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Abstract
The volume of big data increases daily. Big data poses challenges in storage, man-
agement, processing, analysis and visualisation. One technique of handling big
data is the use of subset or sample that is good representation of the data. For stor-
age alleviation purposes, a subset of the big data can be obtained from metadata.
This paper obtains metadata of a remote sensing image dataset for crop classifica-
tion. This research proposes a sampling algorithm which makes use of multivariate
stratification with the aim of obtaining a sample that best represents the population
while minimising the number of images sampled. The proposed sampling algo-
rithm performs effectively on a big spatial image dataset of crop types. The results
are assessed by measuring the number of images sampled and as well as matching
the proportionality of the population crop percentages. The samples obtained from
the proposed algorithm are then used for land cover classification. An ensemble
method called random forest is trained on the different samples and accuracy is
assessed. Precision, recall and F1-scores per crop type are computed as well as the
overall accuracy. The random forest classifier performed best on the proposed sam-
ple with the least number of images, followed by the one with the second least. The
classifier performed better on the proposed samples than it did on the random sam-
ples as the proposed samples contained the most informative data. This research
encourages the use of metadata for classification purposes as well as an effective
way of sampling big data for crop classification.
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Chapter 1

Introduction

The volume of data worldwide grew from 33 trillion gigabytes in 2018 to 71 trillion
gigabytes in 2021 and this is predicted to be 180 trillion gigabytes of data in 20251.
This refers to items of information created, captured, copied and consumed. Such
large and diverse sets of information are called big data. Big data is characterised
by high volumes, high velocity and high variety. Big data arise due to the fact that
humans produce close to 2 quintillion gigabytes of data each day using various
sources of data such as social media, IoT devices, etc as well as different formats of
data including numeric, images, text, etc. The first trace of big data dates back to
1663 but was only recognised by the world in the 1800s.

Big geospatial data is information associated with a location on or near the sur-
face of the earth. Remote sensing is one technique by which geospatial data can be
obtained. The increasing amount of satellites orbiting the earth (remote sensors) in-
crease the volume, velocity and variety of geospatial data. Information from remote
sensors is used for various purposes including weather and catastrophe forecasting.

The storage, management, analysis and visualisation of big geospatial data is
difficult due to the complexity of this data. Although strategies such as parallel
programming and distributed programming have been implemented to handle big
geospatial data, metadata is a simple useful way of handling big data specifically
when classification is to be performed [34]. Metadata is data that gives information
about data. It summarises big data which alleviates memory requirement in cases
where metadata can be used instead of reading all the big geospatial data. Such

1The Conversation, Science + Technology, The world’s data explained, https:

//theconversation.com/the-worlds-data-explained-how-much-were-producing-and-where-

its-all-stored-159964

https://theconversation.com/the-worlds-data-explained-how-much-were-producing-and-where-
https://theconversation.com/the-worlds-data-explained-how-much-were-producing-and-where-
its-all-stored-159964
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case is in sampling, as one can get a sample from the metadata instead of reading
in all the geospatial data.

An alternative to reading all data into memory is obtaining a representative sam-
ple of the data. A sample is considered representative if there are certain charac-
teristics of interest of the population that can be estimated from the sample with
known accuracy [12]. Examples of sampling techniques include random, system-
atic, stratified and cluster sampling. Since this research focuses on crop classifica-
tion, stratified sampling works best. It requires that each unit must belong to only
one stratum and in crop classification one crop can only belong to one crop type.
Some applications of stratified sampling in remote sensing include the detection of
spatial variability amongst peach orchids. This was in turn used to classify trees
into homogenous groups (sampling strata), with the aim of decreasing sampling
size [44]. Another application is the estimation of crop area using stratified sam-
pling in remote sensing used in [23] and [64] in China.

Classification uses characteristics or features to distinctively identify categories.
Sokal [50] defines classification as the arrangement or ordering of objects into sets or
groups based on their relationship. If the data is in image format, then this is called
image classification. This process categorises all pixels or groups of pixels (objects)
to obtain a set of labels [35]. There are two types of image classification, namely
supervised and unsupervised classification. Supervised classification uses labelled
input and output data while unsupervised classification does not. Supervised clas-
sification trains an algorithm on areas that are similar to areas of interest. These
training areas are then used to identify spectral signatures and patterns. Examples
of supervised classification include maximum likelihood, decision trees, kNN and
random forests. Image classification is commonly used to identify different land
cover types. This is referred to as land cover image classification.

The final step of classification is calculating the performance of the classification
algorithm of choice. The performance can be quantified using accuracy assessment.
This is the process of comparing a classified image to a reference to determine the
quality of the classification. Accuracy assessments help to evaluate whether a cer-
tain algorithm meets specific requirements of its intended purpose. Accuracy of a
classified image is obtained by expressing the correctly classified pixels or objects
to all pixels or objects. This can be done per category, by comparing the number
of correctly classified pixels or objects of a certain category relative to all pixels or
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objects belonging to that category.
This research aims to obtain metadata from a land cover geospatial dataset and

proposes an algorithm that makes use of multivariate stratified sampling to obtain
a sample that gives the best representation of the population. The multivariate pop-
ulation under consideration consists of a large database of remote sensing images
of crop fields, for which each image has a varying number of fields, crop types and
field sizes. First, the data summary is obtained in the form of a metadata dataframe.
Then the metadata itself is used to obtain a desired sample using the algorithm ex-
plained in Chapter 2. The aim of the algorithm is to achieve similar proportionality
of crop types between the sample and the population as well as minimize the num-
ber of images sampled while maximizing the information obtained in the images.
We evaluate the usefulness of the proposed algorithm and the effect of parameter
choices. The different resulting samples are then used for land cover classification.
Random forest, an ensemble method, is trained on the different samples and per-
formance is assessed via accuracy assessment.

Specifically, this mini-dissertation aims to achieve the following:

• Build a metadata structure for the large database of images of crop types.

• Propose a multivariate stratified algorithm.

• Investigate the efficiency and representativeness of the samples from the pro-
posed algorithm.

• Investigate land cover classification performance on various sample sizes ob-
tained using the proposed sampling algorithm.

Chapter 2 provides the literature review of geospatial big data and metadata
construction. Chapter 3 covers sampling theory, the proposed algorithm as well as
its implementation. Chapter 4 covers classification and implementation. Chapter 5
discusses results while Chapter 6 concludes and proposes future research.
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Chapter 2

Spatial Big Data

2.1 Literature review

Data is defined as individual facts, items of information or statistics. As much as
the terms data and information have been used interchangeably, they are not nec-
essarily the same. Data can be transformed to information when viewed in context
or post-analysis2. Data is measured, collected, reported and analysed and is used
in many different sectors such as health care, education, mining and others. It has
been described as the oil of the digital economy [53]. The amount of data worldwide
is gradually increasing as for some time now. It has been collected by an increasing
number of ways such as surveys e.g. online and telephonic surveys, and devices
such as mobile devices, aerial devices, cameras, microphones and wireless sensor
networks. Many of these devices and techniques are easily accessible by many peo-
ple. The continuous increasing collection of data has led to what is known as big
data.

Big data can be defined as data sets that are large and complex to be dealt
with when using traditional data processing software. This may be as a result of
many fields/observations which give greater statistical power or more attributes
(columns) which introduce complexity to the data hence higher variance3. Xialong
[24] has defined big data to be a bond that acts as an integration between human
society, the physical world and cyberspace. Big data can be divided into two cat-
egories, namely data from the physical world and from human society [33]. Data

2Data vs Information - Difference and Comparison, 2022, https://www.diffen.com/

difference/Data_vs_Information_google_vignette
3What is Big Data?, Big Data, Oracle South Africa, https://www.oracle.com/za/big-data/

what-is-big-data/Put/simply/C/big/data/is,been/able/to/tackle/before

https://www.diffen.com/difference/Data_vs_Information_google_vignette
https://www.diffen.com/difference/Data_vs_Information_google_vignette
https://www.oracle.com/za/big-data/what-is-big-data/Put/simply/C/big/data/is,been/able/to/tackle/before
https://www.oracle.com/za/big-data/what-is-big-data/Put/simply/C/big/data/is,been/able/to/tackle/before
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from the physical world can be obtained through scientific experiments and obser-
vations (biological and neural data) or sensors (remote sensing data). Data from hu-
man society is acquired through human-computer interfaces and brain-computer
interfaces and may fall within numerous sectors such as finance, health care and
transportation [10, 59].

Big data is an essential factor in the above-mentioned sectors. Data from human
society contributed to modern economic activities amongst other essential factors of
production such as human capital. Other advantages include using data to support
human decisions with outcomes from automatic algorithms. When made avail-
able, it provides transparency which firms can utilize to their advantage to grab the
attention of investors or potential stakeholders and it can also be used to help in-
novate new products, services and business models. Big data is also significant for
national development (the Big Data Research and Development Initiative by the US
[3]), industrial upgrades (use of cloud computation), scientific research and emerg-
ing disciplinary research. It helps people better perceive the present and predict the
future. [24]

Geospatial data falls under the category of data from the physical world. Geospa-
tial data is information that describes events, objects or features associated with a
location on or near the surface of the earth. Geospatial data can be obtained by re-
mote sensing, ground surveying, laser scanning, mobile mapping, geo-tagged web
contents and many more techniques. Geospatial data is continuously growing as
machinery used to capture it increases yearly. Remote sensing dates back to the
1840s where pictures of the ground were captured by balloonists using photo cam-
eras. This introduced aerial photography during World War I and became fully
effective during World War II [4]. Then the first meteorological satellites called the
TIROS-1 were developed in the US in 1960 [22]. In 1972, the Earth Resources Tech-
nology Satellites, also called the Landsat satellites, were launched, followed by the
Earth Observing System (EOS) being launched in 1999 which provided a higher
level of processing, a better global coverage and free and easily accessible data
[5]. To date, there are approximately 6000 Earth Observations Satellites orbiting
the earth4.

Examples of remote sensors are the cameras on aeroplanes and satellites that can

4World Economic Forum, Who owns our orbit: Just how many satellites are there in space,
https://www.weforum.org/agenda/2020/10/visualizing-easrth-satellites-sapce-spacex

https://www.weforum.org/agenda/2020/10/visualizing-easrth-satellites-sapce-spacex
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take an image of a large area on the surface of the Earth, sonar systems on ships that
can take an image of the ocean floor without having to go to the bottom of the ocean
[15] and cameras on satellites which monitor the ocean, land and atmosphere of the
earth [30]. Figure 2.1[A] and 2.1[B] show examples of geospatial data captured
by satellites before and after adverse events, namely a heat wave5 and drought6

respectively. It can be seen in both images that the land has changed from being
green to being very dry, for example, the brown spots in Figure 2.1[A] indicate dry
land. Specific uses of remote sensing include the tracking of clouds which helps to
predict the weather [29]. Upcoming catastrophes can be detected so that people can
evacuate or prepare the areas that will be affected [55] and large forest fires can be
identified by satellites [6]. The tracking of the growth of population in certain areas
[63] and the tracking of changes in farmland and forests over time [52] are also use
cases of remote sensing. With the many sensors now available, data increases in
volume continuously.

