoted by X2 below) as measured from 13 January 2005 until 13 May 2005. The means
of X1 and X2 are calculated to be −0.0001 and −0.0003 respectively, while the standard
deviations are 0.0204 and 0.0200. The correlation between X1 and X2 is 0.4831. For a
more detailed discussion of the data, see Bustince et al. (2013).

Financial log-losses are often assumed to be normally distributed; see Cont (2001)
for a study of the empirical properties of financial losses. We investigate the normality
of the observed log-losses using a graphical procedure before turning our attention to
a formal goodness-of-fit test. Figures 4 and 5 show kernel density estimates of X1 and
X2 respectively. These estimates are obtained using Matlab’s ksdensity.m function. The
figures also show the fitted normal densities superimposed using dashed lines. In both
figures, the deviation between the kernel density estimate and the fitted normal density
is small enough that we conclude that the normal distribution is an appropriate model.

Turning our attention to a formal goodness-of-fit test, we consider the well-known
Kolmogorov-Smirnov test (also known as the Lilliefors test) for normality using Matlab’s
lillietest.m function. For the log-losses associated with the oil and gas prices, we observe
p-values of 7.1% and 11.7% respectively when testing the null hypothesis of normality. As
a result, we reject the assumption of normality for neither of the marginal distributions at
a 5% significance level. As a result, we conclude that the univariate normal distribution
is an appropriate model for both marginal distributions. We now fit the bivariate beta-
normal distribution to the data in order to see if this distribution is able to accurately
model not only the marginals of the distribution, but also the dependence structure.

The beta-bivariate normal distribution has a total of seven parameters. In order
to speed up computation we use a method similar to that explained in Visagie (2018).
That is, we use Nelder-Mead optimisation, which requires starting values; see Nelder and
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Figure 4. Kernel density estimate (solid line) of log-losses of oil prices with fitted normal
density (dashed line) superimposed.
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Figure 5. Kernel density estimate (solid line) of log-losses of gas prices with fitted normal
density (dashed line) superimposed.
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Mead (1965). In Visagie (2018), starting values are obtained by randomly generating
parameter values in the specified subset of the parameter space (chosen such that the
modeller believes that there is a high probability that this subset contains the true
parameter values) and calculating the log-likelihood function value. This procedure is
repeated a large number of times, and the parameter values associated with the largest
log-likelihood function value is chosen as the starting values used in the Nelder-Mead
optimisation.

In the current context, the method explained above would require the generation of
seven random numbers, one for each parameter in the model. Heuristically, in order for
the generated parameter set to be “good starting values”, each of the seven generated
parameter values should be “close to the true value”. The large number of parameters
in the model may cause the number of starting values required to be excessive. In order
to remedy this situation, we generate random starting values only for a and b. Given
these (fixed) values, we fit a univariate beta-normal distribution to each of the marginals
using maximum likelihood estimation (and the fminsearch.m function in Matlab). This
accounts for all of the parameters in the model, except the covariance parameter in
the bivariate normal baseline distribution. This parameter is then also estimated by
maximising the log-likelihood function in the subsequent step. The entire process is
repeated a large number of times and the log-likelihood is calculated for each pair of
(a, b) values generated. A parameter set with a large log-likelihood value is then used
as the starting values in the final optimisation process in which all seven parameters are
estimated (by maximising the joint log-likelihood).

It should be noted that users of R, see R Core Team (2019), may opt to use an-
other approach when fitting this distribution. They may use the Newdistns package, see
Nadarajah and Rocha (2016b), in order to fit the marginal distributions first and then
use these parameters as starting values for the joint estimation procedure. More details
on the Newdistns package can be found in Nadarajah and Rocha (2016a).

Using the Matlab procedure detailed above, we obtain the following set of starting
values:

(µ̂1, µ̂2, σ̂1, σ̂2, ρ̂, â, b̂) = (−0.0083,−0.0084, 0.0003, 0.0003, 0.3343, 1.0711, 0.6675).

