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Abstract

1. The Symphyta is the most basal sub-order of the Hymenoptera and includes the

woodwasps, horntails and sawflies, many of which are pests. Adults are generally

short-lived and as a result males and females experience strong selection to rapidly

find a mate and females to find oviposition sites. Mate-searching typically relies on

visual and olfactory stimuli such as sexually dimorphic morphology (i.e., body parts

used in signalling) and pheromones.

2. Here we review the available literature on the chemical and visual ecology of the

Symphyta with potential for use in survey and detection programmes. Stimuli

reviewed include but are not limited to sex pheromones, larval defensive com-

pounds, plant kairomones and colour preferences.

3. Sex pheromones are known for 19 species of Symphyta and show shared evolu-

tionary patterns in chemistry, production site and ecological role.

4. In general, sex pheromones in the Symphyta are female-produced, oxidized cuticu-

lar hydrocarbons and yellow traps capture more individuals than other colours,

although exceptions do exist. More work is needed to expand on these and identify

new patterns in the visual and chemical ecology of the Symphyta.
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INTRODUCTION

The Hymenoptera started to diversify ~280 million years ago during

the Permian period. More than 115,000 extant species of Hymenop-

tera (e.g., bees, ants, wasps, sawflies) have been described, but it has

been estimated that as many as a million species remain undescribed

(Sharkey et al., 2017). Two suborders are recognized (Peters

et al., 2017). The Symphyta is an older paraphyletic group that con-

tains the primitive Hymenoptera (woodwasps, horntails and sawflies).

The younger suborder, the Apocrita (e.g., ants, bees, wasps), is mono-

phyletic. Although the Symphyta is not a monophyletic group, we use

it in this review to refer to non-Apocrita Hymenoptera.

The Symphyta contains ca. 8855 species in 817 genera, 7 super-

families and 14 families (Sharkey et al., 2017; Taeger et al., 2010,

2018). Phylogenetic studies split the Symphyta into three major

groups that differ in larval feeding habit. The suspected ancestral

group, the Eusymphyta (superfamily: Tenthredinoidea, Xyeloidea and

Pamphilioidea) are ectophytophagous and monophyletic. The second

group, the endophytophagous Symphyta (superfamily: Cephoidae,

Xiphydrioidea, Siricoidea) are paraphyletic. The third group includes

the superfamily of Orussoidea which are larval parasitoids and are

monophyletic.

Similar to many other insects, the Symphyta are important com-

ponents of food webs. Larvae actively contribute to the carbon chain

by decomposing plant material. Larvae usually feed on plant tissues

(e.g., nectar, pollen, leaves, sap, fruit juice) although some species feed

on fungal and insect tissues (Jervis & Vilhelmsen, 2000). Adults can be

important pollinators (Asenbaum et al., 2021; Barbir et al., 2019). Sev-

eral species from the family Tenthredinidae have potential for use as

biological control agents against invasive plants (Smith, 1993). For
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example, the Tenthredinidae Nematus oligospilus was identified as a

potential biological control agent for Salix spp. in Australia (Caron

et al., 2011, 2014). Another Tenthredinidae, Lophyrotoma zonalis, was

found to be a potential biological control agent for the paperbark tree

in Florida (Burrows & Balciunas, 1997), and Heteroperryia hubrichi

(Pergidae) as a potential biological agent of the Brazilian peppertree

(Cuda et al., 2005).

Some species of Symphyta can be important pests of cultivated

plants including roses (Özbek & Çalmaşur, 2005), fruit trees (Boevé

et al., 1996; Ibrahim et al., 2019), rapeseed-mustard (Patel

et al., 2017), stem crops (Wallace & McNeal, 1966), plum trees

(Kárpáti et al., 2021) and pine trees (Slippers et al., 2011). Some pest

species of Symphyta can have significant economic impact. For exam-

ple, the wheat stem sawfly Cephus cinctus can cause more than 30%

crop loss with an associated cost of $350 million in the Great Plains

of North America (Beres et al., 2011). The potential losses associated

with the establishment of the invasive woodwasp Sirex noctilio in East-

ern Canada on pine trees were estimated to range from $86 to $254

million per year (Yemshanov et al., 2009). In Finland, the large pine

sawfly Diprion pini was found to reduce growth of pine trees up to

94% and kill up to 30% of trees after an outbreak with an estimated

cost of $310/ha in 1 year (Lyytikäinen-Saarenmaa & Tomppo, 2002).