Big data has been characterised by the three initial V’s by Laney [28], these are
volume, variety and velocity. Others V’s have been added as time has gone on such
as value, veracity, variability and visualization. Evans et al [56] have shown that
geospatial big data exhibits at least one of the 3 initial V’s along with the other V’s
introduced later on. The V’s will be explained in the context of geospatial big data.
High volume is due to a continuous increase of data captured by satellites. Vari-
ety is a result of the many different sensors mentioned earlier such as the different
satellites capturing images in different bands, i.e. different segments of the electro-
magnetic spectrum. Velocity is due to the fact that most satellites make frequent
visits to the same location, for example the Sentinel-2 satellite captures each loca-
tion every 5 days. Veracity depends on the accuracy of the data source, for example
how accurate is the Landsat satellite compared to the Sentinel-2. All these factors
make the handling of data such as the storing, managing, analysing and visualizing
of geospatial data difficult.

Two strategies that have been introduced and implemented for geospatial big
data handling include parallel and distributed programming [31, 49, 58]. Others
have suggested the use of functional programming concepts or languages such as

5These pictures put northern Europe’s heatwave in perspective, euronews, https://www.

euronews.com/2018/07/25/these-pictures-put-northern-europe-s-heatwave-in-perspective
6Drought in Western Cape, South Africa, earth observatory, https://earthobservatory.nasa.

gov/images/11912/drought-in-western-cape-south-africa

https://www.euronews.com/2018/07/25/these-pictures-put-northern-europe-s-heatwave-in-perspective
https://www.euronews.com/2018/07/25/these-pictures-put-northern-europe-s-heatwave-in-perspective
https://earthobservatory.nasa.gov/images/11912/drought-in-western-cape-south-africa
https://earthobservatory.nasa.gov/images/11912/drought-in-western-cape-south-africa
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(A) 2018 Eueropean heat wave after
effects.

(B) 2003 South African drought
implications.

FIGURE 2.1: Examples of geospatial data before and after adverse
events.

Haskell Domain-Specific Language [43], Data Flow Graphs [54], Map-Reduce [37,
45] and self-adjusting computational processors [1]. These are useful in handling
big data, but specific procedures still have to be developed to, for example, select
data from a big data set for a certain model application. One of the suggested ways
of dealing with this by Songnian li et al [34] is using metadata which is mentioned
to be useful in cases of classification procedures.

Metadata is defined as data that provides information about other data. Meta-
data provides content, type, quality, creation and also spatial information about an-
other data set. Metadata mostly occurs in one of the following of formats, namely
a text file, an Extensible Markup Language (XML) file or a database record. Types
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of metadata include descriptive, structural, administrative, statistic, legal and ref-
erence metadata. Metadata makes data easier to document, makes data discovery
easier and reduces data duplication. Metadata typically consists of the name of the
data file, the source agency, the creation date, the type of data, the author of the
data, relevant contact information and licensing along with data dictionary and/or
restrictions. Geospatial metadata additionally contains a spatial component such as
the extent of the surface of the earth that the data covers, for example, the coordi-
nate system and/or spatial extent. [47]

Figure 2.2 is an example of metadata providing information about an image data
of a cat. It contains the filename, the author, date captured and location.

FIGURE 2.2: An example of the metadata of a picture of a cat.

2.2 Database construction

2.2.1 Data summary

The dataset to be used in this research is the Sentinel-2 time series data for the
Western Cape province in South Africa. This dataset is freely accessible on the
Radiant MLHub website generated by Radiant Earth Foundation and the Western
Cape department of Agriculture in 2021 [2]. Radiant MLHub is a cloud-based open
library that has earth observation data including land cover, wildfire, floods, trop-
ical storms, building footprints and crop datasets. The dataset to be used is a crop
dataset that has 12 bands in the near infrared, short wave infrared and visible part



9

of the electromagnetic spectrum and a 13th image type (CLM), which gives the
cloud coverage on a tile image. The time series is provided every five days from
the 1st of April till the 27th of November (48 dates) . Figure 2.3 shows the 12 bands
of one area of land with tile ID 1114 taken by the Sentinel-2 satellite on the 28th of
October 2017.

FIGURE 2.3: A single image tile from the data shown over 12 different
bands

B01 is the coastal aerosol band with a resolution of 60m. B02, B03 and B04 are
the blue, green and red colour bands all with the same resolution of 10m. B05,
B06, B07 and B8A are the vegetation red edge bands with the same resolution of
20m. B08 is the near infrared band with resolution of 10m. B09 is the water vapour
with resolution of 60m whereas B11 and B12 are the short wave infrared bands with
resolution of 20m.

Figure 2.4 shows how the 13th image type presents cloud coverage, with only
two colours. Black represents the absence of clouds whereas white represents the
presence of clouds. Four different dates are selected to show the difference in cloud
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coverage on the same area of land over different dates. The first image has a cloud
coverage of 52.25%, the second one has 16.89%, the third has 100% and lastly the
fourth one also used in Figure 2.3 has no cloud coverage hence 0%.

FIGURE 2.4: Cloud coverage of the same area over four different dates.

Each image in the dataset is an area of land made up of crop fields. Each field
contains only one crop type. The dataset consists of 9 crop types, namely fallow,
canola, wheat, wine grapes, weeds, small grain gazing, lucerne/medics, planted
pastures (perennial) and rooibos. Figure 2.5 shows the different fields and labels
of the area covered by Figures 2.3 and 2.4. For example, this area is made up of 25
fields that contain 6 different crop types, namely lucerne/medics, planted pastures,
fallows, small grain grazing, wheat and canola.

(A) Fields (B) Crop
types

FIGURE 2.5: An illustration of the fields and crop types of the area with
tile ID 1114.

Each area of land (2650 locations) was captured every five days (×48) through
12 bands of the electromagnetic spectrum and the 13th image that shows cloud
coverage (×13), meaning the whole data is made up of 1 653 000 images. The area
of interest is 23 850km2 of land of which 9 063km2 of it, roughly 38%, has been
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labelled. This constitutes the portions that will be considered in assessing the ac-
curacy of sampling. The area coverages of the crop types in each image and field
have been calculated and this will help calculate the proportion of the crop types
in the population. Summing all the area coverages in each image gives the over-
all area coverage of each crop type. Figure 2.6 shows the proportions of the crop
types using their area coverage as well as number of fields, such that the one with
the highest proportion is the one with the highest crop coverage. As can be seen
from Figure 2.6[A], wheat contains the highest proportion with 23.08% followed by
small grain grazing with 14.146%, with the least being canola with a percentage of
3.405%. Figure 2.6[B] shows the quantity of the fields, size of field is not considered.
In this case, the crop type with the highest proportion is now wine grapes followed
by wheat with the least still being canola.

(A) Fields (B) Proportions
per fields

FIGURE 2.6: Proportions of the crop types using area coverage as well
as number of fields.

2.2.2 Metadata construction

The dataset consists of 1 653 000 images of data which is approximately 45.15GB.
One way of avoiding loading this big dataset is using metadata to select only the
relevant images of interest to read into memory. Note that some of the metadata
was already provided whereas some had to be obtained from the images them-
selves. The structure of the metadata consists of three categories, namely general
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information, information associated with tile ID and information per image. Gen-
eral information includes properties that all images share regardless of location or
date captured, namely the satellite used to capture them, the type of image, licence
of data, the providers of data and size of images since they are all the same size.
These are given in the images STAC (SpatioTemporal Asset Catalogs) files. Figure
2.7 is an illustration of what the general information is for each image regardless of
location and date.

FIGURE 2.7: General information that applies on all images.

Information associated with tile ID is information that has been used to differen-
tiate between the different areas of land/locations such as tile ID, the spatial extent
of the area captured, the number of fields along with the crop types they contain.
Figure 2.8 shows information associated with tile ID. An image of another area of
land thus with a different tile ID will not have the same information as the one in
Figure 2.8. The spatial extent also referred to as the bounding box will be different,
as will the number of fields as the different areas of land have different fields and
crop proportions will also differ.

Information associated with each image is information that is unique for each
image, such as the date, time and cloud coverage as it depends on the date. For
example, the images with tile ID 1114 will have different cloud coverages as shown
in Figure 2.4 due to the different dates on which the area of land was captured.
With the three categories brought together, metadata in the form of a database can
be created. The database is a Pandas dataframe where the column names are the
entries that appear on the left hand side of the Figure 2.7 and 2.8, and the rows
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FIGURE 2.8: Location wise information that applies on all images of
the same area of land.

are indexed by the tile ID and the date on which the images were captured. From
the database itself, one can obtain the structure of the data, the description of the
data as well as the administration involved in publishing the data. The database is
useful because performing procedures such as sampling would not require loading
and reading all the images into memory.

2.2.3 Summary

The data is made up of 1 653 000 images which requires a lot of memory which
not many computers can process all at once. Metadata is obtained and constructed
from the images to avoid having to read in all the images. The metadata contains
general information such as image type, license and providers which is the same for
all images. It also contains information specific to an area of land such as the spatial
extent, the date captured, the cloud coverage on the different dates, the number of
fields, the crop type as well as their proportions. This is useful when sampling as
one can sample from the constructed metadata without having to read in all the
images.
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Chapter 3

Sampling

3.1 Sampling theory

The concept of sampling dates back to the 1600s when English merchant John Graunt
analysed data about the population of the city of London using partial information.
He is mentioned as one of statisticians of the century in the book titled "Statisticians
of the century" [19]. This method of estimating population characteristics from par-
tial information later turned into an extensive coverage of theory, method and ap-
plication covered in a landmark book titled "Sampling techniques" in 1946 and a
newer version of it in 1977 [12]. Sampling can be defined as a process in which a
certain number of observations (a sample) is selected from a population. The main
purpose of sampling is to extract information about the whole population by exam-
ining only a selected few observations. The sample should be representative of the
population. A sample is representative if there are certain characteristics of interest
from the population that can be estimated using the sample with known accuracy
[12]. Requirements of a good sample include little to no selection bias. Examples of
selection bias include pre-screening leading to a judgement sample, selecting from
a certain area because it is easier to collect (also referred to as sample of conve-
nience) as well as self-selection. Other requirements for a good sample are little to
no measurement error, which is the difference between a recorded response and the
true value, and little to no non-sampling error. Unlike selection bias and measure-
ment error, non-sampling error occurs regardless of the samples used/selected. The
method of sampling or biased questions in a survey or questionnaire could cause
non-sampling error.