Using these starting values in the optimisation procedure, we obtain the following pa-
rameter estimates:

(µ̂1, µ̂2, σ̂1, σ̂2, ρ̂, â, b̂) = (−0.0025,−0.0030, 0.0005, 0.0004, 0.5254, 1.0701, 1.0000).
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In this case the values of the log-likelihood functions achieved by the fitted bivariate
normal distribution and the fitted bivariate beta-normal distribution are very similar.

In order to visually judge the fit of the beta-bivariate normal distribution to the
observed values of X1 and X2, consider Figure 6. This figure contains contour a plot
of the fitted density with the observed log-losses superimposed. The figure seems to
indicate that the model fits the data well. Formal goodness-of-fit testing procedure for
the beta-bivariate normal distribution have yet to be developed.

5 Conclusion

This paper proposes a technique for the construction of the bivariate beta-generated class
of distributions. An elementary proof of the parameter space this class of distributions
is included. Although the class of distributions constructed using the newly proposed
technique is identical to the class constructed in Samanthi and Sepanski (2019), some
distributions are simpler to construct using the newly proposed technique. Furthermore,
the current paper does not require any knowledge of copula theory, which may make the
results presented more easily accessible to certain readers.

A sufficient condition for the independence of the marginals of a beta-generated dis-
tribution (under the independence copula) is presented in Samanthi and Sepanski (2019);
the condition being that the second shape parameter of the beta distribution equals 1.
The current paper proves that this condition is, in fact, also necessary for independence
to hold in this case. We also visually inspect the effect that the shape parameters have
on the dependence structure of the distribution through the use of density and contour
plots.

A practical example is included in which the observed log-losses of oil and gas prices
are modelled. Using both graphical and formal techniques, we observe that the normal
distribution is a realistic model for the marginals. We then fit a beta-bivariate normal
distribution to the data and we see that the performance of this distribution (as measured
by the likelihood function) is similar to that of the bivariate normal distribution. Visual
inspection indicates that the bivariate beta-normal model fits the observed data well.
However, it should be noted that formal goodness-of-fit testing for this distribution has
not been addressed in the literature. This, together with the two conjectures stated in
the paper, constitutes possible avenues for further research.
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Figure 6. Observed data together with a contour plot of the fitted density.
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6 Appendix

The proof for Theorem 1 can be found below.

Proof. Let Ω denote the (two dimensional) domain of G, and let Ω = Ω1⊗Ω2, where Ω1

and Ω2 denote the domains of the marginal distributions of G respectively. Let x1, x2
and δ1, δ2 > 0 be arbitrary points such that x1, x1 + δ1 ∈ Ω1 and x2, x2 + δ2 ∈ Ω2.

H is two-increasing if, and only if,

H (x1 + δ1, x2 + δ2)−H (x1 + δ1, x2) ≥ H (x1, x2 + δ2)−H (x1, x2)

⇐⇒ F (G(x1 + δ1, x2 + δ2))− F (G(x1 + δ1, x2)) ≥ F (G(x1, x2 + δ2))− F (G(x1, x2))

⇐⇒
∫ G(x1+δ1,x2+δ2)

G(x1+δ1,x2)
f(t)dt ≥

∫ G(x1,x2+δ2)

G(x1,x2)
f(t)dt. (10)

Below, it is shown that a ∈ [1,∞) and b ∈ (0, 1] are both sufficient and necessary for
(10) to hold.