Between 1997 and 2010 at Mt. Hinokiboramary (Japan), ~18% of

beech trees were killed by the nematine sawfly Fagineura crenativora

(Koshiji et al., 2012 in Watanabe et al., 2018). Two years of severe

attack by the pine sawfly Neodiprion sertifer caused a 33% volume loss

in mature pine trees (Austarå et al., 1987). In Sweden, larvae of the

European birch sawfly Arge pullata are toxic and can be ingested by

pets and cattle (Anderbrant & Broad, 2019).

With the exception of Antarctica, Symphyta are found on every

continent on earth. They occupy diverse environments, from arid to

tropical forests, wherever their host plants are present. New discover-

ies of symphytan pests outside their native range have often been

reported (Blank et al., 2010; Kirichenko et al., 2019; Looney

et al., 2016; Macek & Sipek, 2015; Park et al., 2019) suggesting that

as a group they have a high invasion potential. The rate of introduc-

tion of invasive pests and pathogens is expected to increase with cli-

mate change and globalization (Bradshaw et al., 2016; Chakraborty &

Newton, 2011; Huang et al., 2011; Qin et al., 2019; Sharma

et al., 2017; Yan et al., 2017; Ziska et al., 2011) suggesting that incur-

sions by Symphyta may become more common.

Globally there has been an increase in the need for survey and

detection tools against insect pests, including the Symphyta. Under-

standing and managing the spread of invasive species is more impor-

tant than ever and relies on efficient detection tools. Survey and

detection tools facilitate determination of which pests are present,

population levels and associated damage. They also facilitate the eval-

uation of the impact of intervention treatments. However, the devel-

opment and implementation of efficient survey and detection tools

require a good understanding of the biology of the targeted

insect pest.

Adult Symphyta usually live for a few days up to a few weeks

(Smith, 1993) and thus experience selection to rapidly locate mates

and host plants. Adults generally rely on vision and olfaction to locate

these resources. As a result, these stimuli alone or in combination can

be replicated on traps to significantly increase insect capture

(Domingue et al., 2013; Hawkes et al., 2017; Raguso & Willis, 2005;

Shrestha et al., 2019; Silk et al., 2019; Vuts et al., 2012). Research on

the visual and chemical ecology of the Symphyta offers opportunities

to develop survey and detection tools. This review synthesizes the lit-

erature on and the chemical and visual ecology of the Symphyta with

an emphasis on stimuli with potential applications for survey and

detection.

VISUAL AND CHEMICAL BASIS FOR MATE
LOCATION IN SYMPHYTA

The morphology and behaviour of the Symphyta suggest that vision

and olfaction play an important role in its biology. The majority of

Symphyta possess antennae, two compound eyes and three ocelli.

Most adult Symphyta are diurnal (Naumann, 1997) and diurnal species

typically rely, at least partially, on visual stimuli to locate mates and

hosts.

In some insects, mate location is mediated by sexually dimorphic

traits. Sexual dimorphism in the Symphyta includes differences in eye

(e.g., Abiinae), mandible (e.g., Cimbicidae) and hind leg (e.g., Siricidae,

Cimbicidae) size, antennal morphology (e.g., Diprionidae), body

colouration and pheromone production (Cooperband et al., 2012;

Crook et al., 2008; Hallberg, 1979; Vilhelmsen, 2019). Martínez

et al. (2014) placed sticky mesh at various heights in pine canopies in

Argentina and observed that females flew higher when males were

present than when males were absent. Field trials comparing traps

baited with males to traps without males suggest that female

S. noctilio use visual stimuli to locate males (Allison et al., 2019).

Cumulatively, the available morphological and behavioural evidence

suggests that Symphyta use visual stimuli to locate mates and hosts.