Once a good sample is selected, sampling has great advantages in data collec-
tion, such as reduced cost and a greater speed. It is a practical method when a



15

population is infinite or when there are limited available resources to collect infor-
mation. Examples of sampling are in the healthcare sector, when a doctor draws
a few drops of blood (sample) for examination and in retail when for example, a
few fruits are collected to assess the quality of all fruits. Another example would
be selecting sites or fields of land that grow different types of plants as will be
discussed in this dissertation. This is a certain type of sampling called spatial sam-
pling. The purpose of spatial sampling is to draw characteristics of interest to make
inferences regarding a population that has observations with a location parameter,
such as fields, rivers, buildings and roads. All these are referred to as spatial pop-
ulations. Spatial sampling, unlike traditional sampling, takes into account partial
correlation, which disobeys the assumption of independence that is used in tradi-
tional sampling. Partial correlation states that two data points close enough to each
other tend to share the same features especially when the population of interest is
continuous.

There are three major distinctions of populations in spatial sampling, namely
zero-dimensional, one-dimensional and two-dimensional. Zero-dimensional pop-
ulations are discrete and finite, such as trees in a forest or buildings in a city. One-
dimensional populations are linear and continuous by nature but are often sam-
pled as discrete. These include roads and rivers, i.e. linear networks, and two-
dimensional features are continuous and often aerial such as air or soil. It is im-
portant to keep in mind that sampling, in practice, reduces a continuous space into
a discrete space. The two-dimensional population in spatial sampling defies the
assumption of independence in traditional sampling. To take this into account,
geostatistics was introduced in 1963 by Matheron et al [40] and revised in 1971 [39].
The approach was improved to use spatial autocorrelation to reduce the estimator
variance error that arises from sample design and selection bias [17, 11, 51]. Studies
of the effects of spatial structure on the error variance, date back to 1959 by Milne
et al [42] and 1960 by Matern et al [38].

When drawing samples from geographical data, certain questions need to be
answered for one to decide on a sampling design. The first question is the most
important because before one uses spatial sampling, one needs to determine if the
characteristic of interest constitutes as a spatial property or not [18].

1. What is being estimated?
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2. What sample size will achieve the desired level of accuracy and precision?

3. What locations should be included in the sample?

4. What estimator should be used?

5. What measures should the sampling seek to minimise?

There are two approaches to sampling, namely design-based sampling and model-
based sampling. These hold advantages over each other depending on the fol-
lowing factors: reason behind sampling, the quality of the model, one’s desire of
unbiased estimates, sample size and the presence of autocorrelation between ob-
servations. Hence depending on one’s end goal and the behaviour of the data, one
of the two can fulfil one’s needs. The fundamental difference between the two ap-
proaches is that design-based sampling units are selected by probability sampling
and the spatial characteristics are estimated. In model-based sampling, there are
no requirements for selecting sampling units/locations and the characteristics of
interest are predicted and not estimated. If the values at given locations are fixed
but the sample locations are random, then design-based sampling is appropriate
and when the values at given location are random with fixed sample locations then
model-based sampling is appropriate.

This mini-dissertation only focuses on design-based sampling. Techniques in-
clude random sampling, stratified sampling and clustering. Before getting into
these sampling techniques, an understanding of the framework for probability sam-
pling is required. Assuming we have N units that make a finite population, the
population can be denoted by the index set

U = {1, 2, 3, ..., N}. (3.1)

Any sample that can be selected from the population U is denoted by S. Each
sample has a known probability of P(S) of being selected and the probabilities of
all sample units being selected should sum to 1. The probability of each unit being
in a selected sample is denoted by

πi = P(unit i in a sample), (3.2)



17

which can be easily calculated by adding all the probabilities of the samples con-
taining that unit. Let yi be the characteristic value associated with the ith unit in the
population. Denote the population total by t = ∑N

i=1 yi . An estimator that might be
used to estimate t is t̂S = NȳS where ȳS is the average of the y′is in the sample. The
sampling distribution of t̂ is said to have an expected value of E[t̂] and variance of
V(t̂), given by the following formulae:

E[t̂] = ∑
S

t̂SP(S) (3.3)

V(t̂) = E[(t̂− E[t̂])2] (3.4)

= ∑
S

P(S)[t̂S − E(t̂)]2. (3.5)

The aim is for the estimator to be unbiased, meaning the estimation bias of the
estimator t̂ should be 0, where the bias is calculated as follows:

Bias[t̂] = E[t̂]− t. (3.6)

In practice, an unbiased estimator is not always achieved. Biased estimators are
used and, rather than using the variance to measure the accuracy of an estimator,
the mean squared error is used to check how close estimates are to actual values.

MSE[t̂] = E[(t̂− t)2] (3.7)

= V(t̂) + [Bias(t̂)]2. (3.8)

Figure 3.1 gives a clear depiction of the three concepts that are mostly used in
the assessment namely, bias, precision and accuracy. Accuracy is either the count
or area of correctly identified objects, precision is the ability of say an algorithm
to identify only relevant points. Precise means the measurements are close to each
other, accurate means the measurements are close to the target and biased means
the measurements are on one side. Figure 3.1 shows four archers who are differ-
ent combinations of bias, precision and accuracy. Ideally one aims to be unbiased,
precise and accurate.

We introduce the specifics of the different types of sampling methods like simple
random sampling, stratified sampling and cluster sampling.



18

FIGURE 3.1: Clear depiction of the difference between bias, accuracy
and precision [44].

3.1.1 Random sampling

Random sampling, also referred to as simple random sampling, is the simplest tech-
nique in probability sampling. It takes a sample of size n such that every possible
subset of n units has the same chance of being selected. It is the foundation of
most of the more complex sampling techniques. There are two ways of obtaining a
random sample, with replacement and without. In simple random sampling with
replacement (SRSWR), all the units have the same chance of being picked, as one
will select the first unit with probability of 1

N , and it will be replaced and the sec-
ond unit will be selected with probability of 1

N , and so on. This procedure may
include duplicates which is not always ideal, as sampling something twice gives no
additional information and the main aim of sampling is to try to extract as much
information as one can. An alternative approach is simple random sampling with-
out replacement (SRS) where every possible subset of the population containing n
distinct units has the same chance of being selected. There are (N

n ) possible samples,
so that the probability of selecting any sample is

P(S) =
1

(N
n )

=
n!(N − n)!

N!
. (3.9)
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Let wi be a sampling weight of unit i which are the number of population units that
are represented by unit i. In simple random sampling, wi =

1
πi

= N
n means

∑
i∈S

wi = ∑
i∈S

N
n

= N. (3.10)

These are referred to as self-weighting sample since all the sampling weights are
equal. To estimate the mean of the population ȳi using SRS, a sample mean ȳS =
1
n ∑

i∈S
yi with variance V(ȳ) = S2

n (1− n
N ) is used.

The advantages of simple random sampling include the allowance for statistical
inferences of a population and that it mostly gives a sample that highly represents
the population. The disadvantages are that it is possible only when the whole popu-
lation is complete and that an adequate proportion of the sample should participate
which can be time-consuming. [12]

3.1.2 Stratified sampling

In stratified sampling, a population of size N is divided into H homogeneous sub-
populations also referred to as strata. The strata denoted by N1, N2, ..., NH−1, NH do
not overlap, such that N1 + N2 + ...+ NH−1 + NH = N. Independent sampling units
are drawn from each stratum so that overall population estimates can be obtained
from pooling the information. Stratification gives an assurance of not obtaining a
really bad sample. It is ideal when there is some desired level of precision that is
dependent on subgroups. It is easier to administer and in many cases results in a
lower cost than SRS. Lastly, it generally gives lower variance with high precision
when the characteristics of interest are population means and totals.

The process of sampling starts by identifying what your desired subgroups
should be, then dividing the population into those H strata. A sample size n is then
chosen and after taking into consideration the proportions of the variables present
in the population, the size of each sample from each stratum nh is determined such
that n1 + n2 + ...+ nh = n. The sampling units are then drawn using simple random
sampling (SRS) as described in Section 3.1.1 or another method called systematic
sampling where every kth unit is selected in each sample.

The notation used for stratified sampling estimates differs from that used for
SRS and is given in Table 3.1. The sampling weights for the units in stratified sam-
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Notation Description Estimator

ȳhU Population mean in stratum h ȳh = ∑
j∈Sh

yhj
nh

th Population total in stratum h t̂h = Nhȳh
t Population total t̂str = ∑H

h=1 t̂h

ȳU Population mean ȳstr =
t̂str
N

TABLE 3.1: Population statistics, description and their estimators in
stratified sampling.

pling are not equal as the πhj are not equal, but the weights assist estimate the
population mean, namely,

ȳstr =

H
∑

h=1
∑

j∈Sh

whjyhj

H
∑

h=1
∑

j∈Sh

whj

(3.11)

Stratified sampling is self-weighting if the sampling proportions are the same for
each stratum i.e. nh

Nh
. This is called the method of proportional allocation, and it falls

amongst three methods of allocating observations to strata. The other two are op-
timal allocation and Neyman allocation. Proportional allocation is used when one
wants to ensure that the sample reflects the population with respect to the stratifica-
tion variable. The number of sampled units in each stratum should be proportional
to the size of the stratum in the whole population meaning the inclusion probability
is πhj =

nh
Nh

= n
N . Proportional allocation is advised if the variances in each strata

are more or less equal. If the variances is significantly different, optimal allocation
gives smaller costs. In practice, optimal allocation is the most stable as the sample
sizes vary significantly and high samples tend to have more variability as opposed
to small ones. The objective of optimal allocation is to get the most information for
the lowest cost. Let C represent total cost, then

C = c0 +
H

∑
h=1

chnh, (3.12)
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where c0 is overhead costs and is independent of the strata. The aim is to minimize
the cost for a fixed variance, so the optimal sample size in stratum h should be

nh =


NhSh√

ch

H
∑

l=1

NlSl√
cl

× n. (3.13)

Neyman allocation is a special case of optimal allocation, It is when the variances
vary greatly but the costs in the strata (ch) are approximately equal.[7]

Advantages of stratified sampling include a better representation of measure-
ments, reduced variance when dividing the population into subgroups, increased
precision and effectiveness for populations with extreme observations. Disadvan-
tages include that a complete list of the population is required and that complexity
is added to the sampling procedure resulting from the assumption that each unit
must belong to only one stratum. [36]

3.1.3 Cluster sampling

The previously discussed sampling techniques assume that units are well defined
which is not always the case. Cluster sampling is an alternative when units are not
well defined. Cluster sampling divides the population into mutually homogeneous
groups but internally heterogeneous groups which are evident [7]. This may appear
similar to stratification but unlike in stratification, not all clusters are sampled from.
Cluster sampling can be performed as either one-stage, two-stage or multi-stage
sampling. One-stage sampling occurs when every element in a chosen cluster is
selected. In two-stage clustering, after the clusters are selected, the elements in
the clusters are also subsampled, so that not all of the elements in a chosen cluster
are included in the sample. The clusters are referred to as primary sampling units
(psu) while the elements within the clusters are referred to as secondary sampling
units (ssu). The notation for cluster sampling is different from the other sampling
techniques. For instance, the universe U is a population of N psus, while S is the
sample of the chosen psus. Si is the sample of the chosen ssus from the ith psu. The
value of a unit is given by yij which is the measurement for the jth element in the
ith psu. In the stratification sampling notation, there were two different population
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quantities. The same applies here as there are psu level population quantities and
ssu level population quantities. Table 3.2 gives the psu level quantities.

