
Title: An application of CNN to classify barchan dunes into asymmetry classes 

 

Authors: 

Barend van der Merwea,* 

aDepartment of Geography, Geoinformatics and Meteorology 

University of Pretoria 

Cnr Lynwood Road and Roper Street 

Hatfield 

Pretoria 

South Africa 

*Corresponding Author 

Email: barend.vandermerwe@up.ac.za 

 

Nelishia Pillayb 

bDepartment of Computer Science 

University of Pretoria 

Cnr Lynwood Road and Roper Street 

Hatfield 

Pretoria 

South Africa 

Email: npillay@cs.up.ac.za 

 

Serena Coetzeea 

aDepartment of Geography, Geoinformatics and Meteorology 

University of Pretoria 

Cnr Lynwood Road and Roper Street 

Hatfield 

Pretoria 

South Africa 

Email: serena.coetzee@up.ac.za 

Title Page (with Author Details)



An application of CNN to classify barchan dunes into
asymmetry classes

Abstract

Barchan morphometetric data have been used as proxies of meteorological and
topographical data in environments where this data is lacking (such as other
planetary bodies), gaining insights into barchan dune field dynamics such as
barchan collision and sediment dynamics, and estimating migration speeds.
However, manual extraction of this data is time-consuming which can impose
limits on the spatial extent and temporal frequencies of observations. Com-
bining remotely sensed big data with automated processing techniques such as
convolutional neural networks (CNNs) can therefore increase the amount of data
on barchan morphology. However, such techniques have not yet been applied to
barchans and their efficacy remains unknown. This study addresses this issue
by evaluating the classification performance (using the ACC, F 1 -score and
MCC metrics) of CNNs on several different morphometric tasks: the side of
horn elongation, the magnitude of elongation, the barchans a/c ratio, and a
new metric, bilateral asymmetry, which takes a more holistic view of barchan
asymmetry. Specifically, bilateral asymmetry offers a means by which the total
points of variation on a barchan that is used in describing barchan morphology,
can be expressed with a single measure. Twelve different CNN architectures,
each with different hyperparameters, are trained and tested on a sample of 90
barchan dunes. Additionally, the potential of transfer learning is assessed using
the VGG16 and ResNet50 architectures. The results show that the accuracy
of the CNNs can exceed 80% in some cases and that ”from scratch” CNNs can
match the performance obtained using transfer learning approaches.

Keywords: Barchan Asymmetry, Convolutional Neural Networks, VGG16,
ResNet50, Outline Classification

1. Introduction

Barchan dunes are crescent-shaped mobile free dunes (Bourke and Goudie,
2009; Worman et al., 2013; Engel et al., 2018; Parteli et al., 2014) that form in
regions of limited sand supply and unidirectional (or narrowly bimodal) wind
regimes (Barnes, 2001; Bourke and Goudie, 2009; Bourke, 2010; Elbelrhiti et al.,
2008). Their relatively simple morphology (Fig 1), which can change signif-
icantly over time (Pike, 2000), has applications in several different fields of
study. Barchan shape is often described as an a

c -ratio which relates the length
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Figure 1: A barchan dune from Sudan along with a description of the main morphological
components. Image source: Google EarthTM.

of the dune’s stoss slope (a) to the distance between the dune’s horns (c) (Long
and Sharp, 1964; Norris, 1966; Hamdan et al., 2016; Bourke and Goudie, 2009;
Barnes, 2001; Boulghobra and Dridi, 2016; Lorenz et al., 2013; Chojnacki et al.,
2011). The a

c ratio can be used to describe the effects of changing sediment
flux on barchans (Parteli et al., 2014) and has been linked to variations in the
migration speed of barchans (Hamdan et al., 2016). This latter aspect is impor-
tant for settlements in arid areas given the risk that migrating barchans pose
to infrastructure (Pike, 2000; Aydda et al., 2020; Moosavi et al., 2014; Abdu,
1976).

The asymmetry of barchans, which is considered to be present when one
of the horns is longer than the other (Bourke, 2010; Barnes, 2001; Tsoar and
Parteli, 2016; Lv et al., 2016; ?; Parteli et al., 2014), has also been used in sev-
eral different research contexts. The simplest expression of asymmetry, namely
the side on which the elongated horn occurs, can be used to discern between
bimodal wind regimes and dune collisions as agents that modify dune morphol-
ogy on a large scale (Bourke, 2010; Tsoar and Parteli, 2016; Boulghobra, 2016;
Zhang et al., 2018). It can also be used to infer modifications to upwind air-
flow (Barnes, 2001), barchan sediment dynamics (Franklin and Charru, 2011;
Scheidt and Lancaster, 2013) and, for regions where the data is absent, the local
topography of a region (Parteli et al., 2014; Bourke, 2010). However, it must be
borne in mind that such inferences cannot be made from a single observation of
the barchans. To be truly effective, multiple observations need to be made at
different periods to fully understand the dynamics that are present within the
dune field.

The magnitude of difference in length between the horns is also an impor-
tant aspect of barchan morphology. Both Parteli et al. (2014) and Bourke
(2010) show that an increase in the magnitude of difference can be related to
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Table 1: Example studies where the different methods depicted in Fig 2 have been used.

Example Example
1 Norris and Norris (1961) 14 Franklin and Charru (2011)
2 Bourke et al. (2006) 15 El belrhiti and Douady (2011)
3 Gay (1999) 16 Douglass (1909)
4 Durán et al. (2010) 17 Andreotti et al. (2002)
5 Lonsdale and Malfait (1974) 18 Elbelrhiti et al. (2008)
6 Barnes (2001) 19 Wang et al. (2007)
7 Courrech du Pont (2015) 20 Burrough et al. (2012)
8 Hesse (2009) 21 Finkel (1959)
9 Silvestro et al. (2010) 22 Bailey (1906)
10 Long and Sharp (1964) 23 Sauermann et al. (2000)
11 Al-Harthi (2002) 24 Ma et al. (2014)
12 Parteli et al. (2014) 25 Todd (2005)
13 Rempel (1936) 26 Maghsoudi et al. (2017)

the duration of secondary oblique winds. The migration speed of barchans is
dependent on the size of the dune with smaller dunes migrating faster than
larger dunes (Sauermann et al., 2000; Wiggs, 2013; Worman et al., 2013; Gay,
1999). Therefore, collisions occur between slower moving barchans and faster
moving barchans approaching upwind. The elongation of one horn can be used
to identify cases where such a collision between two barchans can potentially
occur (Bourke, 2010; Wang and Anderson, 2018) or has already occurred (Zhang
et al., 2018).

A considerable amount of information can, therefore, be obtained from col-
lecting data on barchan morphology and several techniques have been developed
to extract this data (Fig 2). However, these methods still require the manual
extraction of data either in the field or from imagery. Earlier studies, such as
Norris (1966), made use of repeated field surveys to monitor changes in barchan
morphology over time. Such field surveys are expensive and time-consuming,
especially when large numbers of barchans are being studied (Azzaoui et al.,
2020; Parteli et al., 2014; Moosavi et al., 2014). Recent advances in technol-
ogy have led to an increase in the quantity of remotely sensed data (de Lima
and Marfurt, 2020; Kattenborn et al., 2021; Boulila et al., 2021). This makes
remotely sensed data a valuable source of data for barchan research (Bourke
and Goudie, 2009; Boulghobra, 2016; Lorenz et al., 2013; Vermeesch and Drake,
2008).