Transcriptome studies reflect the importance of olfaction in the

Symphyta. A total of 72 odorant receptor genes were found in the

C. cinctus genome (a smaller number than all species of Apocrita with

known numbers of odorant receptors) (Robertson et al., 2018), and

28 odorant receptors were identified in the antennal transcriptome

(Gress et al., 2013). A phylogenetic analysis of these odorant recep-

tors revealed homology with other apocritan (Apis melifera and

Nasonia vitripennis) odorant receptors, but some lineages conserved in

the Symphyta have been lost in the Apocrita (Ferguson et al., 2021;

Robertson et al., 2018). Antennal structures in the Symphyta also sug-

gest an important role for long- and short-range communication.

Lower Cretaceous Symphyta fossils already showed large male

antenna supposedly used in long-distance mate finding (Krogmann

et al., 2013). Studies of S. noctilio antennae show that ~80% of sensilla

on the antennae were contact pheromone receptors (Crook

et al., 2008). The sensillar structure and/or the morphology of the

antenna can be sexually dimorphic (Hallberg, 1979; Schmidt

et al., 2006). For example, differences in the antennal ultrastructure of

male and female Acantholyda posticalis (Pamphilidae) strongly suggest
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the presence of a long-range sex pheromone (Yuan et al., 2013).

Transcriptomic, morphological and physiological data show that Sym-

phyta can use their antenna and other body parts [S. noctilio can

detect host volatiles with their ovipositor (Hayes et al., 2015)] to

detect volatile organic compounds.

Cuticular hydrocarbon (CHC) production in the Symphyta is also

sexually dimorphic. The primary role of CHCs in communication of

solitary hymenoptera is to mediate mate, species and sex recognition.

The complexity of CHC profiles in the Symphyta is similar to the rest

of the Hymenoptera, including social species (Kather & Martin, 2015).

Long chains of alkenes in C. cinctus [(Z)-9-pentacosene and (Z)-

9-heptacosene] and S. noctilio [(Z)-7-heptacosene, (Z)-7-nonacosene

and (Z)-9-nonacosene)], or alkadienes in Pikonema alaskensis [(Z,Z)-

9,19-alkadiene] and A. erythrocephala [(Z,Z)-1,9,15-pentacosatriene]

were only found on females and were shown to elicit a copulatory

response or to excite males (Bartelt et al., 1982, 2002; Böröczky

et al., 2009). Experimental evidence suggests that female L. analis

(Pergidae) with their CHCs removed are not attractive to males but

become attractive when their CHCs are reapplied (Schmidt

et al., 2006). Similarly, body washes of virgin females in two Cephalcia

species were more attractive to males than male extracts (Borden

et al., 1978; Nemer et al., 2007).

PHEROMONES IN SYMPHYTA

We mapped known sex pheromones of Symphyta onto a recent phy-

logeny representing the relationships of the families in this order

(Peters et al., 2017) to look for possible evolutionary patterns

(Figure 1). Volatile pheromones from 19 species within 6 families of

Symphyta are known from the literature; 12 species of Diprionidae

and in 1 to 2 species from the 5 other families (2 Pamphilidae,

1 Nematinae, 1 Tenthredininae, 1 Siricidae and 2 Cephidae). All the

pheromones described were released by females, except for the puta-

tive male pheromone of the woodwasp S. noctilio. The chemical struc-

ture found in most Symphyta pheromones includes an oxygen

functional group (mostly aldehyde, alcohol, ketone or ester) followed

by a long alkene, alkane or branched-alkane chain. The different com-

pounds found within and between species mostly differ in their func-

tional groups and carbon chain lengths. This chemical structure is

found in several families and may be ancestral in the Symphyta.

In the Symphyta, volatile pheromones have been most exten-

sively studied in the family Diprionidae (Genus: Diprion, Neodiprion,

Macrodicprion, Microdiprion and Gilpinia). In brief, sex pheromones in

this family are released by females and usually follow a similar struc-

tural motif. The sex pheromone precursor in the Diprionidae is typi-

cally a chain of 3,7-methylalkane-2-ol 11–16 carbons long

(Anderbrant et al., 2011, 2021; Bång et al., 2011; Bergström

et al., 1995, 1998; Hedenström et al., 2006, 2009; Jewett et al., 1976;

Olaifa et al., 1987, 1988; Östrand et al., 2003; Tai et al., 1998, 2002;

Wassgren et al., 1992, 2000). Some species possess an additional

methyl group at various positions on the 3-methylalkane-2-ol precur-

sor (Bergström et al., 1998; Wassgren et al., 2000). The pheromone

precursor is stored in the female and is esterified into an acetate

and/or a propionate during release (Anderbrant, 1999). Pheromone

precursors are typically present in higher titres than the pheromone

making them easier to identify.