Notation Description

N Number of psus in a population

Mi number of ssus in psu i

M0 =
N
∑

i=1
Mi Total number of ssus in a population

ti =
Mi
∑

j=1
yij Total in psu i

t =
N
∑

i=1
ti =

N
∑

i=1

Mi
∑

j=1
yij Population total

TABLE 3.2: psu level population quantities used in cluster sampling.

Table 3.3 gives the ssu level population quantities.

Notation Description

ȳiU =
Mi
∑

j=1

yij
Mi

Population mean in psu i

ȳU =
N
∑

i=1
ti =

N
∑

i=1

Mi
∑

j=1

yij
M0

Population mean

TABLE 3.3: ssu level population quantities used in cluster sampling.

One-stage cluster sampling is closely related to stratified sampling, since all el-
ements in selected clusters are selected. Figure 3.2 shows the difference between
one-stage clustering and stratified sampling techniques. Figure 3.2(A) shows that
every stratum is randomly sampled from while in Figure 3.2(B), all observations are
selected from the chosen clusters.

In stratified sampling, the variance of ȳU depends on the within stratum vari-
ance, while in cluster sampling, the variance of ȳU depends on the variability be-
tween clusters [49]. The psus in cluster sampling can be of equal or unequal size,
with the latter being more common in practice.

Two-stage cluster sampling involves selecting a random sample of n psus from
the population, and then selecting a sample of ssus from each selected psu. Figure
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(A) Strata (B) Clusters

FIGURE 3.2: Illustration of the difference between stratification and
one-stage clustering [9]

3.3 gives an illustration of the difference between one-stage and two-stage cluster-
ing.

The selection of the ssus from the psus does not necessarily have to be random.
An individual may decide to use systematic sampling, for example, every 3rd ele-
ment in all chosen psus is selected.

Advantages of cluster sampling are that it provides more information with less
cost and that it is administratively convenient than SRS and stratified sampling. Its
shortfalls are that it gives less precise estimates when compared to the other two
sampling techniques and that there is a high probability of sampling error because
some clusters are not sampled from at all. [14]

3.2 A multivariate stratified sampling algorithm

This section develops the proposed sampling algorithm that makes use of multi-
variate stratification.

Let N be the number of images in the population and M be the number of crop
types. Let n be the number of images in a sample and Ni be the number of images
that contain crop type i in the population. We notate Ai

pop and Ai
samp as the area

coverages of crop type i in the population and sample respectively. Apop and Asamp

are vectors of area coverages of the M crop types in the population and the sample
respectively, and Vpop and Vsamp are vectors containing the proportions of the M
crop types in terms of area coverage in the population and sample respectively. We
propose an algorithm to obtain a sample from the population which ensures that the
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FIGURE 3.3: The difference between one-stage and two-stage cluster
sampling [36].

proportion between the population and the sample are similar, while minimizing
the number of images sampled. The proportions are calculated in terms of area
coverage. The area coverages of the M crop types in the population (Apop) should be
directly proportional to the area coverages of the crop types in the sample (Asamp).

Vpop=


V1

pop
V2

pop
...

VM
pop

, Vsamp=


V1

samp
V2

samp
...

VM
samp

, Apop=


A1

pop
A2

pop
...

AM
pop

 and Asamp=


A1

samp
A2

samp
...

AM
samp

.

Ideally the desired area coverages in the sample, Asamp, should be n
N × Apop.

Mathematically, the aim is to show the following equation holds for some small ε:

||Vpop −Vsamp|| ≤ ε. (3.14)

The algorithm is separated into two main steps where the first samples by con-
sidering the most represented crop type in the population. The second uses the
partial sample from the first step and focuses on the least represented crop type.



25

This is done iteratively until all crop types are represented, while satisfying equa-
tion (1). The steps of the algorithm are provided in detail below.

1. Calculate Apop, the area coverages of the M crop types in the population. From
this, compute Vpop the proportions of the crop types in the population.

2. Let cropA be the crop type in Vpop with the highest proportion, such that
cropA = argmax

i
(Vi

pop).

3. Extract a sub-dataframe newA_d f from the dataframe containing the meta-
data such that newA_d f only contains images that have cropA such that NA

is the length of newA_d f .

4. Order the images I(A,1), I(A,2), ..., I(A,NA)
in newA_d f in descending order ac-

cording to the area coverage of cropA in each image. The new order will now
be I′(A,1), I′(A,2), ..., I′(A,NA)

.

5. Introduce parameter cropAmax, this is a percentage of the area coverage for a
particular crop type. This ensures that when other crop types are considered,
the desired area coverage Ai

samp of the previously considered crop type is not
exceeded.

6. Include images I′(A,1), I′(A,2), ..., I′(A,nA)
such that the area coverage of cropA in

the nA ≤ NA images is cropAmax% of the desired cropA sample area cover-
age. These nA images are included in the sample.

7. From the thus far nA sampled images, the area coverages of the other crop
types are also captured and stored in Asamp as the corresponding Ai

samp.

8. Considering the current Vsamp, let cropB be the crop type currently least rep-
resented by the sample, such that cropB = argmin

i
(Vi

samp). Extract another

sub-dataframe newB_d f that contains images with cropB in them but exclud-
ing the nA already in the current sample. Let NB

∗ denote the number of these
images which may be less or equal to NB depending on whether or not the nA

sampled images contain cropB.

9. Rearrange the images I(B,1), I(B,2), ..., I(B,NB
∗) in new_d f in descending order

according to the area coverage of cropB in each image, such that the new order
is I′(B,1), I′(B,2), ..., I′(B,NB

∗).
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10. Introduce another parameter cropBmax which works similar to cropAmax, ex-
cept that it is now imposed on the desired cropB area coverage in the sample.
Denote by nB the number of images that make up cropBmax% of the remain-
ing desired cropB area coverage in the sample.

11. Capture the area coverages of all the crop types in the nB images and add to
the ones from the previously sampled images, in Asamp. The total nA + nB

now becomes the updated sample size with images I′(A,1), I′(A,2), ..., I′(A,nA)
,

I′(B,1), I′(B,2), ..., I′(B,nB)
being the sample.

12. Repeat Step (8)-(9) for the next least represented crop type. Step (10) is mod-
ified to (10*) such that the cropAmax and cropBmax parameters are not in-
cluded any longer i.e. we want to make up the remaining desired area cov-
erage. Iterate step (8), (9) and (10*) M− 2 times to account for the remaining
crop types. Each time an iteration occurs, the previously ni selected images
are not considered in the next iteration as they have already been added to the
sample.

13. After the iterations, the final sample will now be the images I′(A,1), I′(A,2), ...,
I′(A,nA)

, I′(B,1), I′(B,2), ..., I′(B,nB)
, .., I′(M,1), I′(M,2), ..., I′(M,nM). From the final Asamp,

compute Vsamp, the proportions of the crop types in the sample.

3.3 Simulation

This section investigates the effect of the different values of cropAmax and cropBmax
on the sample area coverages, the number of images sampled and the Euclidean
norm. The implementation of the sampling algorithm is done in Python and the
notebook containing the code for the algorithm is available on figshare7.

We investigate first the role of the parameters cropAmax and cropBmax on the
values of nA and nB. In our dataset, cropA is wheat and the length of newA_d f is
NA=106. The values of cropAmax that were used are [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1].
To understand the effect of cropAmax on nA, we compare the different values e.g
when cropAmax=0.4, then nA is 12 and when cropAmax=1, then nA is 33. Table 3.4

7Sampling algorithm, Figshare, Python code, https://doi.org/10.25403/UPresearchdata.

20444061

https://doi.org/10.25403/UPresearchdata.20444061
https://doi.org/10.25403/UPresearchdata.20444061
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gives an example of the percentages of the desired Asamp area coverages that have
been already achieved from the nA image, i.e. the sample at the end of step 7 of the
algorithm.

Crop Type
Achieved area coverage

cropAmax=40% cropAmax=100%
Wheat 4.06% 10.1%
Weeds 0.0% 0.14%
Canola 1.71% 4.15%

Wine grapes 0.12% 0.15%
Fallow 0.11% 0.26%

Rooibos 0.01% 0.01%
Planted Pastured (perennial) 0.057% 0.15%

Lucerne/Medics 0.24% 1.99%
Small grain grazing 0.34% 1.54%

TABLE 3.4: Achieved area coverage percentage using two different
cropAmax parameter.

Using a cropAmax value of 0.4, the partial sample is made up of nA=12 im-
ages. This is the selected number of images containing cropA in the first iteration.
cropB which is the least represented crop in the partial sample is weeds. The num-
ber of images that contain cropB in the population is NB=N∗B=1428 images because
the previously sampled images do not include weeds. Comparing two values of
cropBmax, 0.4 and 1, in combination with the cropAmax of 0.4, we found nB to be
16 and 38 respectively. This is the selected number of images with cropB added to
the partial sample. Table 3.5 shows how different values of cropBmax increases the
area coverages of each respective crop.

Using cropAmax=cropBmax=0.4, it can be seen from Table 3.5 that the next crop
to be considered is wine grapes, followed by planted pastures, with the last iteration
(Mth) focusing on canola. From Table 3.5, the overall sample size relative to the
population is 10.277%. Table 3.6 shows how the area coverages increase over the
iterations.

Table 3.7 consists of the sample size achieved given different values of cropAmax
and desired sample sizes. Note that the sample sizes are calculated using area cov-
erages and not number of images, and this is before introducing cropBmax which
is the same as taking cropBmax=1.
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Crop Type
Achieved area coverage

cropAmax=40% cropAmax=100%
cropBmax=40% cropBmax=100% cropBmax=40% cropBmax=100%

Wheat 4.11% 4.159% 10.1% 10.164%
Weeds 4.286% 10.3789% 0.246% 0.893%
Canola 1.71% 1.714% 4.15% 4.15%

Wine grapes 0.12% 0.174% 0.15% 0.152%
Fallow 0.53% 2.187% 0.597% 1.05%

Rooibos 0.325% 0.524% 4.391% 10.64
Planted Pastured (perennial) 0.135% 0.290% 0.231% 0.277%

Lucerne/Medics 0.24% 0.248% 1.99% 1.99%
Small grain grazing 0.446% 0.599% 1.54% 1.639%

TABLE 3.5: Achieved area coverage percentage using two different
cropBmax parameter.