However, the effective use of remotely sensed data is problematic. The ex-
traction of data from these images is still dominated by manual interpretation
(Maxwell et al., 2020). This leads to different interpretations associated with the
same image (Pengra et al., 2020; Van Coillie et al., 2014), a reliance on the skill
and experience of the interpreter (Hölbling et al., 2017) and, constraints on the
areal extent and temporal scale of the research due to the associated time con-
straints (Huang et al., 2018; Witharana et al., 2020; Gafurov and Yermolayev,
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Figure 2: Different types of morphmetric data that can be extracted from barchan dunes (cf
Table 1). Filled circles (•) represent the points on the barchan between which measurements
are taken.
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2020; Baumhoer et al., 2019; Liu et al., 2019). This last point, which can be
considered a scalability problem, can be potentially resolved using convolutional
neural networks (CNNs) (Bhuiyan et al., 2020).

CNNs are a class of artificial neural network that is characterised by the
presence of convolutional layers (Traore et al., 2018; Lecun et al., 2015). These
layers make use of convolutions to transform the image in such a way as to
highlight particular patterns (Cady, 2017; Agarwal and Mittal, 2019). These
patterns include vertical lines, horizontal lines, curved lines and many more
complicated patterns. CNNs are, therefore, designed to learn the spatial features
that best describe an object (Kattenborn et al., 2021; Kubilius et al., 2016) and
have shown to be very accurate on classification tasks (De Cesarei et al., 2021).
As such, they have a growing presence within geomorphology (Li and Hsu, 2020;
Abolt and Young, 2020; Carbonneau et al., 2020; Dang et al., 2020; Huang et al.,
2018; Ji et al., 2020; Palafox et al., 2017; Chen et al., 2018; Azzaoui et al., 2020;
Baumhoer et al., 2019; Witharana et al., 2020; Liu et al., 2019; Gao et al.,
2021; Gafurov and Yermolayev, 2020). The application of the classification
capabilities of CNNs to remotely sensed imagery also has the potential to assist
in the interpretation of geomorphic processes (Buscombe and Ritchie, 2018).

However, there are some aspects of CNNs and their application to geomor-
phology that need further research. An image contains a lot of sources of infor-
mation, such as shapes textures etc., and it is difficult to predict how a CNN
will use this information when making predictions (Baker et al., 2020). The
performance of a CNN is also dependent on its hyperparameters (Shakya et al.,
2021). These are aspects such as the number of layers that are present within the
network, whether regularizations are present or not, the types of regularizations
etc. Their selection requires both skill and experience (Gu et al., 2018). Since
CNNs are currently not as widely used as more conventional analytical tools, a
lot of users lack both skill and experience and therefore either use predefined
hyperparameters, or find more suitable hyperparameters in a trial-and-error
fashion (Ghorbanzadeh et al., 2019).

CNNs are also strongly biased toward using the texture of the image as a
basis for classification (Baker et al., 2020; Geirhos et al., 2019) even to the extent
that changes that are not perceptible to humans can lead to misclassifications
(Nguyen et al., 2015; Carrara et al., 2018). Although the extraction of edges
from an image does limit the amount of texture information within the image
(such as the work carried out by Azzaoui et al. (2020)), the impact that this
will have on the classification accuracy of landforms is unclear.

Another aspect to consider is the subject within the image that is to be clas-
sified. A challenge for CNNs is the relationship between within-class diversity
and between-class similarity (Cheng et al., 2018). In other words, the diversity
of shapes that the subject can take within each class and how similar objects
that should be placed into different classes are to each other. Within geomor-
phology the ability to detect subtle differences in terrain features is considered
essential (Li and Hsu, 2020), yet this poses a challenge for automated systems
(Wilhelm et al., 2020). This is of particular concern in barchan research given
the variety of shapes that individual barchans can assume (Fig 3. This greatly
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Figure 3: Examples of barchan shape varieties from Mars (top) and Earth (bottom). a-d)
Mars (MGD image E0201255, HiRISE images ESP 023536 2560, ESP 020018 1385 and ESP
029660 1350 respectively). e-h) Google EarthTM images of barchans on Earth (Namibia,
Sudan, USA and Saudi Arabia respectively). Images not to scale.

increases the level of within class diversity.
This study aims to address some of these questions. It aims to evaluate

the suitability of different CNN configurations for extracting morphological in-
formation (i.e. shape and asymmetry) from barchan outlines. Two use cases
are considered (following Mahdianpari et al. (2018)): developing a CNN that
is trained on only the landform that it is intended to classify (i.e. creating a
full-training network where the model architecture and training are controlled),
and using a CNN that was pre-trained on a much larger and diverse data set
and applying it to landform classification (i.e making use of the transfer learning
paradigm). These two approaches have advantages and disadvantages associ-
ated with them. In the first use case, advantages include the ability to determine
all of the hyperparameters that form part of the network. Further, the weight of
the connections between the nodes may be more optimal for the use case. How-
ever, a big disadvantage is the need for large data sets to sufficiently train the
network. The advantage of the second use case is that the network has already
been trained on hundreds of thousands of images using hardware resources that
the majority of users do not have access to. This saves the user time since
they do not have to train the network to extract meaningful information from
imagery and only focus on training the network to classify the image. A dis-
advantage, however, is that the user is not able to adjust the hyperparameters
that were used during the initial training of the network.

By definition, all barchans are crescent-shaped and therefore a CNN must
be able to use subtle local differences in shape to make a correct classification.
This addresses the need put forward by Li and Hsu (2020). The use of outlines
addresses the potential bias caused by image texture by removing most of the
texture information within an image. And since it considers several different
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CNN configurations, it addresses the concern raised about the proper selection
of hyperparmeters by providing a case study of model performance. Lastly,
to address the needs of the research community, several different classification
tasks are evaluated to approximate the research needs mentioned earlier.

The rest of the paper is laid out as follows. Section 2 contains background in-
formation on the origin of barchan shape and the processes that act on barchans
to cause asymmetry. It also provides some background on the hyperparameters
that need to be considered when constructing a CNN and the characteristics
of two well-known CNN models, VGG16 and ResNet50, which will be used
to evaluate the usefulness of transfer learning. In section 3 the characteristics
of the study site and its barchans are discussed along with the details of the
construction, training and evaluation of the different CNN models used. The
results of the study are reported in section 4 and then contextualised in sec-
tion 5. The paper concludes with a synopsis of the findings and suggestions for
future research.

2. Barchan shape and asymmetry

Barchan dunes originate when an initial accumulation of sand obstructs the
flow of wind at the surface (Lv et al., 2016; Elbelrhiti, 2012). When wind encoun-
ters this sand accumulation, an acceleration of airflow occurs along its windward
side. This results in sediment being eroded from this region (Elbelrhiti, 2012;
Zhang et al., 2014). Sediment eroded on the windward side accumulates at the
summit of the sand pile where it collapses due to over-steepening resulting in
the formation of a slip-face (Lv et al., 2016; Zhang et al., 2014; Wiggs, 2013).
Once the slip-face has formed, the sand pile is considered to be a barchan dune
(Elbelrhiti, 2012). The horns of the barchan form due to the lower height of
the sand pile along its edges. These regions have a lower reconstitution time
leading to a more rapid movement leading to downwind elongation and horn
development (Wiggs, 2013).