The pheromone production pathway appears to be well con-

served in the Diprionidae. In addition to known pheromones, field tri-

als with different possible esterified isomers were attractive to several

species of Diprionidae (Anderbrant et al., 1997; Guo-fa et al., 1997;

Kikukawa et al., 1982; Kraemer et al., 1983, 1984; Olaifa et al., 1984;

Zhang et al., 2005). Although these structures have not been con-

firmed as pheromones, their activity in field trials and similarity to

known pheromones of other species of Diprionidae suggest that they

are pheromones. To date, pheromones and/or pheromone precursors

of 12 Diprionidae species have been identified and field trials have

identified putative pheromones in an additional 8 species (see

Table S1, Supporting Information). For these compounds, additional

work is required to confirm production and release of the pheromone

and/or precursors. Usually, one isomer elicits larger antennal

responses and/or captures more males in field trials (Anderbrant

et al., 2005; Hedenström et al., 2006, 2009; Kraemer et al., 1984). The

response of Diprionidae to additional isomers can vary with dose

(Anderbrant et al., 2021), ratios (Olaifa et al., 1988) and among

populations (Anderbrant et al., 2000). Details of the precursor chemis-

try, antennal activity and field trial responses to the different isomers

in the Diprionidae have been reviewed by Anderbrant (1993, 1999).

The chemistry of volatile pheromones identified in the rest of the

Symphyta is similar among distant families. Volatile pheromones in

the Symphyta generally include a long chain of alkene with an

oxygen-containing functional group [Pamphiliidae (Baker et al., 1983;

Staples et al., 2009), Nematinae (Bartelt et al., 1983; Bartelt &

Jones, 1983), Tenthredininae (Hall et al., 2017), Cephidae (Bartelt

et al., 2002; Cossé et al., 2002), Siricidae (Cooperband et al., 2012;

Faal et al., 2022; Guignard et al., 2020)]. Within species, pheromone

components usually have similar functional groups but different

alkene chain lengths. Functional groups include alcohols (Siricidae

and Nematinae), aldehydes (Pamphilidae, Nematinae), esters

(Tenthredininae) and acetoxy (Cephidae). The sex pheromone of the

web-spinning larch sawfly (Pamphilidae) differs from the rest of

Symphyta as it is the only one with two functional groups (amino

and ketone) branched on a cyclohexatriene (Baker et al., 1983). This

pheromone induced abdomen flexing and short flights in males but

no upwind flight. There is a need to study more families to get a

broader understanding of the evolution of pheromone chemistry in

the Symphyta.

Two primary sites of sex pheromone production have been

reported in the Symphyta. In the Pamphiliidae (Staples et al., 2009),

Nematinae (Bartelt et al., 1983), Siricidae (Faal et al., 2022) and

Cephidae (Bartelt et al., 2002) female-specific CHCs are oxidized into

smaller and more volatile sex pheromones. Extracts of the female

abdomen of the cedar web-spinning sawfly C. tannourinensis and the

pine sawfly N. sertifer had much higher titres of sex pheromone than

extracts of the head and thorax (Nemer et al., 2007; Wassgren

et al., 1992). The putative sex-aggregation pheromone released by

ECOLOGY OF THE SYMPHYTA 455



male S. noctilio is the only pheromone in the Symphyta known to be

stored in a specific body part (the hind legs) (Guignard et al., 2020).

Pheromones for the rest of the Symphyta were not found to be stored

in a specific gland and are all released by females. The chemistry of

pheromones from different release sources does not strongly differ in

the Symphyta.