Crop Type
Achieved area coverage

3rd it-
eration
(Wine
grapes)

4th it-
eration
(Planted
Pas-
tures)

5th it-
eration
(Rooi-
bos)

6th it-
eration
(Lucerne
Medics)

7th it-
eration
(Fallow)

8th it-
eration
(Small
grain)

9th it-
eration
(Canola)

Wheat 4.11% 4.54% 4.60% 7.73% 7.8% 8.79% 8.83%
Weeds 4.34% 4.6% 5.20% 5.20% 6.22% 6.63% 6.63%
Canola 1.71% 2.68% 2.68% 4.4% 4.42% 4.80% 10.92%
Wine
grapes

10.73% 11.43% 11.43% 11.44% 11.44% 11.66% 11.66%

Fallow 0.85% 0.96% 1.75% 1.8% 10.26% 10.55% 10.61%
Rooibos 0.33% 0.33% 10.31% 10.31% 10.1% 10.34% 10.79%
Planted
pastures
(peren-
nial)

0.19% 10.24% 10.37% 10.66% 10.80% 11.65% 11.9%

Lucerne
Medics

0.38% 1.20% 1.2% 10.2% 10.25% 10.53% 11.02%

Small
grain
grazing

0.45% 1.49% 1.59% 2.18% 2.2% 10.32% 10.38%

TABLE 3.6: Achieved area coverage percentages over the remaining
iterations.

Table 3.8 contains the number of images sampled given different values of cropAmax
and the different desired sample size (area-wise). This is similar to Table 3.7 where
the parameter imposed on the second considered crop type is not included.
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Sample size
cropAmax

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
10% 10.6 10.7 10.7 10.8 10.9 10.9 11.1 11.2 11.3 11.3
20% 21.0 21.2 21.0 21.2 21.3 21.6 21.7 21.8 22.0 22.2
30% 31.9 32.3 32.2 32.3 32.4 32.3 32.3 32.8 32.9 32.9
40% 43.1 43.3 43.0 43.1 43.3 43.5 43.4 43.3 43.4 43.4
50% 54.0 53.4 53.3 54.4 54.6 54.5 53.9 53.8 53.9 53.6
60% 64.4 64.7 63.6 64.9 64.4 64.0 64.0 63.9 63.6 63.8
70% 74.6 74.9 75.8 75.4 74.0 74.2 73.8 73.5 73.4 73.6
80% 83.9 84.0 84.1 83.8 83.2 83.2 82.9 82.8 82.8 83.3
90% 91.9 92.0 92.0 92.1 92.1 91.5 91.5 91.4 92.0 91.9
100% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

TABLE 3.7: Achieved Sample size per desired sample size and
cropAmax.

Sample size
cropAmax

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
10% 129 131 132 134 137 138 140 143 145 146
20% 269 273 271 275 278 284 286 290 294 297
30% 430 435 436 440 444 447 450 458 462 463
40% 620 617 613 616 621 627 629 630 634 635
50% 813 798 800 810 814 822 820 822 828 839
60% 1026 1033 1006 1009 1020 1019 1022 1045 1040 1037
70% 1248 1253 1238 1240 1258 1259 1263 1251 1249 1247
80% 1484 1486 1489 1496 1490 1513 1508 1501 1496 1471
90% 1799 1801 1803 1800 1816 1826 1824 1814 1785 1798
100% 2646 2646 2646 2646 2646 2646 2646 2646 2646 2650

TABLE 3.8: Number of images per desired sample size and cropAmax.

Table 3.9 contains the achieved sample sizes given different desired sample sizes
and values of cropBmax. The parameter imposed on cropAmax is now kept con-
stant, cropAmax=1, to illustrate the effect of cropBmax.

The Euclidean norm is computed to quantify the difference between the area
coverages of the crop types in the sample to those in the population. Table 3.10 gives
the Euclidean norm between the different samples for different values of cropAmax
not considering the effect of cropBmax (i.e. cropBmax=1).

Figure 3.4 gives the effect of the different values of cropAmax and cropBmax
using the Euclidean norm calculated from the different desired sample sizes and
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Sample size
cropBmax

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
10% 10.3 10.4 10.6 10.7 10.8 10.9 11.0 11.1 11.1 11.3
20% 20.3 20.6 20.8 20.9 21.2 21.4 21.6 21.8 22.0 22.2
30% 30.1 30.5 30.9 31.3 31.7 31.9 32.1 32.5 32.7 32.9
40% 39.9 40.3 40.7 41.2 41.5 41.3 42.2 42.6 42.9 43.4
50% 50.7 51.1 51.6 52.0 52.4 52.8 52.9 53.2 53.4 53.6
60% 61.1 61.5 61.9 62.5 62.7 62.8 63.0 63.4 63.6 63.8
70% 70.6 71.1 71.6 72.0 72.2 72.5 72.6 72.9 73.3 73.6
80% 78.5 78.3 78.9 79.6 80.2 81.0 81.5 82.2 82.7 83.3
90% 90.0 90.4 90.2 90.6 90.9 91.1 91.3 91.5 91.8 91.9
100% 99.2 99.2 99.2 99.3 99.4 99.4 99.5 99.6 99.8 100.0

TABLE 3.9: Achieved sample size per desired sample size and
cropBmax.

Sample size
cropAmax

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
10% 5.18 4.62 4.16 3.83 3.38 3.23 3.61 4.04 4.68 4.99
20% 9.33 8.22 6.39 5.67 4.86 5.28 5.6 6.44 7.44 8.72
30% 13.33 12.01 10.24 9.25 8.72 8.06 8.05 9.42 10.32 11.44
40% 15.99 14.35 12.47 11.81 11.24 11.55 11.41 11.8 12.54 13.88
50% 18.3 17.45 16.45 15.88 15.8 15.24 13.86 14.21 15.17 15.49
60% 20.02 19.32 17.28 17.84 16.58 15.67 15.41 14.08 14.77 16.64
70% 20.44 20.42 21.15 19.46 16.02 16.26 13.71 13.57 14.59 16.52
80% 17.93 17.83 17.25 15.42 14.28 12.36 11.75 12.14 12.99 16.68
90% 10.43 10.42 10.11 10.48 10.04 5.73 6.0 6.11 10.1 9.81
100% 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.02

TABLE 3.10: Euclidean norm between population and sample propor-
tions per desired sample size and cropAmax.

the population. The lighter and larger the dots, the higher the Euclidean norm and
the darker and smaller the dots, the smaller the Euclidean norm.

Figure 3.5 illustrates how the lowest and highest Euclidean norms change with
sample size. The averages of the Euclidean norms in each sample are also plotted.
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(A) 10% sam-
ple size

(B) 20%
sample size

(C) 30%
sample size

(D) 40%
sample size

(E) 50%
sample size

(F) 60%
sample size

(G) 70%
sample size

(H) 80%
sample size

(I) 90%
sample size

(J) 100%
sample size

FIGURE 3.4: Euclidean norms between (10%-100%) sample and popu-
lation.
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FIGURE 3.5: The bounds of Euclidean norms per sample size as well
as averages.

3.4 Summary

This chapter covers the theory of three sampling techniques, namely random sam-
pling, stratified sampling as well as cluster sampling. It covers advantages as well
as disadvantages of these sampling techniques. A multivariate stratified sampling
algorithm is developed. This algorithm minimises the number of images sampled,
aims to keep the proportions in the sample and the population similar while also
maximising the information obtained in samples. The sampling algorithm is as-
sessed for efficiency and representativeness by computing Euclidean norms as well
as looking at the sample sizes in terms of area coverage and number of images.
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Chapter 4

Classification

4.1 Feature engineering and selection

Feature engineering as well as feature selection are both performed on the resulting
samples from Chapter 3.

4.1.1 Feature engineering

Feature engineering is the process of calculating additional features from the raw
data. Additional features increase the predictive power of a final model and also
help capture extra information that is not clear in the original data. Additional fea-
tures considered in crop type classification are vegetation indices and water indices.
The type of vegetation index used herein is the normalised difference vegetation
index (NDVI) [62]. The NDVI is an indicator used to assesses whether or not veg-
etation is observed. It takes on values from -1 and 1, where values approaching -1
correspond to water, those close to 0 are barren land and the ones approaching 1
correspond to high vegetation. The NDVI is calculated as follows:

NDVI =
(

NIR− Red
NIR + Red

)
(4.1)

where NIR is the near-infrared image band and Red is the red visible image band.
Two normalised difference water indices (NDWI) were also calculated, which

are known to be strongly related to water content in plants [16]. Hence they are
used in vegetation related applications. The two NDWI used are the NDWI_green
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and the NDWI_blue with the following formulas:

NDWI_green =

(
NIR− Green
NIR + Green

)
(4.2)

NDWI_blue =

(
NIR− Blue
NIR + Blue

)
(4.3)

The Blue is the blue visible image band and the Green is the green visible image
band.

4.1.2 Feature selection

Feature selection is the process of selecting the most informative features. It reduces
the dimensionality of data, making the data easier to store and analyse. Feature se-
lection, which is synonymous with feature importance, eliminates irrelevant and
highly correlated features resulting in a more easily interpretable data. The feature
selection techniques used in this research are mutual information regression [26],
minimum-redundancy-maximum-relevance (mRMR) [8] and the F-test [13]. The
mRMR selects features that reduce their redundancy in the presence of other fea-
tures while simultaneously increasing their own relevance. The F-test, a correlation-
based method, calculates a correlation coefficient which is then converted into a
F-statistic. An F-test is performed and the statistically significant features with the
highest F-statistics are chosen. The mutual information regression works to iden-
tify any sort of dependence between features and eliminates those with high de-
pendency. The mutual information regression has the following formula:

I(X; Y) = H(X)− H(X|Y) (4.4)

where I(X; Y) represents mutual information between variables X and Y, H(X) is
the entropy of X and H(X|Y) is the conditional entropy of X given Y.

4.1.3 Implementation

After exploring the proportions of the data, feature selection was conducted, where
the mRMR, mutual information regression method and the F-test were used to find
the most informative features. According to the mRMR, the selected features are
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the NDWI_green, NDVI, B04, B8A, B06 and B07. Figure 4.1 shows the importances
as determined by the mutual information regression method.

FIGURE 4.1: Image bands importances by the mutual information re-
gression method.

Figure 4.2 gives the importances as determined by the F-test method.

FIGURE 4.2: Image bands importances by the F-test method.

Taking all three feature selection techniques into account, the following bands
were determined to be the most significant: NDWI_green, NDWI_blue, NDVI, B04,
B8A, B06 and B07. These are the bands that will therefore be considered for training.
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4.2 Land cover classification algorithm

The selected machine learning algorithm is random forest as not only is it easier to
implement, but is widely used for crop classifications.