Barchans often occur in an asymmetric shape (?Parteli et al., 2014; Lv et al.,
2016; Tsoar and Parteli, 2016) and several causal factors have been identified:
bimodal winds, barchan collisions, topography, and variations in sediment sup-
ply to the dune. Bimodal winds (i.e. where the distribution of wind directions
within a region has two distinct modes) result in the preferential elongation of
one barchan horn. Three models have been proposed to explain this mecha-
nism. In the model proposed by Bagnold (1954), barchans are aligned along
a gentle but steady wind and it is the presence of intermittent strong oblique
winds that cause the barchan’s shape to deform. This deformation manifests as
an extension of the horn closest to the oncoming oblique wind in front of and
across the main body of the dune. In contrast, the model proposed by Tsoar
(1984) has the barchan aligned along the stronger wind and it is the gentler
wind that causes the extension of the horn opposite the oncoming oblique wind.
This extension is away from the main body of the dune. It should be noted,
however, that these two models were intended to describe the transition of a
barchan dune into a seif dune (Tsoar and Parteli, 2016) and not as a cause
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of barchan asymmetry. However, due to the association between the arise of
barchan asymmetry and the development of a seif dune, these models are still
applicable. The last model, proposed by Melton (1940), has one horn aligned
with one wind direction and the other with a secondary wind direction. The
barchan appears to be orientated at an angle that bisects these two wind di-
rections and the horn that experiences the most elongation is associated with
the strongest wind direction. This model has, however, not received widespread
acceptance within the research community.

Since the movement speed of a barchan is a function of its size, with smaller
barchans moving faster than larger barchans (Finkel, 1959; Norris, 1966; Wor-
man et al., 2013; Gay, 1999), any given dune field will contain collisions between
faster moving upwind barchans and the slower barchans downwind. In cases
where there is a lateral offset between the longitudinal axes of the two dunes,
Such a collision can lead to a preferential elongation of one of the horns that are
involved in the collision process (Parteli et al., 2014). Finkel (1959) proposed
that the slope of the surface on which the barchan migrates contributes to the
emergence of asymmetry. Supporting evidence was provided by Parteli et al.
(2014) who showed that there is an additional gravitational component that
causes a horn to extend in the downslope direction away from the main body
of the dune. Lastly, sediment supply variability can cause an alteration to the
shape of the dune by influencing the rate of elongation of the horn receiving
the additional influx of sediment. Two contrasting views have been proposed.
One view, proposed by Parteli et al. (2014) holds that the downwind extension
of the horn experiencing the additional sediment supply is slowed causing the
opposite horn to appear elongated. In contrast, Lv et al. (2016) propose that
the horn receiving the additional influx is elongated.

3. CNNs

3.1. Functioning

A full and comprehensive discussion regarding the operation of CNNs is
beyond the scope of this work. Instead, emphasis will be placed on some key as-
pects of the model’s functioning to show why it is capable of classifying barchan
outlines. In simplistic terms, a CNN consists of three parts: a layer that receives
the input image, a block of layers that act as a feature extractor, and a final
block of layers which classifies the input image (Fig 4). The input image is a 3D
collection of pixels with the width and height representing the dimensions of the
image and the depth representing the number of channels in the image (3 in the
case of an RGB image and 1 for grayscale images) (Chollet and Allaire, 2018).
This input image is then transferred to a feature extraction block. These consist
of convolutional layers and max-pooling layers (Boulila et al., 2021). The role
of the convolution layer is to extract the features within the input (Rocco et al.,
2017; Palafox et al., 2017; Boulila et al., 2021; Raghu et al., 2020) while the
max-pooling layers downsamples the feature map to reduce the computation
demands of the network (Hao et al., 2019; Wang et al., 2019; Ghorbanzadeh
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Figure 4: A simplified conceptual representation of a CNN.

et al., 2019). It is important to note that any given CNN can contain one or
more of these feature extraction blocks. As an output, the feature extraction
process produces a feature map which is then passed on to a classifier block.
The classifier block resembles a multilayer-perceptron, also referred to as a fully-
connected layer, (Chevtchenko et al., 2018; Hao et al., 2019) and consists of an
x amount of layers followed by a final output layer used to classify the original
input image.

Regularizations can be placed in either the feature extraction block or the
image classifier block and three types are generally used: L1, L2, and Dropout.
They serve the purpose of making the CNN less complex (Chollet and Allaire,
2018; Thakkar and Lohiya, 2021) so that the network becomes more ”general-
ized”. This generalization is needed for the network to be able to classify imagery
that it has never encountered before. The L1 and L2 regularizations are calcu-
lated values that get added to the loss function of the network (Thakkar and
Lohiya, 2021). The loss function, in turn, is a function that is used to evaluate
the performance of the CNN by computing the difference between the predicted
outputs and the expected outputs (Chollet and Allaire, 2018). High values in
the loss function translate to poor performance. The difference between L1 and
L2 is that in L1, the added value is proportional to the absolute value of the
weight coefficients, while in L2 it is proportional to the square of the coefficients
(Chollet and Allaire, 2018). In both instances, high weight values will increase
the value of the loss function and, in effect, force the network to use lower weight
values during its training process. The dropout regularization differs from the
L1 and L2 regularization since it dos not modify the loss function of the network.
Instead, it randomly assigns a value of zero to connections received from previ-
ous layers (Agarwal and Mittal, 2019) instead of the value that the activation
function would normally produce. Where the L1 and L2 regularizations adjust
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the weights in the network indirectly through the loss function, the dropout
regularization adjusts the weights in the network by assigning zero to randomly
selected connections thereby ”forcing” the network to update the weights on
the unaffected connections. This is because a low output of the loss function
indicates better agreement between the predictions of the model and the real
world examples used.

Two popular networks that are frequently used in image classification tasks
are VGG16 and ResNet50. VGG16 is a type of deep neural network consisting
of five ’blocks’ with each containing between two and three convolution layers
(Pradhan et al., 2020; Mahdianpari et al., 2018). This model was originally
trained on the ImageNet dataset (Chevtchenko et al., 2018). ResNet50 has
a much deeper (i.e. more layers) architecture than VGG16. It is a residual
network (Bendjillali et al., 2020; Pradhan et al., 2020) that makes use of residual
learning, in the form of ”skip-connections” (Khan et al., 2020), to overcome the
vanishing gradient problem (Mahdianpari et al., 2018; Nagle-Mcnaughton et al.,
2020). Both VGG16 and ResNet50 require the input dimensions to be 224×224
(Bendjillali et al., 2020).

Performance-wise ResNet50 is considered easier to train, from a system re-
sources perspective, than VGG16 (Oo and Oo, 2019). However, studies regard-
ing the predictive accuracies between the models are divided. In some studies
(e.g. Agarwal and Mittal, 2019; Sun et al., 2019) VGG16 outperforms ResNet50
while a larger number of studies found that ResNet50 performs better (Mahdi-
anpari et al., 2018; Ji et al., 2020; Wilhelm et al., 2020).