F I GU R E 1 Phylogenetic tree of non-Apocrita hymenopteran families (left, adapted from Peters et al., 2017) and their corresponding
pheromone structures (right). The number of species where the pheromone was available from literature was indicated by N. In Diprionidae, three
structures are possible: R H for the alcohol precursor, R COCH3 for the acetate or R COCH2CH3 for the proprionate. Only the acetate or
propionate is active in the field. *Indicates asymmetric centres. †Pheromones in Dirpionidae were identified in 12 species but attractive isomers
were tested in 20 species (see text). The length of carbon chain (n) after the 7th carbon can vary for a total of 11–16 and can include an extra
methyl group (e.g., Macrodiprion nemoralis, Microdiprion pallipes or D. nipponica). Pamphiliidae: (Baker et al., 1983; Staples et al., 2009), Nematinae
(Bartelt et al., 1983; Bartelt & Jones, 1983), Tenthredininae (Hall et al., 2017), Cephidae (Bartelt et al., 2002; Cossé et al., 2002), Siricidae
(Cooperband et al., 2012; Guignard et al., 2020), Diprionidae; see Table S1, Supporting Information
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Pheromone-based tactics have potential for use in the field to

manage populations of Symphyta. For example, strong mating disrup-

tion of the pine sawfly N. sertifer was observed in plantations where

the percentage of male cocoons (this species is parthenogenetic and

unmated females only produce male progeny) increased from 3% to

46% in forests treated with sex pheromones (Martini et al., 2002). In

the field, traps baited with the respective synthetic female sex phero-

mones of Cephalcia lariciphila (Baker et al., 1983), A. erythrocephala

(Staples et al., 2009), Janus integer (James et al., 2003), P. alaskensis

(Bartelt et al., 1983), Nematus olfaciens (Hall et al., 2017) and C. cinctus

(Cossé et al., 2002) captured more males than unbaited controls. In

N. olfaciens, the addition of the (Z)-9-tricosene CHC present in both

male and female to a blend of two volatile pheromones extracted

from virgin females significantly increase the number of catches com-

pared with blends without the CHC (Hall et al., 2017). Although the

potential for use in the field to monitor these species has been dem-

onstrated, management programmes that include the use of these

pheromones have not yet been developed. In S. noctilio, both the male

and female pheromones were attractive in lab bioassays, but have not

been shown to be attractive in the field (Cooperband et al., 2012; Faal

et al., 2022; Hurley et al., 2015) suggesting they may have limited util-

ity for survey and detection of this pest of plantation pines.

The chemical ecology of the Symphyta includes larval com-

pounds. Tenthredinidae larvae release a great diversity of volatile

compounds from their ventral gland thought to be defensive com-

pounds (Boevé et al., 1992, 2000; Duffield et al., 1990; Jonsson

et al., 1988). 1,6-Germacradien-5-ol released from larvae of the dip-

rionidae N. sertifer likely possess an antimicrobial function (Bergström

et al., 1994). These larval compounds have not been shown to be

attractants and for that reason are not considered further in this

review. However, unidentified larval compounds such as trail phero-

mones (Flowers & Costa, 2003; Vincent et al., 2019) could be useful

for future pest control programmes.

VISION IN SYMPHYTA

Very little is known about the visual ecology of the Symphyta.

Humans typically perceive colour by comparing the information

received from the red, green and blue photoreceptors (λmax = 564,

534 and 420 nm, respectively). The three photoreceptors found in

most Apocrita are the ultraviolet, blue and green sensitive photore-

ceptors, but their respective sensitivity can vary among species (van

der Kooi et al., 2021). Peitsch et al. (1992) used intracellular

electroretinograms to demonstrate that between two and four photo-

receptors are present in several species of Symphyta. The ultraviolet,

blue and green photoreceptors were found in Tenthredo campestris

(Tenthredinidae) (λmax = 328, 464 and 540 nm, respectively), which

also possesses an extra red photoreceptor (λmax = 596 nm) (Peitsch

et al., 1992). The green and red photoreceptors were found in two

other species of Symphyta, T. scrophulariae (λmax = 532 and 592 nm,

respectively) and Xiphydria cameus (Xiphydriidae) (λmax = 556 and

604 nm, respectively). Finally, the only photoreceptor found in

Urocerus gigas (Siricidae) was the green photoreceptor

(λmax = 542 nm). The ultraviolet and blue photoreceptors are assumed

to be present in all species, but were not found during intracellular

recordings of T. scrophulariae, X. cameus and U. gigas (Briscoe &

Chittka, 2001). A more recent study showed that S. noctilio has lost

the blue photoreceptor and its associated opsin gene (Guignard

et al., 2021). Males and females of this woodwasp express both

the ultraviolet (λmax = 364 nm) and green photoreceptors

(λmax = 527 nm), but the red photoreceptor found in other Sym-

phyta seems to have been lost in the Siricidae and in the Apocrita

(Guignard et al., 2022).