4.2.1 Random Forest

The machine learning technique to be considered consists of certain base models
combined to produce an optimal predictive model. These are called ensemble meth-
ods. Ensemble methods usually produce much more accurate predictions than a
single model [46]. Ensemble methods can be used either for classification or regres-
sion. In classification, some of the widely used ensemble methods include voting,
stacking, bagging and boosting [61]. Voting is the simplest method in terms of
implementation. It involves creating multiple classification models from the same
training data. Different base models can be created using different datasets but
using the same algorithm, or using different algorithms on the same dataset. The
decision is taken either by using majority vote (plurality vote) or weighted vot-
ing [60]. Stacking, also referred to as stacked generalization, involves combining
models using another algorithm. Stacking learns how to best combine predictions
from many base models that perform well, so not all base models are considered.
Boosting converts the weak base models into strong models [25]. The weights of in-
stances are adjusted using the error measured from previous predictions. It forces
base models to learn from hard instances by returning new datasets with only those
instances. The most widely known boosting algorithm is the AdaBoost [27]. Last
but not least, bootstrap aggregation also referred to as bagging makes use of the
same machine learning algorithm with smaller random samples drawn using the
bootstrap sampling method (repeatedly drawing smaller samples independently
from the population with replacement) [32]. Its biggest advantage is that variance
is reduced during the bootstrap sampling.

The machine learning algorithm used herein is random forest, which is an en-
semble method that is an extension over bagging [32]. The extension is a result of
not just taking a subset of data but also taking a random selection of features to
make a decision tree. A decision tree has decision nodes, i.e. two or more branches
and a leaf node that represents the classification. The branches of a decision tree
depend on a number of factors, it splits the data into branches until it achieves a
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certain threshold value. A random forest is roughly defined as a combination of de-
cision trees. Figure 4.3 shows how a random forest randomly chooses features and
make observations, builds a forest of decision trees, and then takes the majority or
the average of the results8.

FIGURE 4.3: Random forest illustration.8

4.2.2 Accuracy measures

The performance of any classification algorithm is quantified using accuracy as-
sessment. Accuracy assessment is the process of comparing a classified image to
a reference image to determine the quality and performance of the classifier. Ac-
curacy assessment is used to estimate the accuracy of the extraction of information,
which helps to evaluate whether an algorithm meets the requirement of its intended
purpose. Accuracy assessment is important as the derivation of maps from remote
sensing images inevitably results in errors [57]. The most common way of show-
ing the accuracy of a classified image is by expressing the percentage of the image
that has been correctly classified when being compared to the reference image. The
expression is in the form of an error matrix, sometimes referred to as a confusion

8What is a random forest, TIBCO, https://www.tibco.com/reference-center/

what-is-a-random-forest

https://www.tibco.com/reference-center/what-is-a-random-forest
https://www.tibco.com/reference-center/what-is-a-random-forest
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matrix or a contingency table [41, 20]. The columns of the error matrix normally
represent the reference while the rows are the classification categories. This form
of expression helps a user to assess the performance of individual categories [21].
Table 4.1 is an example of an error matrix where 3 land cover categories are consid-
ered. The numbers in Table 4.1 may represent either pixels or objects.

Reference data
River Land Trees Total

Classification
data

River 21 6 0 27
Land 5 31 1 37
Trees 7 2 22 31
Total 33 39 23 95

TABLE 4.1: An error matrix in land-cover classification

The overall accuracy of a classification algorithm can be calculated by taking
the sum of diagonal entries over the sum of all entries in a confusion matrix. A
confusion matrix contains true positives, false positives, true negatives and false
negatives. These can be used to calculate quantitative measures such as recall and
precision. Recall, also referred to as sensitivity, is the fraction of relevant instances
(correctly classified pixels/objects or true positives) that were returned (note that
this does not account for the irrelevant instances returned). Precision also called
positive predictive value is the fraction of relevant instances among the retrieved
instances (true and false positives). The F1-score is another measure which is de-
fined as a harmonic mean between precision and recall. It ranges from 0 to 1. The
closer it is to 1, the better the model fitted. The formulae for precision, recall and
F1-score are as follows: [48]

Precision =
TP

TP + FP
(4.5)

Recall =
TP

TP + FN
(4.6)

F1-score =
(2× Precision× Recall)
(Precision + Recall)

(4.7)

Figure 4.4 gives good explanation on how to interpret both recall and precision
values. High precision and low recall values mean out of the many true positives,
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only few of these instances were returned. Low precision and high recall values
mean a lot of instances were returned but only a few of those instances are true
positives.

FIGURE 4.4: Interpretations of different precision and recall values.

In statistical modelling, one way of measuring quality of model fit is by calcu-
lating the Root Mean Square Deviation (RMSE). This measures the differences be-
tween the observed values (y) to the predicted values (ŷ). The formula is as follows:

RMSE =

√√√√√ n
∑

i=1
(yi − ŷ)2

n
(4.8)

Since different datasets of different sizes will be considered, the RMSE is nor-
malized, for fair comparison of how good a fit a model is. RMSE can be normal-
ized by either the mean (ȳ), the difference between the maximum and minimum
(ymax − ymin), by the standard deviation or by the interquartile range (Q1 − Q3) of
the observations.



40

4.2.3 Implementation and Results

The implementation of the random forest is done using the Python package called
sklearn with the classifier called RandomForestClassi f ier. The algorithm is trained
on the smaller samples (i.e. 10%, 20% and 30%) generated using the proposed mul-
tivariate sampling algorithm covered in Chapter 3. A random forest classifier with
100 estimators is defined and trained on the samples with the lowest Euclidean
norms. The cropAmax values that resulted in the lowest Euclidean norm for the
10%, 20% and 30% sample are 0.6, 0.5 and 0.7 respectively, whereas the cropBmax
value for all the samples is 0.9.

Random forest classifier is trained on the seven features. The arguments used for
the classifier are default parameter values, for example, number of trees in the forest
is 100 (n_estimators), the Criterion is Gini impurity ("gini"), there is no specified
maximum depth of a tree, the minimum number of samples required for spitting a
node is 2 and the maximum number of features required is the square root of the
number of features.

10% sample

The classifier is trained on the 136 images sampled (when a 10% sample was tar-
geted). Note that this sample will be referred to as the 10% proposed sample. Pro-
portions of the crop types using area as well as number of fields are shown in Figure
4.5. Wheat has the highest proportions area-wise but second highest to wine grapes
fields-wise with canola being the least represented according to both criteria.

When fitted on the 10% proposed sample, the random forest classifier achieved
an overall accuracy of 80.977% with a RMSE of 1.442. To understand how accurate
the classifier was per category, precision, recall as well as F1-score are shown in
Table 4.2
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(A) Area-wise (B) Number of
fields

FIGURE 4.5: The proportion of the crop types using area coverage and
number of fields.

Crop Type
Accuracy assessments

Precision Recall F1-score

Lucerne/Medics 48.077% 66.667% 0.559

Planted pastures 75.172% 68.553% 0.717

Fallow 56.18% 64.103 % 0.599

Wine grapes 98.243% 93.194% 0.957

Weeds 59.551% 70.667% 0.646

Small grain grazing 54.545% 63.83% 0.588

Wheat 85.0% 73.913% 0.791

Canola 25.926% 77.778% 0.389

Rooibos 84.783% 73.585% 0.788

TABLE 4.2: Precision, recall and F1-scores per crop type.

Figure 4.6 illustrates how the classifier was able to correctly classify a certain
field to its true crop type. This is the quotient of true positives (fields correctly clas-
sified to a certain crop type) to all true and false positives (all fields classified as a
certain crop type). Wine grapes have the highest correct classifications at 98.243%
followed by wheat with 85%. The least crop type with the lowest correct classifica-
tions is canola with 25.926%.
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FIGURE 4.6: Accuracy per crop type.

A further comparison is necessary between samples from the proposed sam-
pling algorithm and from a simple random sampling algorithm. Since the 10%
sample using the proposed sampling algorithm was achieved at only 136 images,
the same number of images are sampled randomly for fair comparison. Looking
at the number of fields from the randomly sampled images, Figure 4.7 shows wine
grapes to be the crop type with the most fields in the sample followed by planted
pastures then wheat with the least being canola. Figure 4.8 shows the representa-
tions of the crop types in the two samples compared to the population.

FIGURE 4.7: Crop proportions using number of fields.
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FIGURE 4.8: Area-wise proportions of the crop types in the proposed
sample, random sample and the population.

Training the same random forest classifier on the random sample, an overall
accuracy of 69.062% is achieved with a RMSE of 1.788. Looking at the accuracy
measures per category, the highest precision measure is 96.675% for wine grapes
followed by 78.351% for wheat, with the least being canola with a precision value
of 25.0%. Figure 4.9 gives an illustration of how the precision and recall values
between the random sample and proposed sample differ. Positive values mean
the precision and/or recall measures in the proposed sample are higher than those
achieved in the random sample and negative values vice versa.
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FIGURE 4.9: Difference between achieved precision and recall values
in the proposed sample and the random sample.

Figure 4.10 shows a graph of F1-scores for each crop type for both the random
sample and 10% proposed sample .

FIGURE 4.10: F1-scores between the random sample and the proposed
sample.
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20% sample

The random forest classifier was also trained on the 20% sample (278 images) achieved
from the proposed sampling algorithm. An overall accuracy of 76.479% was achieved
with a RMSE of 1.573. The same per category accuracy assessments were measured.
Table 4.3 contains the precision, recall and F1-scores per crop type.

Crop Type
Achieved area coverage

Precision Recall F1-score

Lucerne/Medics 59.848% 68.996% 0.641

Planted pastures 71.92% 66.755% 0.692

Fallow 51.813% 59.88% 0.556

Wine grapes 96.845% 90.574% 0.936

Weeds 52.151% 55.747% 0.539

Small grain grazing 50.385% 59.817% 0.547

Wheat 83.081% 71.522% 0.769

Canola 28.846% 100.0% 0.448

Rooibos 63.366% 78.049% 0.699

TABLE 4.3: Precision, recall and F1-scores per crop type.

A better look at how accurate the classifier was per crop type is by using the
same measure as in Figure 4.6 but for the 20% proposed sample. This is illustrated
in Figure 4.11.

Similar to the 10% sample from the proposed sampling algorithm, the same
number of images as from the 20% proposed sample is randomly selected for fur-
ther comparison. Hence 278 images are sampled randomly and the difference in
the number of fields per crop is plotted. Figure 4.12 shows the number of fields of
different crop types in each sample.

Since the proposed stratified sampling algorithm aims to keep the area-wise
proportions in the population the same as in the sample, a graph that shows the
comparison between the samples as well as the population is plotted. Figure 4.13
gives the proportions of the crop types area-wise between the random sample, the
proposed sample as well as the population.

The random forest classifier is then trained on the random sample with 278 im-
ages. The classifier achieved an overall accuracy of 66.798% with a RMSE of 1.921.
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FIGURE 4.11: Accuracy per crop type.

The highest precision measure is 94.397% achieved for wine grapes followed by
wheat with 73.828%, with canola being the least with a measure of 20.0%. Figure
4.14 gives an illustration of how the precision and recall values between this ran-
dom sample and 20% proposed sample differ.
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FIGURE 4.12: Number of fields of different crop types in the two sam-
ples.