3.2. Performance Determinants

There are three broad determinants of CNN model performance. First, are
the learnable parameters which include the weights, biases, and the kernels used
in the CNN. These are the parameters that are updated during the training pro-
cess of the model. The weights within a model are analogous to the strength of
synaptic connection in biological neural networks (Rodvold et al., 2001) and can
be viewed as storing the processing capacity of the model (Gurney, 2010). When
the weight is associated with the transfer of information between different layers
of the model, it serves as a means by which the contribution of the informa-
tion to the classification is expressed. High weights mean that the information
coming from that neuron contributes greatly to the ultimate classification while
low weights indicate the opposite. When associated with kernels, the weights
determine the ”pattern” that the filter is testing for during the convolution op-
eration. For CNNs, this latter aspect is instrumental in the CNN ”learning”
which features to extract to more effectively classify the input image. Although
these learnable parameters are ultimately the deciding factor in determining
the ability of the model to classify images, the user has no direct control over
them. They are updated and modified during the training process as part of
back-propagation.

However, the user can indirectly influence these learnable parameters through
the modification of the model’s hyperparameters. The hyperparameters are the
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second determinant of model performance. The following hyperparameters in-
fluence of the performance of the model. This is by no means an exhaustive list
but represents the hyperparameters considered in this study. The performance
of a CNN is influenced by the depth of the model (Ghorbanzadeh et al., 2019)
with increasing depth associated with increased accuracy (Shakya et al., 2021;
Simonyan and Zisserman, 2015; Wan et al., 2018; Ciresan et al., 2011). Increas-
ing the depth of the model, through the addition of more convolutional layers,
allows the model to extract more abstract features (Kattenborn et al., 2021).
Here, abstract features refer to features that are derived from pre-existing fea-
ture maps. For example, filters located in the first convolution layer may extract
features such as horizontal lines (–), diagonally upwards lines (/), and diago-
nally downwards lines (\) from an input image. The resultant feature map
would therefore indicate the extent to which these features are present in the
input image. The next convolution will take the feature map as an input and
may recognise the combined presence of these three features as a triangle (△).
However, it is also possible for an increase in model depth to lead to poorer per-
formance (He and Sun, 2015; He et al., 2016; Du et al., 2021). It can therefore
not be assumed that the addition of more layers will guarantee a performance
improvement.

Another contributor to improved model performance is the use of regular-
izations and dropout layers. A regularization is any modification made to a
learning program that attempts to reduce the generalization error (Goodfellow
et al., 2016). Here, generalization refers to the process whereby the model finds
rules that are consistent with the available data (i.e. the data on which it is
trained) that apply to instances that the model has not yet encountered (Zhang
et al., 2017). Essentially, regularizations are used to reduce overfitting (Thakkar
and Lohiya, 2021; Tombe and Viriri, 2020; Lancashire et al., 2009). A model
that is suffering from overfitting cannot, by definition, generalize well. There-
fore, by countering the tendency of the model to overfit during training, it is
more likely that the model will be able to generalize to new unseen cases. Two
types of regularization are commonly used: L1 regularization, and L2 regular-
ization. Both involve mathematical terms that are added to the loss function
during the training process. In the case of L1, the additional term is propor-
tional to the absolute value of the weight coefficients while L2 is proportional
to the square of the weight coefficients (Chollet and Allaire, 2018). This means
that the additional penalty term for L − 1 regularization is larger than for L2

regularization. Additionally, the weight of the regularization, i.e. the contribu-
tion it makes as part of the loss function, can also be adjusted by setting the
regularization parameter (Thakkar and Lohiya, 2021; Tombe and Viriri, 2020;
Lancashire et al., 2009) and to reduce model complexity (Rubanenko et al.,
2021; Chollet and Allaire, 2018; Zhang et al., 2017).

Dropout layers assign a value of 0 to the output of a set of activation func-
tions in the previous layer of a model (Agarwal and Mittal, 2019). This can
also be used as a means to counter model overfitting (Shakya et al., 2021;
Chevtchenko et al., 2018) thereby increasing generalization. Aside from the
addition of these dropout layers to the network, an additional hyperparame-
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ter that can be set is the dropout value which determines the fraction of the
neurons, from the previous layer, that would have an output of 0.

The last determinant of model performance is the data on which the model
is trained. One of the main constraints of developing CNNs ”from scratch”
is their performance is dependent on the number of images on which they are
trained. When limited data is available, the CNN is susceptible to overfitting
(Mahdianpari et al., 2018) which will negatively influence its performance. It is,
however, possible to overcome this problem to some extent through the use of
data augmentation (e.g. Gu et al., 2018; Huang et al., 2018; Carbonneau et al.,
2020). During data augmentation, the data is transformed without altering the
nature of the image (Gu et al., 2018). This is achieved by applying geomet-
ric transformations such as horizontal and vertical flips, rotations, translations,
and scaling (Ji et al., 2020; Nagle-Mcnaughton et al., 2020). Alternatively, in
cases where training data is limited, it is also possible to use transfer learning
strategies (Azzaoui et al., 2019; Bhuiyan et al., 2020). In transfer learning, the
learnable parameters of the model are derived through exposure to a primary
task (which can include a completely different image data set). Following suc-
cessful training, the model is then applied to a secondary task (i.e. the one
where the data is limited).

4. Methods

4.1. Study site sample selection

Ninety barchan dunes were sampled from the Kunene region in northern
Namibia using Google EarthTM imagery (taken 12 November 2012). The selec-
tion of the imagery date has no impact on the analysis and was merely selected
due to the high resolution of the imagery. Separate images were collected for
each barchan within the dune field due to the varying size of the dunes. This
ensured that the highest possible resolution was used for each barchan thereby
minimizing interpretation errors in outline delineation. The region experiences
southerly winds with a resultant drift potential of 629.2, a resultant drift direc-
tion of 352◦, and the terrain slopes gently from the interior of the region towards
the coast (van der Merwe, 2021). Since boundary delineation of merged barchans
can be highly subjective (Hugenholtz et al., 2012), only isolated barchans were
selected.

Google Earth imagery is frequently used in dune research (Bourke and
Goudie, 2009; Zhang et al., 2018) due to it being freely available. It is also
used in research on the application of CNNs to remote sensing imagery (Wang
et al., 2019; Gao et al., 2021; Abolt and Young, 2020). However, there are some
limitations to using this platform. High-resolution imagery of the globe is not
available at all locations (Tooth, 2013). This imposes restrictions on the types
of landforms that can be studied. However, given the wide global distribution
of barchans (Goudie, 2020), imagery of barchans are available. The positional
accuracy of Google Earth imagery is also quite variable between different re-
gions (Benker et al., 2011). Since this study is concerned with the classification
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of individual dunes, the exact position of the sampled dunes on the globe is not
relevant and the imagery is considered suitable for use.

4.2. Description of Barchans

The barchans in the Kunene region have an average width of 46.6m ± 28.1
and an average stoss length of 38.8m ± 20.04. This makes the dunes signifi-
cantly smaller (p < 0.01) than those measured by Barnes (2001) in Walvis Bay
further to the south. These barchans are also small compared to other barchans
measured in other localities (Al-Harthi, 2002; Bailey, 1906; Barnes, 2001; Dong
et al., 2000; Douglass, 1909; Embabi, 1982; Finkel, 1959; Hamdan et al., 2016;
Jimenez et al., 1999; Long and Sharp, 1964; Norris, 1966; Rempel, 1936; Sagga,
1998; Wang et al., 2007). The size distribution of the barchans within the
Kunene dune field is also positively skewed indicating that smaller dunes domi-
nate the data set. Although barchan dunes do show allometry (van der Merwe,
2021), this is not expected to impact the number of dunes in each class since
the median value is used in the definition of each class. The majority of dunes
(n = 76) exhibit an elongation of the left horn while only a few (n = 14) have
the right horn elongated. This shows a clear preference for left horn elongation
within the data set and contrasts with the findings of (Barnes, 2001) who found
no preferential elongation further towards the south in Walvis Bay. In terms of
the a

c ratio, for 43 barchans a
c ≤ 0.88, for 34 dunes 0.63 ≤ a

c < 0.88, and for 16
dunes 0.38 ≤ a

c < 0.63.