Sufficiency:
Let a ∈ [1,∞) and b ∈ (0, 1]. Note that f is non-decreasing on [0, 1].
Consider the case where

G(x1 + δ1, x2) ≥ G(x1, x2 + δ2). (11)

In this case∫ G(x1+δ1,x2+δ2)

G(x1+δ1,x2)
f(t)dt ≥ [G (x1 + δ1, x2 + δ2)−G (x1 + δ1, x2)] f(G (x1 + δ1, x2))

≥ [G (x1, x2 + δ2)−G (x1, x2)] f(G (x1 + δ1, x2))

≥ [G (x1, x2 + δ2)−G (x1, x2)] f(G (x1, x2 + δ2))

≥
∫ G(x1,x2+δ2)

G(x1,x2)
f(t)dt,

where the first inequality follows from the non-decreasingness of f , and the second, from
the two-increasingness of G. The third inequality is due to the non-decreasingness of
f as well as the assumption made in (11), and the final inequality is again due to the
non-decreasingness of f . This shows that (10) holds.

Next, we consider the case where

G(x1 + δ1, x2) < G(x1, x2 + δ2). (12)
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In this case∫ G(x1+δ1,x2+δ2)

G(x1+δ1,x2)
f(t)dt

=

∫ G(x1,x2+δ2)

G(x1+δ1,x2)
f(t)dt+

∫ G(x1+δ1,x2+δ2)

G(x1,x2+δ2)
f(t)dt

≥
∫ G(x1,x2+δ2)

G(x1+δ1,x2)
f(t)dt+ [G (x1 + δ1, x2 + δ2)−G (x1, x2 + δ2)] f(G (x1, x2 + δ2))

≥
∫ G(x1,x2+δ2)

G(x1+δ1,x2)
f(t)dt+ [G (x1 + δ1, x2)−G (x1, x2)] f(G (x1, x2 + δ2))

≥
∫ G(x1,x2+δ2)

G(x1+δ1,x2)
f(t)dt+ [G (x1 + δ1, x2)−G (x1, x2)] f(G (x1 + δ1, x2))

≥
∫ G(x1+δ1,x2)

G(x1,x2)
f(t)dt+

∫ G(x1,x2+δ2)

G(x1+δ1,x2)
f(t)dt

≥
∫ G(x1,x2+δ2)

G(x1,x2)
f(t)dt,

where the equality follows from the continuity of f and the first inequality is due to
the non-decreasingness of f . The second inequality follows from the two-increasingness
of G. The third inequality is justified by the by the non-decreasingness of f as well
as the assumption made in (12), while the penultimate inequality is due to the non-
decreasingness of f . This shows that (10) holds.

Since both the assumptions in (11) and (12) cannot be false simultaneously, H is
two-increasing if a ∈ [1,∞) and b ∈ (0, 1].

Necessity:
Note that G(x1, x2) is continuous and non-decreasing in both x1 and x2. As a result,

there exists a k ∈ Ω ⊂ R2 such that G(k) = c, for all c ∈ (0, 1).
In order to demonstrate that (10) does not hold, it suffices to show that

∫ c2

c1

f(t)dt ≥
∫ c4

c3

f(t)dt ⇐⇒
∫ c2
c1
f(t)dt∫ c4

c3
f(t)dt

> 1, (13)

for some c4 − c3 ≥ c2 − c1.
Let a ∈ (0, 1). There exists a k ∈ (0, 1), such that f(t) is strictly decreasing on (0, k)

since F is non-degenerate. Choose c2 ∈ (0, k). Note that c2 > 0; therefore, f(c2) < ∞.
From the non-degenerateness of F , we have that limc↓0 f(c) =∞ and that f is continuous
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on (0, 1). As a result, there exists a c1 ∈ (0, c2) such that f(c1) = 4f(c2).
Let ε ≤ c2−c1

2 be some arbitrary positive number, then

c1 < c1 +
ε

2
< c2 − ε < c2.