FIGURE 4.14: Difference between achieved precision and recall values
in the proposed sample and the random sample.

Figure 4.15 gives a comparison of the F1-scores for the two samples.
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FIGURE 4.13: Proportions of the crop types using area coverage.

30% sample

When trained on the 30% proposed sample (445 images), the overall accuracy of the
random forest classification algorithm is 74.260% with a RMSE of 1.695. To illustrate
how accurate the classifier is per category, precision, recall as well as F1-scores are
computed for each crop type in Table 4.4.

Crop Type
Achieved area coverage

Precision Recall F1-Score

Lucerne/Medics 51.105% 66.071% 0.576

Planted pastures 68.503% 60.763% 0.644

Fallow 43.046% 63.725% 0.514

Wine grapes 95.113% 89.835% 0.924

Weeds 58.02% 51.672% 0.547

Small grain grazing 47.156% 58.017% 0.520

Wheat 85.169% 73.511% 0.789

Canola 29.167% 67.742% 0.408

Rooibos 57.927% 65.517% 0.615

TABLE 4.4: Precision, recall and F1-scores per crop type



49

FIGURE 4.15: F1-scores between the proposed sample and random
sample.

Figure 4.16 illustrates how the classifier was able to correctly classify each field
to its true crop type.

FIGURE 4.16: Precision per crop type

Next, a random sample with the same number of images as the 30% proposed
sample was drawn. Figure 4.17 shows the difference between the number of fields
belonging to each crop type in the two samples.

Figure 4.18 gives the area-wise proportions of the crop types between the ran-
dom sample, the proposed sample as well as the population.
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FIGURE 4.17: Number of fields per crop type in the two samples.

The random forest classifier is then trained on the random sample with 445 im-
ages. The overall accuracy of the classifier when trained on this random sample
is 64.429% with a root mean square error of 1.905. The highest precision measure
is 91.123% by wine grapes followed by wheat with 71.429% with canola being the
least with a measure of 30.435%. Figure 4.19 gives an illustration of how the preci-
sion and recall values between this random sample and the 30% proposed sample
differ.
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FIGURE 4.18: Proportions of the crop types using area coverage.

FIGURE 4.19: Difference between achieved precision and recall values
in the proposed sample and the random sample.

Figure 4.20 gives a comparison of the F1-scores for the two samples.
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FIGURE 4.20: F1-scores between the proposed sample and random
sample.

4.3 Summary

This chapter covers the pre-classification procedures which are feature engineering
and feature importance. Three additional features were added to the already exist-
ing 12 image bands, and 7 of these where found to be the most informative features.
A random forest classifier is then trained on the three samples resulting from the
proposed stratified sampling algorithm. Random samples with the same number
of images are drawn and also trained on for comparison. The classifier is assessed
using overall accuracy, normalised RMSE, precision, recall and F1-scores.
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Chapter 5

Discussion

The research aims to develop a stratified sampling algorithm for crop datasets. The
algorithm works in such a way that the proportions of the crop types in the sample
are representative to that in the population, while minimising the number of images
sampled.

From Table 3.2, focusing on wheat, we see how the parameter cropAmax works.
If cropAmax is set to 100%, then the achieved area coverage is already at the de-
sired level of 10% in the first iteration which will increase when considering other
crop types. The same is observed for the parameter cropBmax in Table 3.5. The
desired sample size of weeds if cropBmax is set to 100% is already achieved at the
second iteration. Using this information, one can conclude that using high values
of cropAmax and cropBmax will lead to over-sampling. From Table 3.5, we can see
that if cropAmax as 40% is chosen, then the least represented crop type in the sam-
ple is weeds but if cropAmax as 100% is chosen, rooibos is the least represented crop
type in the sample and will be considered in the second iteration.

Table 3.6 shows how the area coverages increase as other crop types are con-
sidered throughout the remaining iterations. Most of the crop types achieved the
desired 10% area coverage. Only wheat and weeds were under-sampled. The rea-
son for this might be the choice of cropAmax (imposed on wheat) and cropBmax
(imposed on weeds). One might argue that 40% is small and a higher value such
as 60% might lead to the first two crops considered to not be undersampled. Table
3.7 shows the effect of the parameter cropAmax on the achieved sample area cover-
age given certain sample sizes. For smaller sample sizes, the achieved sample area
coverages seem to increase with higher values of cropAmax. Note that the effect
of cropBmax is not included in this instance. This seems to support the conclusion
drawn above. If one assessed the level of accuracy by comparing the desired sample
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sizes to the achieved sample area coverages, then the algorithm would be accurate.
This is because the highest difference between the two is 5.8, and this is for a sample
size of 70%. Looking at the smaller samples, which is ideally what we want to work
with, the difference can be considered trivial. The achieved sample area coverages
are always higher than the desired sample sizes in this instance because as much
as we are considering area coverages, we consider a whole image and not just seg-
ments of images (fields). Thus if an image selected contains 1.6% of area coverage
for a specific crop type during an iteration to meet the desired 10% sample size, and
already from previously selected images we have a sample area coverage of 9.1%,
then all the area will be considered and not just the required (10%-9.1%). We will
therefore have 10.5% area coverage.

Table 3.8 gives a summary of how the number of images sampled changes ac-
cording to desired sample size and the parameter cropAmax. For lower values of
the sample size, the number of images sampled increases as the cropAmax param-
eter increases, which corresponds to the result from Table 3.7. For a 10% desired
sample size, an average of 138 images are sampled, which makes up 5% of the to-
tal number of images. So instead of using simple random sample (SRS) which will
result in 10% of all the images, one can use half the number of images using the
proposed algorithm and get the same information area-wise. The algorithm en-
sures that the most information is obtained with fewer images. For lower sample
sizes (10%-40%), roughly 48%-60% of the images that would be selected using SRS
are obtained using the proposed algorithm. Even for a sample size of 90%, roughly
75% of images selected using a SRS approach are selected using this algorithm. This
is due to the fact that some of the fields in the images were not labelled (62% of area
is not labelled), so having more images does not necessarily mean having more
information.

Table 3.9 shows how the area coverages achieved change with cropBmax. Note
the effect of cropAmax is nullified by setting it to 100%. In this instance, the achieved
area coverages increase with increasing values of cropBmax for all different sample
sizes. This is different to when we were considering the effect of cropAmax only,
where this was true only for smaller sample sizes. We see that the differences in
this instance are lower compared to in Table 3.8. The highest difference decreased
from 5.8 to 3.6 with the lowest being 0. The highest difference similar to when only
considering cropAmax (Table 3.8) is from a high sample size of 70%.
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The Euclidean norm is considered to compute the difference between the pro-
portions of the crop types between a sample and the population. Only the cropAmax
parameter is considered in this instance. As the sample size increases, the Euclidean
norm increases as well and it is at its smallest at 100% sample size, as we expect. For
lower values of the sample size, the Euclidean norm is at its lowest when cropAmax
is at 50% and 60%. This might be because choosing lower values of cropAmax leads
to undersampling, while higher values of cropAmax lead to oversampling. Looking
at the 10% sample size in Figure 3.2, higher values of cropAmax and lower values
of cropBmax give high Euclidean norm values, whereas low and high values of
cropAmax give high Euclidean norms. As cropBmax increases, the Euclidean norm
decreases. The lowest Euclidean norms are obtained when cropAmax is contained
in (0.4-0.7) and cropBmax in (0.6-0.9). Higher values of cropBmax and middle val-
ues of cropAmax tend to give the smallest Euclidean values in the smaller sample
sizes. The Euclidean norm is at its lowest when cropBmax is 0.9 and cropAmax is
between 0.5 and 0.7.

From Figure 3.5, the lowest Euclidean norm is achieved when the sample size
is 100%, with the second lowest being at a 10% sample size followed by 20%. As
the sample size increases, so does the range of Euclidean norms (this is true until
after sample size of 70%). For smaller sample sizes, the Euclidean norm range is
quite small. The smallest range is [2.79,8.4] for sample size of 10% and is largest for
sample size of 70% with [13.57,44.06]. The sample size of 70% does not only give
the highest Euclidean norms, but also the highest difference in terms of sample size
and achieved area coverage as already discussed.

Feature engineering and feature selection are two pre-processing techniques
performed on the image data where the image bands are the features. One veg-
etation index and two water indices were added. These indices range between -1
and 1 and are constructed from 4 of the 12 bands, namely the NIR, the red, the
green and the blue. After the 3 features were added to the existing 12 bands, the
most important features were selected. Three feature selection techniques were
used, namely mutual information regression, minimum-redundancy-maximum-
relevance and F-test. The seven bands that had consistent high importance rat-
ings were NDWI_blue, NDWI_green, NDVI, B04, B06, B07, B8A. The engineered
features alone gave a lot of information when considered for vegetation detection
purposes. B04 which is the red band has high reflectance for soils regions compared
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to the other two colour bands and it’s normally used to discriminate soil and veg-
etation. Figure 5.1 shows the level of reflectance (visibility) of the crop fields in the
different colour bands. The red band has a higher visibility that clearly outlines the
different fields of crop types when compared to the other two colour bands. This
can also be seen when comparing the field labels in the colour bands to the label
image in Figure 5.1[D].

(A) B02 (B) B03

(C) B04 (D) Labels

FIGURE 5.1: Visibility of the fields and its labels through the blue (B02),
green (B03) and red (B04) bands.

The B06, B07 and B8A are the near-infrared NIR bands. These are useful in veg-
etation management as they can be used to measure vegetation density differences
unlike other image bands because the light can transmit through the upper leaves
and reflect off the bottom ones.
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Considering the samples that were selected for training, the ones with the low-
est Euclidean norms are chosen. The 10% sample chosen contains 136 images. Note
that it does not have the lowest number of images achieved from the 10% samples.
This is because the lowest number of images is achieved when cropAmax is the
lowest as already discussed. However, the lowest Euclidean norm means the pro-
portions within the sample are closest to those in the population. A lower Euclidean
norm obtained equates to some degree as a good representation of the population
by the sample. Hence the samples with the lowest Euclidean norms were consid-
ered and not necessarily the ones with the lowest number of images sampled. The
10% sample chosen is a result of setting up cropAmax to 0.6 and cropBmax to 0.9.
For the 20% sample, the cropBmax remains the same but the cropAmax was set at
a lower value of 0.5. For the 30% sample, the cropBmax value is still set to 0.9 but
with a higher cropAmax value of 0.7.

The 10% sample that consists of 136 images has the lowest Euclidean norm not
just compared to other 10% samples, but compared to all the other samples (10%
to 90%). This should mean the area-wise proportions of the crop types should be
closest to those in the population. The biggest difference between the proportion
in the population and the sample is 0.7894 in planted pastures followed by 0.727
in wine grapes with the lowest being lucerne/medics with 0.0553. These are small
differences, such that one can say the proportions are close to each other. The most
represented crop type in both the population and sample is wheat (this is mea-
sured area-wise), and the least represented in both the sample and population is
canola. However, the second most represented crop type in the population is the
third most represented crop type in the sample and vice-versa. Apart from these
two crop types, the order of the proportions of the crop types in the population and
the sample are the same.