4.3. Classification tasks

Four binary classification tasks (i.e. tasks where there were only two classifi-
cation categories are present) were created that represent incremental increases
in difficulty. The difficulty levels are, admittedly, subjective and based on the
amount of analysis that needs to be undertaken for a human to complete. Task
1 requires the model to classify the dunes based on which side of the dune,
left or right, is elongated. For Task 2, the network has to classify dunes based
on the magnitude of difference between the length of the left and right horn.
Task 3 requires the model to classify dunes based on their a

c ratio. Lastly, for
Task 4, barchans need to be classified based on the magnitude of their bilateral
asymmetry. The requirements of the tasks are graphically illustrated in figure
5.

Tasks 1 and 2 can be completed through visual inspection only and as such
is considered to be the simplest of the four. For Task 1 only two ”pieces” of
information are used, an image of the left side and one of the right. Similarly,
the second task compares the one horn with the other but requires the addi-
tional task of ranking all images in the set based on the magnitude of difference.
Therefore, Task 1 is considered here to be simpler than Task 2. Tasks 3 and 4
cannot be easily solved using only visual inspection and require some calcula-
tions to be completed. For Task 3 it is simple division while completion of Task
4 requires matrices and matrix transformations to solve. It uses landmarks that
are located along the barchan’s boundary (van der Merwe, 2021) to compute
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Figure 5: A graphical summary of the classification tasks. The concept of bilateral asymmetry
is illustrated by superimposing the right half of the dune (grey) onto the left half (black) along
the longitudinal axis of the barchan.

the procrustes distance between the dune and its mirror image and uses this as
an indication of asymmetry (Klingenberg and McIntyre, 1998). Therefore, Task
3 is considered to be simpler than Task 4.

4.4. Data preparation

The performance of a CNN is dependent on the training data that is used
(Guidotti et al., 2018; Maggiori et al., 2017). More imagery is better since
it provides the network with more diverse instances of the subject leading to,
potentially, rules that are more generalized. However, it is not always possible
to obtain large datasets of images. When limited imagery is available, image
augmentation can be used to effectively increase the size of the training dataset
(Castelluccio et al., 2015; Jiang et al., 2018; Zhu et al., 2017; Carbonneau et al.,
2020; Huang et al., 2018). Image augmentation involves changing the orientation
of the input image through rotations, flipping, scaling and translations (Maxwell
et al., 2020; Nagle-Mcnaughton et al., 2020) without altering the data within
the image (Gu et al., 2018). This effectively increases the diversity of imagery
upon which the network is trained (Gao et al., 2021). For the dunes in this data
set, only the flipping augmentation, which was carried out along the x-axis, was
used which generated mirror images and doubled the size of the training data.

Because CNNs are strongly biased towards detecting textures in imagery
(Geirhos et al., 2019; Nguyen et al., 2015), it was necessary to remove this from
the imagery. Earlier work has been successful in extracting the barchan bound-
ary from remote sensing imagery (Rubanenko et al., 2021; Azzaoui et al., 2020;
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Figure 6: Landmarks used to derive barchan morphologic descriptions. The dotted line rep-
resents the longitudinal axis. The dune on the right represents a scenario where 18 landmarks
were used while the dune on the left has 17 landmarks.

Vaz et al., 2015) using semantic segmentation. Unfortunately, the brink line is
not delineated in these cases as it occurs inside the polygon that defines the
entire barchan boundary. Given the importance of the brink line in describing
the morphology of the barchan (Fig. 2) this is a significant shortcoming.

Because of this limitation, the barchan outlines were extracted manually
from cropped satellite imagery using Inkscape (https://inkscape.org/). This in-
volved tracing along the boundaries of the dune in the image. Because Inkscape
allows for the creation of scalable vector graphics (SVG) it is possible to scale
the outlines to the dimensions required by the neural network without any loss of
resolution. Once appropriately scaled, images were transferred to GIMP (GNU
Image Manipulation Program - https://www.gimp.org/) to create square images
of 224 × 224 pixels with the dune being centered. This scaling does not form
part of the augmentation process but is required to match the input dimensions
required by the CNN. Although the images are black and white, three channels
were retained to accommodate the input requirements for the neural networks.

Before training the network, barchan morphology data had to be extracted
from the images to create the appropriate training, testing and validation sets.
The geometric morphometric technique method used by van der Merwe (2021)
was used to assign landmarks to the barchan outline. Seventeen to 18 landmarks
were identified for each dune (Fig 6). The 18th landmark was only present in
some imagery and serves as a reference point for the intersection between the
longitudinal axis of the dune and the crest, which is needed for the calculation
of the a

c ratio. In cases where this point coincides with one of the 17 points
identified by van der Merwe (2021), only 17 landmarks were used.

Using these landmarks, the relevant morphometric variables can be calcu-
lated using coordinate geometry. The total width of the dune was calculated
following Sauermann et al. (2000) where the total length is the sum of the dis-
tance from the horn tip to the longitudinal axis for the left and right horns
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respectively. To obtain this value, two triangles were constructed with their
corners at the toe, tips of the horns and peak (Fig. 7). Heron’s formula (Eq.
1), where s is the half-permiter and a, b, and c represent the individual sides,
can then be used to calculate the surface area of the triangle. This is the used
to calculate the height of each triangle (AF and CE), where A represents the
area of the triangle, h the height, and b the base. In this instance, the height of
the individual triangles represents the width of each horn and their sum, there-
fore, represents the total width of the dune. The length of each horn was also
calculated using triangles with the brink line as the reference point (following
Wang et al. (2007)). Since AF and CE were calculated in the previous step,
the Pythagorean theorem can be used to obtain DF and DE which represents
the lengths of the left and right horn respectively.

A =
√

s(s− a)(s− b)(s− c) (1)

h =
2A

b
(2)

This data was then used to classify the dunes into the various classes needed
for each task (Table 2). The bilateral asymmetry of the barchan cannot be
calculated using the distance data obtained in Figure 7. This value was calcu-
lated using geometric morphometrics. The mirror image of the dune is used as
a reference shape and the procrustes distance is determined between the dune
and its mirror image (van der Merwe, 2021). This technique has been used in
an earlier study to determine the asymmetry of tsetse fly wings (Klingenberg
and McIntyre, 1998). Once this was calculated for all dunes, the median was
used as the separation criterion (Table 2) and mirror images were created within
each class to increase the available training data. To split the data into the ap-
propriate categories the following approach was followed. For the first task, the
data was simply split according to which side contained the elongated horn. For
the remaining tasks, the median value was used to separate the data into two
groups for training and testing. This was done to ensure the maximum amount
of images within each category which, in turn, overcomes the problem of class
imbalance raised by Nagle-Mcnaughton et al. (2020).