Colour preference in the field has been tested in a total of 16 spe-

cies belonging to 4 families (13 Tenthredinidae, 1 Cephidae, 1 Dip-

rionidae and 1 Argidae) of Symphyta (Anderbrant et al., 1989; Barker

et al., 1997; Digweed et al., 1997; Holuša & Drápela, 2006; Song

et al., 2015; Taniwaki, 2013). Not all the colours were tested for each

species, but yellow was preferred to the other colours tested in

12 out of 15 species (Figure 2). In the genus Dolerus, results from five

different coloured traps were more variable (Barker et al., 1997). The

colours non-ultraviolet reflective white (410–700 nm) and yellow

(550–770 nm) captured similar numbers of Dolerus puncticollis. Black

traps (reflecting <2% of reflective light) were preferred to

D. haematodes, whereas D. picipes and D. nigratus had no preferences

for any of the five colours tested. Finally, N. sertifer was more

attracted to white traps compared with other colours tested (reflec-

tance was not measured), but yellow traps were not tested

(Anderbrant et al., 1989). Koch et al. (2015) reported that yellow traps

are particularly attractive to Athalia species and Xenapates similis. In

the same study, the authors reported that white and blue attract dif-

ferent species of Symphyta than yellow and observed that a ‘brighter’
yellow was more attractive for some species (the authors did not

define what brighter means in this context).

The basis for the observed general attraction towards yellow in

the Symphyta remains unclear. Colour patterns in Symphyta mostly

include orange, yellow or red; green or blue are rarely expressed. Col-

our patterns can be sexually dimorphic. The frequent occurrence of

yellow and colour of close wavelength might partially explain a gen-

eral attraction of Symphyta to yellow to facilitate mate location. Alter-

natively, some species of Symphyta are pollinators and feed on pollen

or on other insects (Smith, 1993). Hymenopteran pollinators can also

be attracted to yellow flowers as they can be a source of food

(Papiorek et al., 2016; Reverté et al., 2016). In addition, many herbivo-

rous insects might be attracted to yellow because yellow could be

perceived as a super-normal foliage stimulus of a greater intensity

than green (Prokopy & Owens, 1983; van der Kooi et al., 2021).

COMMON PATTERNS, KNOWLEDGE GAPS
AND FUTURE PROSPECTS

Some patterns in the use of pheromones are beginning to emerge in

the Symphyta. Pheromones of different families of Symphyta, feeding

on different hosts, released by different sexes, with different sites of
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biosynthesis, generally possess a common chemistry: a long alkene

(alkane in Diprionidae) chain with oxygen-containing functional group

on one end. The (Z)-isomer is the common configuration for all double

bonds found in Symphyta pheromones. The similar ecology, diet,

genes and pathways involved to produce pheromone likely share a

common evolutionary origin before the divergence of Symphyta.

The identification of the correct isomer is critical to optimizing the

sensitivity of surveillance programmes. Recent re-investigation of

D. similis reported different pheromone isomers and effects on trap cap-

ture than previously reported (Anderbrant et al., 2021). Similarly, more

attractive sex pheromone homologues were identified in D. nipponica (Tai

et al., 1998, 2002) and in M. pallipes (Bergström et al., 1998; Östrand

et al., 2003) after re-investigation. Anderbrant et al. (2021) suggested that

some of the Diprionidae pheromones identified in the 1970s and 1980s

could have been misidentified due to poor replication and contaminated

mixtures of stereoisomers. Coupled gas-chromatography with electro-

antennographic detection and/or mass-spectrometry has become more

affordable and machines more sensitive. These improved technologies

combined with separation methodologies to quickly identify the phero-

mone precursor isomers (Bång et al., 2012) should facilitate the re-

investigation of potentially misidentified pheromones.

The site of pheromone biosynthesis and storage has received lim-

ited attention to date. Sex pheromones in Symphyta (except

Dirpionidae) are thought to be oxidized CHCs and could be ancestral

in the Hymenoptera. The impact of factors such as light, humidity or

temperature on CHC oxidation is unknown in the Symphyta but can

be significant in other insects (Hatano et al., 2020). This information

could accelerate future research on where and how to find phero-

mones in the Symphyta. In addition, knowledge of the biosynthetic

pathways involved could decrease the cost of production of synthetic

pheromone for large scale integrated pest management programmes.