Furthermore, ∫ c1+ε/2

c1

f(t)dt ≥ ε

2
f
(
c1 +

ε

2

)
,

from the decreasingness of f on [c1, c1 + ε
2 ]. We also have that∫ c2

c2−ε
f(t)dt ≤ εf (c2 − ε) ,

from the decreasingness of f on [c2 − ε, c2]. Let

φ (ε) =

∫ c1+ ε
2

c1
f(t)dt∫ c2

c2−ε f(t)dt
≥

f(c1 + ε
2)

2f(c2 − ε)
. (14)

Note that f(t) is continuous on (0, 1). As a result,
∫ c1+ ε

2
c1

f(t)dt and
∫ c2
c2−ε f(t)dt

are continuous in ε. From the non-degenerateness of F , we have that f(t) > 0 for all
t ∈ (0, 1) and that

∫ y2
y1
f(t)dt > 0 for all y1 < y2 such that y1, y2 ∈ [0, 1].

Since
∫ c1+ ε

2
c1

f(t)dt and
∫ c2
c2−ε f(t)dt are both continuous in ε and strictly positive, we

have that φ(ε) is continuous in ε.
Consider the limit where ε approaches 0 from above.

lim
ε↓0

φ(ε) = lim
ε↓0

∫ c1+ε/2
c1

f(t)dt∫ c2
c2−ε f(t)dt

≥ lim
ε↓0

f(c1 + ε
2)

2f(c2 − ε)

=
f(c1)

2f(c2)

= 2,

where the inequality follows from (14). Together with the continuity of φ(ε), this shows
that there exists an ε̃ such that ∫ c1+ε̃/2

c1
f(t)dt∫ c2

c2−ε̃ f(t)dt
≥ 2,
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which demonstrates (13). Therefore, if a ∈ (0, 1), then H is not two-increasing.
Let b ∈ (1,∞). There exists an m ∈ (0, 1), such that f(t) is strictly decreasing on

(m, 1) since F is non-degenerate. Choose c1 ∈ (m, 1). Note that c1 < 1; therefore,
f(c1) > 0. Since F is non-degenerate, we have that limg↑1 f(c) = 0 and that f is
continuous on (0, 1). As a result, there exists a c2 ∈ (c1, 1) such that f(c2) = 1

4f(c1).
Let ε ≤ c2−c1

2 be some positive number, then c1 < c1 + ε
2 < c2− ε < c2. Furthermore,

∫ c1+
ε
2

c1

f(t)dt ≥ ε

2
f
(
c1 +

ε

2

)
,

since f is decreasing on
[
c1, c1 + ε

2

]
. We also have that∫ c2

c2−ε
f(t)dt ≤ ε

2
f (c1 − ε) ,

since f is decreasing on [c2 − ε, c2].
Let

φ (ε) =

∫ c1+ ε
2

c1
f(t)dt∫ c2

c2−ε f(t)dt
≥

f(c1 + ε
2)

2f(c2 − ε)
. (15)

Note that f(t) is continuous on (0, 1). As a result,
∫ c1+ ε

2
c1

f(t)dt and
∫ c2
c2−ε f(t)dt are

continuous in ε. Since F is non-degenerate, we have that f(t) > 0 for all t ∈ (0, 1) and
that

∫ y2
y1
f(t)dt > 0 for all y1 < y2 such that y1, y2 ∈ [0, 1].

Since
∫ c1+ ε

2
c1

f(t)dt and
∫ c2
c2−ε f(t)dt are both continuous in ε and strictly positive, we

have that φ(ε) is continuous in ε.
Consider the limit where ε approaches 0 from above.

lim
ε↓0

φ(ε) = lim
ε↓0

∫ c1+ε/2
c1

f(t)dt∫ c2
c2−ε f(t)dt

≥ lim
ε↓0

f(c1 + ε
2

2f(c2 − ε)

=
f(c1)

2f(c2)

= 2,

where the inequality follows from (15). Together with the continuity of φ(ε), this shows
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that there exists a ε̃ such that ∫ c1+ε̃/2
c1

f(t)dt∫ c2
c2−ε̃ f(t)dt

≥ 2,

which demonstrates (13). Therefore, if b ∈ (1,∞), then H is not two-increasing.
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