Task Class 1 Class 2

Side of elongation FD > ED FD > ED
The difference in horn lengths |FD − ED| > median |FD − ED| < median
a
c ratio DB

AF+CE
> median DB

AF+CE
< median

Bilateral asymmetry ρ > median ρ ≤ median

Table 2: The criteria that were used to assign individual dunes into different classes. The
procrustes distance is represented by ρ.
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Figure 7: The approach used to calculate barchan width and the lengths of the honrs.

4.5. Models

Because the project aims to evaluate the feasibility of using neural networks
to classify barchans, two scenarios were considered: a ”from scratch” scenario
where the model is built and trained by a user; and a transfer learning strategy.
In the former, the performance of the model is dependent on both the training
data and the hyperparameters. Unfortunately, the number of permutations as-
sociated with modifying all of the hyperparameters is too large to be practically
feasible. Therefore, it was decided to consider only the following hyperparam-
eters: depth, regularizations, and dropout layers. Because there is no data on
which combination of these is best suited to the task, a trial and error approach
was followed (Thakkar and Lohiya, 2021; Zeiler and Fergus, 2014; Tajbakhsh
et al., 2016). Models were created where the depth ranged from 1 to 3 layers
and for each of these models one model had the L1 regularization, one had the
L2 regularization, and one used dropout layers (Figure 8). This resulted in
12 models for the ”from scratch” approach. All architectures were created in
Python using the Tensorflow library.

In the second scenario, a prospective user is making use of a pre-trained
network. As stated earlier, this approach may be of value in cases where the
training data is limited. For this scenario, the VGG16 and ResNet50 models
were chosen. This choice is based on the popularity of these two models within
the image classification literature (Diaz-Pinto et al., 2019; Oo and Oo, 2019; Ilyas
et al., 2019; Bendjillali et al., 2020; Mukti and Biswas, 2019; Sun et al., 2019;
Agarwal and Mittal, 2019; LaVezzi et al., 2020; Raghu et al., 2020; Mahdianpari
et al., 2018; Pradhan and Lee, 2010). Because the number of output neurons for
each of these models is more than that required for this study, the output layers
(i.e. the image classifier) were removed from the original and a new output
layer was added using two neurons and the softmax activation function. This
serves to retain the feature extractor portion of the network, which was trained
on a significantly larger data set while replacing the classifier with one suited
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Figure 8: The three CNN architectures, along with the regularizations, that were used in this
study.
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to the task. A similar approach was followed by Chevtchenko et al. (2018) and
LaVezzi et al. (2020).

4.6. Training and testing

All of the training and testing were carried out following the procedure laid
out in Pseudocode 1. By including the model construction, compilation, vali-
dation and testing within a for loop, it is guaranteed that any weights resulting
from a previous training cycle is removed. This results in a more realistic as-
sessment of the architecture’s performance. Both training and prediction data
were exported as .csv files for analysis in RStudio.

Pseudocode 1: Training and testing neural networks (n = 30)

Result: Train and test network n times
Set n equal to the desired number of runs;
for i in range 1 to n do

build model;
compile model;
train model;
store train data in variable train.i ;
write train.i to disc as train.i.csv ;
assign test batch labels to variable labels.i ;
test model;
store predictions in variable pred.i ;
append pred.i with labels.i ;
write pred.i to disc as pred.i.csv ;

end

For tasks 1 to 3, the distribution per class for training, validation and testing
were 56, 24 and 10 respectively. These samples were randomly selected from
the appropriate image banks. Task 4 had 48 images in class one and 64 in
class two. The reason for the discrepancy was the presence of several dunes
that had a procrustes distance equal to the median value. Since no justifiable
reason can be used to assign dunes of equal magnitudes of bilateral asymmetry
to different classes, they were all incorporated into one of the classes. This does,
unfortunately, result in a slight imbalance in sizes that are skewed in the favour
of symmetrical dunes. During the training process, the training parameters of all
the architectures, including those that had regularizations, were kept identical
across all of the tasks. Since the number of images was small, a batch size of
two was used along with 10 epochs of training.

4.7. Model evaluation

Before the evaluation, the prediction data for each model was converted into
a confusion matrix (Eq. 3). A confusion matrix represents the performance of
the model as an m × m matrix where m is the number of classes used in the
model. It shows the extent of agreement and disagreement between the actual
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category of the image, and the assigned category that the model provided. In the
case of a binary classification scheme, cases where the model correctly classified
the image can be either true positive (TP) in the case of category one or true
negative (TN) in the case of category two. When there is a disagreement between
the model’s classification and the actual classification, the result is returned as
either a false positive (FP) or a false negative (FN) depending on the nature of
the discrepancy.

ModelC1 ModelC2[ ]
ActualC1 TP FP
ActuakC2 FN TN

(3)

Three parameters were chosen for model evaluation: accuracy (ACC), F1-
score and Matthew’s Correlation Coefficient (MCC). Accuracy is a common
metric which expresses the number of predictions that correctly identified both
positive and negative instances (Brown, 2018). This metric is frequently used in
binary classification tasks (Hossin and Sulaiman, 2015). Here, a high accuracy
score represents a situation where the number of images that were correctly
classified as belonging to either class is high relative to the number of predictions
made by the model. The equation for ACC, following (Hossin and Sulaiman,
2015), is given in equation 4.

ACC =
TP + TN

TP + FP + TN + FN
(4)

The F1-score (Eq. 5) represents the harmonic mean between recall (TPR)
and precision (PPV) (Hossin and Sulaiman, 2015). TPR is the proportion
between the TP predictions and all the positive predictions made by the model
(Bellows et al., 2011). Precision, also known as the positive prediction value
(PPV) (Bellows et al., 2011), is the number of positive predictions made by the
model that are true positives (Hossin and Sulaiman, 2015). The equation for
the F1 score, following (Brown, 2018), is given in equation 5. In the surface
plot of the potential F1-scores (Fig 9), both the TPR and the PPV scores of
the network need to be high. This means that a high F1-score suggests that the
model had a large portion of true positive predictions and low amounts of false
positives and false negatives. Unfortunately, the surface also suggests that it is
not possible to determine from the F1-score alone where shortcomings occur. In
other words, it can either be from a high false positive rate, a high false negative
rate or a combination of both. Notwithstanding this, the F1-score is still widely
used in machine learning (Chicco and Jurman, 2020).

F1 = 2× PPV × TPR

PPV + TPR
(5)

Both the ACC and the MCC (Eq. 6) use the same variables (Brown, 2018;
Hossin and Sulaiman, 2015), but the MCC metric is considered to be more re-
liable (Chicco and Jurman, 2020). This is because it penalises Type-I (false
positive) and Type-II (false negative) errors more than the ACC metric does
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Figure 9: The value surface of the F1 metric. In this example, PPV values are plotted along
the x-axis, TPR values along the y-axis and the resultant F1 score along the z-axis.

(Brown, 2018). Essentially, it serves as an indication of how well the actual
data correlates with the predicted data with values of +1, zero and -1 indicat-
ing perfect agreement, random predictions and total disagreement respectively
(Tharwat, 2018). The equation for the MCC metric is given in equation 6
(Brown, 2018). A problem with the MCC metric is that, under certain condi-
tions, it cannot be defined due to imbalances in the confusion matrix (Chicco
and Jurman, 2020). This happens in cases where both TP and FN are equal to
zero causing the denominator to become zero.