The performance of a synthetic pheromone in the field could be

negatively affected by multiple factors. For example, temperature,

light and humidity could all alter the chemical composition of a phero-

mone blend (Nielsen et al., 2019; Zhu et al., 2015). For these reasons,

care must be taken to guarantee that the chemistry of the synthetic

pheromone blend does not degrade over time. For example, extensive

studies with N. sertifer show that both isomerism and chemical com-

position have a strong influence on the performance of pheromone-

baited traps. Field experiments using shorter analogues of the main

pheromone were not as successful as those baited with the original

pheromone (Anderbrant et al., 2010). Field trials also demonstrated

geographic variation in the response of male N. sertifer to isomers of

pheromone components with synergistic, antagonistic or no effects

observed in different populations (Anderbrant et al., 2000, 2010).

New materials available for use as dispensers can provide better pro-

tection of pheromone components from abiotic factors, in addition to

more stable release rates.
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F I GU R E 2 Total number of non-Apocrita hymenopteran species (n = 16) attracted (right, dark grey) or not attracted (left, light grey) to
different colour traps. Colours were considered as attractive when it caught more insects compared with other colours tested. Colours were
labelled as non-attractive when significantly less insects were caught as it was not possible to distinguish between nonresponsive or repelled
insects in the literature due to the experimental design.
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In some cases, the performance of pheromone lures can be

improved when they are coupled with other stimuli such as

kairomones or visual attractants. For example, in some species of

woodborers, traps baited with synthetic pheromone lures alone cap-

ture few individuals but high numbers are captured when pheromone

is coupled with host volatiles (Allison et al., 2012; Silk et al., 2007;

Teale et al., 2011). Artificial lights are used to control and manage

populations of some pest insects (Kim et al., 2019) and provide basic

ecological information, often missing for species of Symphyta. The

performance of semiochemical-baited traps could be enhanced with

the addition of visual stimuli such as artificial lights. In cases where

artificial lights cannot be implemented, odourless paint (to avoid any

negative interactions between the paint and semiochemical lures) may

improve trap captures.

The biology of some Symphyta suggests that attractive stimuli

other than pheromones may have more potential to trap insects and

could be easier to use in the field. For example, both male and female

S. noctilio fly to the top of the canopy after they emerge from host

trees. There, males form leks which may be mediated by the putative

sex-aggregation pheromone (Cooperband et al., 2012; Guignard

et al., 2020) and mate with females. Traps placed at the bottom of

trees and baited with this putative pheromone are not attractive in

the field (Hurley et al., 2015; Sarvary et al., 2015). It is possible that at

this height the activity of the male pheromone is reduced as only

females searching for an oviposition site fly at this height. Mated

S. noctilio females were shown to be more attracted to the volatiles

emitted by their symbiotic fungus than a closely related fungus

(Sarvary et al., 2016). The symbiotic fungus in S. noctilio degrades the

wood into nutrients ingested by larvae (Thompson et al., 2013). It is

possible that females coming down from the canopy might choose

trees already infected by the fungus indicating a suitable environment

for their brood. In this context, traps baited with a fungal kairomone

and coupled with ultraviolet lights [shown to attract females (Sarvary

et al., 2015)] may have more application for S. noctilio management

than traps baited with the putative male pheromone deployed at the

base of host trees. Traps baited with these visual and olfactory stimuli

may capture mate- (ultraviolet light) and host- (fungal kairomone)

searching females.

The chemical and visual ecology of Symphyta does not feature

prominently in the management of Symphyta. Silviculture (Dodds

et al., 2014), selection for resistant plants (Beres et al., 2011),

entomopathogenic nematodes (Narayanan & Gopalakrishnan, 2003;

Nježi�c & Ehlers, 2020; Portman et al., 2016; Slippers et al., 2012) and

fungi (F�atu et al., 2021), parasitoids (Fischbein & Corley, 2015;

Portman et al., 2018) and nucleopolyhedrovirus (Lucarotti et al., 2007)

are effective methods alone or in combination to control Symphyta

pests. In some Symphyta insecticides are ineffective due to the larvae

being protected inside the host plant [e.g., C. cinctus (Portman

et al., 2018)].

Symphyta are often host specific and several studies have identi-

fied kairomones such as plant volatiles (Crook et al., 2012; Piesik

et al., 2008) that can be used to monitor and capture these pests. Spe-

cific host volatiles can also influence Symphyta oviposition behaviour.

For example, C. cinctus lays more eggs in the susceptible hollow wheat

due to less mechanical resistance, which also release the (Z)-3-hexenyl

acetate in higher quantities than the more solid and resistant cultivar

(Piesik et al., 2008; Weaver et al., 2009). At shorter range, contact

kairomones (Barker et al., 2006; Braccini et al., 2015; Fernández

et al., 2019) and host physiology (Madden, 1974; Mumm &

Hilker, 2006) are important factors to trigger oviposition. Recently, it

was shown that exposure of host trees to sawfly pheromones induces

host plant defences (Bittner et al., 2019). Mechanisms underlying

these responses remain unknown but offer potential for incorporation

into sawfly management programmes.

A single electroretinogram study (Peitsch et al., 1992) of four spe-

cies demonstrated that some Symphyta possess an extra photorecep-

tor sensitive to red light. This photoreceptor seems to be lost in the

rest of the Hymenoptera (Guignard et al., 2021; Peitsch et al., 1992).

The role of the extra red photoreceptor is unknown, but it could allow

Symphyta to respond to light not visible to other Hymenoptera. Inves-

tigating if the wavelengths that activate this photoreceptor (~600–

700 nm) are attractive to Symphyta could improve selectivity and

efficiency of traps. Narrow-band LED and paint could also be used to

determine the most attractive colour, if any. In addition, the loss of

blue photoreceptor and associated gene in S. noctilio demonstrates

that Symphyta possess from two to four photoreceptors in a few

closely related families (Guignard et al., 2021). As a result, the Sym-

phyta offer a unique opportunity to study the ecological mechanisms

(e.g., feeding habits) underlying the rapid gain and loss of visual opsins

and associated photoreceptors.

The Symphyta are difficult to rear in the laboratory and thus the

availability of insects is dependent on labour-intensive laboratory rea-

ring or field-collected material and as a result is usually limited. Labo-

ratory colonies do not exist for many of the most damaging species

(e.g., S. noctilio) and researchers have to collect infested material from

the field and store it until insects emerge. Typically, insects are avail-

able for a short time window and research cannot be conducted con-

tinuously throughout the year. Ultimately, the unreliable supply of

insects limits the number of experiments that can be conducted dur-

ing the year and influences the number of replicates for each experi-

ment. By contrast, continuous rearing of C. cinctus is possible,

although it takes ca. 7 months to rear one generation (Macedo

et al., 2005). In most cases, the rearing of Symphyta is difficult due to

their sensitivity to abiotic conditions (e.g., temperature, photoperiod,

humidity) (Knerer, 1984). As a result, a model Symphyta which would

facilitate detailed experimental work and improve the fundamental

knowledge of Symphyta, does not exist at the moment.

CONCLUSION

Understanding the modalities and stimuli that mediate host and mate

location in the Symphyta has immense potential to inform the devel-

opment of management tactics. In many Symphyta, pheromones are

present and mediate mate-searching. Pheromone baited lures remain

one of the most specific and sensitive methods to monitor population
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levels and subsequently prevent outbreaks together with other con-

trol methods. Technological advances have the potential to facilitate

the development of management tactics for forest insects, including the

Symphyta (Slippers et al., 2020). More Symphyta genomes are available,

which facilitates the development of new technology such as reverse

chemical ecology (Li et al., 2021) or CRISPR-Cas9 (Pickett, 2014). Accu-

rate identification of Diprionidae pheromone isomers and an increase in

compound purity can increase the number of insects caught in ‘attract
and kill’ programmes. The visual ecology of Symphyta has received little

attention from a genetic to a behavioural level. The effect of factors

such as achromatic visual contrast with the background or polychro-

matic stimuli is largely unknown and could be attractive at long and

short ranges. Finally, developing rearing protocols for Symphyta could

greatly accelerate research done on this group of insects.
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