MCC =
(TP × TN)− (FP × FN)√

(TP + FP )× (TP + FN)× (TN + FP )× (TN + FN)
(6)

5. Results

The baseline model (CNN-1 [-]) had an overall ACC value of more than 70%
on all the tasks. The mean ACC value decreased as the task difficulty increased.
Significant differences in ACC performance were found between the following
task pairs: Task 1 and Task 3 (p = 0.002); Task 1 and Task 4 (p = 0.002); Task
2 and Task 3 (p = 0.02); and between Tasks 2 and 4 (p = 0.016). Similar to
the ACC values, the F1-score decreased as the as the task difficulty increased.
However, significant differences were only present between Tasks 2 and 3 (p =
0.008), and between Tasks 2 and 4 (p = 0.006). The MCC values also decreased
as the task difficulty increased and a significant difference (p = 0.032) was only
found between Tasks 1 and 4.

For the majority of cases, there was no significant difference in the metrics
as the depth of the models were increased. When the depth of the model is
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Metric Task 1 Task 2 Task 3 Task 4
ACC 78.667 77.333 73.00 72.167
F1-Score 75.925 75.179 72.52 68.733
MCC 0.653 0.63 0.604 0.575

Table 3: Mean performance on the different metrics for the CNN-1 [-] model.

Metric Depth Task 1 Task 2 Task 3 Task 4
ACC 2 Layers 0.333 4.500 -1.333 2.000

3 Layers -2.167 4.333 0 1.167
F1-Score 2 Layers 0.985 6.253 -2.046* 4.780

3 Layers -0.142 6.442 -0.423 5.692*
MCC 2 Layers 0.014 0.073 -0.017 0.035

3 layers -0.017 0.073 -0.009 0.038

Table 4: Influence of model depth (i.e. CNN-2 [-] and CNN-3 [-]) on performance as deviations
from the baseline. Values marked with an asterisk (*) indicate significant differences compared
with the baseline performance.

increased to two layers, the only significant difference (p = 0.05) that was found
involved a decrease in the F1-score for Task 3. Increasing the depth to three
layers resulted in a significant improvement (p = 0.05) of the F1-score for task
4.

The addition of regularizations (Table 5) did not significantly influence the
performance of the model on Task 1. Also, the dropout regularization had no
significant influence on any of the metrics for any of the four tasks. The L1
regularization improved (p = 0.05) the performance of the F1-score for Task 4.
Most changes in model performance were associated with the incorporation of
the L2 regularization. This led to significant improvements in the F1-score for
Tasks 2 and 4 (p = 0.004 and p = 0.02 respectively). It also led to a decrease
in the ACC and MCC values for Task 2 (p = 0.01 and p = 0.009 respectively).

Metric Reg Task 1 Task 2 Task 3 Task 4
ACC L1 2.667 -1.667 -2.667 2.333

L2 -1.167 -0.667* 0.167 2.500
Dropout -0.167 1.000 0.833 0.500

F1-Score L1 3.060 -0.642 -1.522 3.674*
L2 -2.277 2.696* 1.582 7.934*
Dropout 0.329 1.703 0.078 2.364

MCC L1 0.037 -0.022 -0.025 0.033
L2 -0.013 -0.002 0.006 0.068
Dropout 0.014 0.021 0.003 0.002

Table 5: Changes in model performance from baseline conditions by adding regularizations
(i.e models CNN-1 [L1], [L2] and [D]). Values marked with an asterisk (*) indicate significant
differences compared with the baseline performance.

22



Metric Depth Reg. Task 1 Task 2 Task 3 Task 4
ACC 2 L1 1.333 5.833* -0.667 3.000

L2 1.167 4.333 0 2.333
D 3.333 3.833 -0.833 3.667*

3 L1 2.000 2.333 2.833* 1.000
L2 -0.833 5.000* -1.167 0.167
D -3.000 6.667** 0.833 -1.167

F1-Score 2 L1 2.930 8.582** -1.090 6.560*
L2 2.416 6.390 -0.407 3.158
D 4.639 5.418 -1.633 4.360*

3 L1 4.105 2.562 1.256 2.723
L2 0.629 6.886* -1.792 0.441
D -1.805 8.569** -0.784 1.300

MCC 2 L1 0.022 0.090** -0.008 0.046
L2 0.025 0.068 0.003 0.031
D 0.054 0.061 -0.008 0.050**

3 L1 0.049 0.046 0.024* 0.029
L2 0.002 0.084* -0.030 0.010
D -0.033 0.102** 0.001 0.007

Table 6: The influence of a combination of depth and regularization on model performance.
For brevity, only combinations that involve significant differences are shown. The magnitude
of the significant difference is indicated by asterisks (* = p ≤ 0.05, ** = p ≤ 0.001).

As to be expected, more significant differences emerged when the model
depth is combined with regularizations (Table 6). These differences were only
present for Tasks 2 to 4 and no significant differences were found for Task 1. In
contrast, the majority of significant changes occurred for Task 2. Combining a
three-layer model with either the L2 or dropout regularization led to significant
improvements to the ACC value for Task 2. When a two-layer model is combined
with the L1 regularization a significant improvement in ACC values is also found.
These configurations were also associated with improvements to the F1-score and
MCC values for this task.

The performance of Task 3 was only improved by combining an L1 regular-
ization with a three-layer network and this only improved the ACC and MCC
values. By combining a two-layer network with the dropout regulizer, the ACC,
F1-score and MCC values for Task 4 were significantly improved. Also, the use
of a two-layer network with L1 regularization improved only the F1-score of this
task.

Using transfer learning resulted in significant improvements for all metrics
on all tasks except for Task 2 (Table 7) where the pre-trained models did not
perform significantly better than the baseline model. The magnitude of im-
provement was also greater for the complex tasks (Tasks 3 and 4) than for the
simpler tasks (Task 1 and 2).
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Metric Model Task 1 Task 2 Task 3 Task 4
ACC VGG16 3.500* 2.333 11.167*** 11.000***

ResNet50 4.667* 4.833 14.833*** 15.500***
F1-Score VGG16 6.347* 3.129 10.410*** 12.932***

ResNet50 7.843** 5.240 15.151*** 17.268***
MCC VGG16 0.057* 0.048 0.131*** 0.145***

ResNet50 0.069* 0.076 0.183*** 0.207***

Table 7: Changes in performance when the pre-trained networks are used. The magnitude
of the significant difference is indicated by asterisks (* = p ≤ 0.05, ** = p ≤ 0.001, *** =
p ≤ 0.0001).

6. Discussion

Determining whether or not a model performs satisfactorily involves a sub-
jective decision based on the performance indicators. In the case of human in-
terpreters, several studies have commented on the level of variability that exists
between individuals when carrying out image classification tasks (Van Coillie
et al., 2014; Pengra et al., 2020; Lloyd et al., 2002). The study by Lloyd et al.
(2002) found that the accuracy of human operators on a classification task can
range from 69.6% (for specific within category distinctions) to 90.5% for more
general category classifications. Although these tasks are different from the
classification tasks carried out here, it does indicate that even when trained on
a small data set, CNNs have accuracies that are comparable to humans which
agrees with De Cesarei et al. (2021).

Out of the 14 model configurations tested (including the baseline), 78.5% of
the CNNs achieve high accuracy levels (i.e an ACC and F1-score greater than
80% and an MCC score greater than or equal to 0.7). This in itself answers
the main aim of this research and it is clear that CNNs have the potential to
serve as useful tools to accurately classify barchan dunes. This is in agreement
with De Cesarei et al. (2021) who view neural networks as being well suited to
visual tasks. Even the baseline model, which does not match the high accuracy
of some of the other models, still performs within the classification range of
participants in the study by (Lloyd et al., 2002).

However, the question regarding how the baseline performance can be im-
proved is not as clear from the data generated. It is tempting to assume that
increasing the depth of the network will improve performance. Deeper layers
within a network can extract more features from the image (Kattenborn et al.,
2021; de Lima and Marfurt, 2020; Wang et al., 2019) and are associated with
performance improvements (Shakya et al., 2021). The data in this study does
not support such a generalization. An increase in the number of layers is only
beneficial within the context of the task and may, in some cases, result in de-
creased performance. The former is to be expected. The output of the feature
extractor is a feature map (Ghorbanzadeh et al., 2019; Gu et al., 2018; Traore
et al., 2018; Boulila et al., 2021). These feature maps, in turn, include patterns
such as corners, edges etc (Kattenborn et al., 2021). This ”collection” of fea-
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tures is then passed to the fully-connected layer (Palafox et al., 2017) where the
input image is then classified into one of the provided categories. But, it may
not always be prudent or necessary to extract more complex features from an
image to make a classification. This may be the case for barchan dune outlines
which consist of very simple feature elements.

The worsening performance of the increased depth, which in this case re-
sulted in a decreased F1-score, may be attributable to the removal of image
texture elements. The convolution operation is, essentially, the dot product
between the kernel (which forms part of the convolution layer) and the image
(Agarwal et al., 2010). In cases where the majority of the pixel values are 0, as
is the case when outlines are used, the more complex transformations within the
deeper layers may reach a level such that the similarity between images from
different classes increases. This would result in misclassifications that, in turn,
will negatively affect the F1-score.

Regularizations attempt to reduce model complexity and overfitting (Chollet
and Allaire, 2018; Thakkar and Lohiya, 2021). This should, in principle, increase
the generalization capability of the network. This generalization should allow
the network to make better predictions on data that it has not seen before
(Zhang et al., 2017). Within the context of this study, it would therefore be
expected that the addition of regularizations should improve model performance.
However, this was not universally the case. The L1 and L2 regularizations are
added to the loss function of the network (Thakkar and Lohiya, 2021) and
are proportional to the weights of the connection (Chollet and Allaire, 2018).
It may be that in comparatively shallow networks such as the ones used in
this study, this addition to the loss function may not contribute meaningfully
to the performance of the network. This would account for the low portion
of significant changes that were observed. Also, the barchans may be similar
enough as to not warrant the need for further generalization within the network.

Dropout layers operate differently within a network than the L1 and L2
regularizations. Dropout layers do not act on the loss function. Instead, it ran-
domly assigns a value of zero to connections between layers (Agarwal and Mittal,
2019). This affects the other connections between layers and in effect serves the
role of preventing the network from becoming over-reliant on the values of a
few select nodes. Stated differently, it prevents the network from depending on
only a few features from the feature map in making the classification. However,
these benefits did not materialize when applied to barchan classification and no
significant differences were observed. This could, potentially, indicate that the
network’s weights are already configured in a generalized fashion so that any
additional incentive to generalize will be negligible.

Although the isolated adjustments of network depth and regularization do
not contribute to large scale improvements, the combined effect does lead to a
larger portion of significant changes. These results indicate that the modification
of a single hyperparameter may not be sufficient to improve the performance of a
CNN. But by combining hyperparameters, more and exclusively positive changes
are observed. Significant changes are still not always present which means that
the influence of stochasticity on the part of the network initialization cannot
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be excluded. Nevertheless, it appears that by combining hyperparameters, i.e.
changing more than one hyperparameter, better performance can be obtained
from the network. Unfortunately, because more hyperparameters need to be
considered, it also means that there are more permutations to work through to
boost performance. Fortunately, it is possible to automate this process using
hyperparameter optimization techniques, such as grid search, to find the best
configuration.

Perhaps unsurprisingly, the use of transfer learning led to the most improve-
ment in the classification of barchans. It also conflicts to some extent with the
interpretations made earlier. ResNet50 consists of 152 layers (Pradhan et al.,
2020) while VGG16 contains 13 convolution layers (Mahdianpari et al., 2018).
This makes them substantially larger than the custom fully trained networks
created for this study. The ACC scores of both VGG16 and ResNet50 are higher
in all cases than those of the custom networks, but it is interesting to note that
for the second task the improved performance is not significant. Why this is the
case is not known, but it does indicate that the use of transfer learning cannot
be viewed as being the better option in all use cases. Between the two models,
ResNet50 outperformed VGG16 on all metrics. This agrees with the findings of
some authors (e.g. Wilhelm et al., 2020; Ji et al., 2020) and differs from those of
others (e.g. Sun et al., 2019; Agarwal and Mittal, 2019). This lack of universal
agreement reaffirms the task-specific performance of CNNs.

Earlier work on CNNs concluded that they are biased towards the presence
of image texture (Geirhos et al., 2019; Baker et al., 2020). In this study, the
majority of textural information was removed from the input imagery. Given
that image texture is used during convolution operations to generate feature
maps, it should follow that limiting the textural information should increase
the difficulty in classification for the model. However, the results indicate that
such a view might be oversimplified since the models performed well with limited
training data. Although the models developed here are far from being ready
to be generally used within the aeolian geomorphology community, these initial
results do suggest that this line of research has some practical benefits.

7. Conclusion

It can be concluded that CNNs do hold promise as a means to automatically
extract morphological data from images of barchan outlines although it is still
not possible to conclude absolute strategies for improving model performance.
This work has shown that CNNs can potentially be used in place of of manual
methods to classify barchan dunes into morphometric classes. This, by impli-
cation, means that it is possible to extract morphometric data from barchan
images using CNNs. But more research is still needed before this tool can be
fine-tuned to the needs of the intended user base. Specifically, work is needed
on the following.

First, the lack of improvement in performance with the addition of a dropout
layer, which contradicts the findings of other researchers working on CNNs, may
be the result of its position within the network. In the present configuration,
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these layers are restricted to the feature extractor. This, in affect, alters the
type of features present within the feature map upon which a decision is being
made. The question then arises regarding the effects of shifting the position of
the dropout layer to the image classifier. This will effect the contribution of the
features within the feature map without removing them from the network.

Another area of research deals directly with the issues raised on training
data. The effect of data set sizes is taken here as self-evident. However, a more
useful approach would be to look at the amount of variability in images that
make up the training data. Specifically, are there optimal values between class
differences and within class similarities for network performance?

Lastly, an investigation of the activity maps of CNNs involved in barchan
classification can be beneficial. First, it will assist in determining whether the
CNN is making use of the barchan in making its decision instead of some other
artefact within the image. And, second, it will help to identify the regions
that the barchan uses to make its classification. This latter aspect will be
particularly important in the context of the earlier discussion regarding the
number of features needed for optimal network performance and may, hopefully,
address how a network can have significant improvements in the F1-score which
does not translate to significant improvements in ACC and MCC values.
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