Figure 4.5 gives the difference of the proportions of the crop types in the sample
using number of fields and area coverage. Wheat crops is the most contained crop
type with a proportion of 22.9% followed by planted pastures with 13.8% followed
closely by small grain grazing with 13.5%. The crop type that is the least contained
is canola with a proportion of 3.3% followed by rooibos with 6.9%. However, when
considering number of fields, wine grapes is highly represented followed by wheat
and the least represented is still canola. Comparing wheat and wine grapes, area-
wise, wheat is represented twice as much as wine grapes but when using number
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of fields, wine grapes is represented more than 3 times as much as wheat. To better
illustrate the difference between the area-wise proportions and number of fields,
the averages of the field size of each crop type are computed. Figure 5.2 gives the
average field sizes of the crop types. Canola has the highest average field size with
an area of 543.52 m2 followed by wheat with an area of 513.88 m2. Wine grapes
has the highest number of fields but has a lower overall area coverage as it has the
lowest average field size of 78.31 m2.

FIGURE 5.2: Average field sizes of each crop type.

Canola and rooibos are in the top three highest field sizes category but in the
bottom two overall area coverage because they have the least number of fields.

When fitted on the 136 images, the classifier has a good accuracy score of 80.977%
with a low RMSE of 1.4. Normalising the RMSE using the minmax method gives
0.18. Note the minmax is used throughout for normalising the RMSE. This is fairly
close to 0 which means the model is a good fit for the data. Looking at the per
category accuracy measures, wine grapes had the highest precision, recall and F1-
score. This is due to it having the highest number of fields. Although wheat had
the second highest precision value, its recall value is surpassed by that of canola.
For canola, the classifier gives high recall with low precision. Recall that recall is de-
fined as the quotient of correctly predicted positive field and total positive instances
in a dataset (sample). Lucerne/medics, fallow, weeds, small grain grazing as well
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as canola have higher recall values than precision values, i.e. the classifier returned
more irrelevant instances than relevant instances. Rooibos, wheat and wine grapes
both have high precision and recall values. The classifier gave F1-scores that are
higher than 0.55 for all crop types except for canola. This means that overall, the
model is a good fit for the crop data. Wine grapes has the highest correct classifica-
tion followed by wheat and rooibos. Canola has the least correct classification and
lucerne/medics with the second least correct classifications.

A random sample with the same number of images as the 10% proposed sample
is drawn. Figure 4.7 shows the number of fields of each crop type. Wine grapes has
the highest number of fields followed by planted pastures, then wheat, with the
least still being canola and the second least being rooibos. The total number of
fields in the random sample is 1141 whereas the ones in the proposed sample is
1493. Since most of the images contain unlabelled data (roughly 62% of the images
is not labelled), ideally we want to sample images with the most labelled data,
i.e. informative images. Comparing the two samples with the same number of
images, we have that the sample coming from the proposed sampling algorithm
gives around 2 times more information than from the random sample. Figure 5.3
shows the difference between the labelled and unlabelled data in the two samples.
The proposed sampling algorithm resulted in a sample with 20.648% uninformative
data while the random sample has over 59% uninformative data.

FIGURE 5.3: Labelled and unlabelled data between the proposed sam-
ple and random sample.

Looking at the area-wise proportions in Figure 4.8, we have already established
that the biggest difference in the crop proportions is 0.7894 between the proposed
sample and the population. With the random sample, the biggest difference is in
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wine grapes with a difference of 3.702 followed by wheat with 3.32 and planted
pastures wirh 1.327. The smallest difference in proportion is in small grain grazing
with 0.239. Looking at Figure 4.8, the proportions of the population are much closer
to the proposed sample than the random one.

When trained on the random sample, the classifier gave a lower accuracy of
69.062% which is lower than when trained on the proposed sample. The normalised
RMSE is 0.2235 which is greater than that of the proposed sample. Figure 4.9 gives
the differences between the precision and recall values in the proposed and random
sample. The precision returned for the crops wine grapes is at 96.675% which is less
by 1.568 from the precision returned when trained on the proposed sample. All crop
types except for lucerne/medics has higher precision in the proposed sample than
in the random sample. The classifier also gave higher recall values when trained
on the proposed sample than when on trained on the random sample for all crop
types. The highest difference in precision values between the two samples is for the
crop type rooibos.

On average the proposed sample has better F1-scores than the random sample
as shown in Figure 4.10. Only lucerne/medics has higher scores in the random
sample than in the proposed sample. This is due to the higher precision value in
the random sample than in the proposed sample. The biggest difference between
F1-scores is in the crop type rooibos. This is due to the difference in the precision
values as shown in Figure 4.9.

The 20% samples obtained from the proposed stratified algorithm has 278 im-
ages. This is about 10.49% of the total number of images. The classifier when trained
on the 278 images has an overall accuracy of 76.479% which has declined by 4.498
from the 80.977% accuracy in the 10% proposed sample. The normalised RMSE has
increased from 0.18 to 0.197 which is still quite low. Considering only these two
measures, one may say the model is still good at predicting observed data. When
trained on the 20% proposed sample, the classifier detected more noise than when
trained on the 10% proposed sample. This is because of how the proposed sam-
pling algorithm is setup: it takes the images with the most information and least
noise first, so the higher the sample size, the higher the noise added. The images
in the 10% sample from proposed algorithm are included in the 20% sampled from
the proposed algorithm. Hence the noise in the 20% sample is higher than the one
in the 10% proposed sample.
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Table 4.3 gives the per category measures, these are the precision, recall as well
as F1-scores. The highest precision and F1-score values are for wine grapes at
96.845% and 0.936 respectively. Unlike in the 10% sample where wine grapes had
the highest recall, we now have canola at the highest value of 100%, which means
the classifier was able to return all relevant instances belonging to the crop type
canola. However, the classifier has the lowest precision value for canola which
means as much as all relevant instances were detected, it detected way more irrel-
evant instances hence the overall lowest F1-score. Wheat has the second highest
precision value but once again is surpassed by rooibos when looking at recall. Fig-
ure 5.4 illustrates how the precision and recall values have changed from the 10%
proposed to the 20% proposed sample. The positive values indicate that the values
in the 20% proposed sample are higher than those in the 10% proposed sample.

FIGURE 5.4: Differences in precision and recall values in the 10% and
20% proposed samples.

From Figure 5.4, we have two biggest differences. The recall value of canola in-
creased from 77.778% to 100% and the precision value for rooibos which decreased
from 84.783% to 63.366%. The many negative differences mean the 10% gave bet-
ter precision and recall values than the 20% proposed sample. Overall, the classi-
fier performed better on the 10% proposed sample than when trained on the 20%
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proposed sample considering precision, recall, F1-scores values as well as overall
accuracy and normalised RMSE.

A random sample of 278 images is drawn to be compared to the 20% proposed
sample. Figure 4.12 gives the differences in the number of fields in each crop type.
More fields are in the proposed sample than in the random sample for each crop
type. The crop type wine grapes has twice as many fields in the proposed sample
than in the random sample. Comparing Figure 4.12 to Figure 4.7, we have that the
number of fields in the proposed samples (10% and 20%) are generally higher than
the number of fields in their corresponding random samples. The total number of
fields trained in the 20% proposed sample is 2942 which is more than the 2036 fields
in the corresponding random sample containing the same number of images. Com-
paring the two samples with the same number of images, we have that the sample
coming from the proposed sampling algorithm gives more information than the
random sample. Figure 5.5 shows the difference between the labelled and unla-
belled data in the two samples. The proposed algorithm resulted in a sample with
23.86% uninformative data while the random sample has over 60% uninformative
data.

FIGURE 5.5: Labelled and unlabelled data in the 20% proposed and
random sample with same number of images.

Figure 4.13 gives the area-wise proportions of the crop types in the two samples
and the population. Five of the crop types had a higher area coverage in the pro-
posed sample than in the random sample. Comparing this random sample with 278
images with the random sample with 136 images, the one with 278 images seems to
have proportions that are a bit closer to those in the population, e.g. wine grapes are
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no longer as oversampled and wheat as undersampled as they were in the sample
with 136 images.

When trained on the random sample with 278 images, the classifier has an over-
all accuracy of 66.798% which is lower than what is achieved when trained on 20%
proposed sample and also the random sample with 136 images. The normalised
RMSE is 0.240125 which is higher than all previous obtained normalised RMSE val-
ues. A higher RMSE makes sense as increasing the training data increases noise.
However, what is interesting is the decline in overall accuracy in both the proposed
and the random samples. The accuracy has decreased by 4.9% in the proposed
samples and by 2.264% in the random samples.

Looking at the per category measures in Figure 4.14, there are only two negative
differences. These are the precision value for fallow and recall value for weeds.
This means the precision and recall values are higher in the 20% proposed sample
than they are in the corresponding random sample. The biggest difference is the
recall measure for canola of 36.36%. This is followed by the precision values of
rooibos of 23.04% which is consistent with the difference in the 10% samples in
Figure 4.9. Figure 5.6 further illustrates how the precision and recall values differ
for the different random samples. A positive difference means a precision or recall
value achieved in the random sample with 278 images is higher than in the random
sample with 136 images.

From Figure 5.6, the random sample with 136 images has higher precision and
recall values than the other random sample with more images. The biggest differ-
ence is the precision value for rooibos with a decline of 13.4% followed by a decline
in the recall value for canola from 75.0% to 63.636% in the random sample with 278
images. One can conclude based on the precision, recall, overall accuracy as well
as normalised RMSE that the model performs better when trained on the random
sample with 136 images as opposed to the one with 278 images. So far, the classifier
performs best when trained on the 10% proposed sample, followed by the 20% pro-
posed followed by random sample with 136 images and last being when trained on
the random sample with 278 images.

Another sample obtained from the proposed sampling algorithm is considered,
this sample has 445 images, this is 30% proposed sample. Note that 445 images is
16.79% of all 2650 images. This sample had a Euclidean norm of 7.47 which is higher
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FIGURE 5.6: Differences in the precision and recall values for the ran-
dom samples.

than the norm for the 20% proposed sample of 4.82 and that of 10% proposed sam-
ple of 2.79. This mean that the proportionality between the population and the 30%
proposed sample is close to each other, but not as close as the proportions between
the 10% and 20% proposed sample to the population. The most represented crop
type in both this 30% proposed sample and the population is wheat and the least
also being canola. The second most represented crop type in both the sample and
population is small grain grazing. The order of the area proportions of the crop
types in the 30% proposed sample is the same as in the population. Looking at
the proportions using number of fields in the 30% proposed sample, wine grapes is
still the most represented followed by wheat with the least being canola followed
by rooibos. This is similar to the order of crop types using number of fields in both
the 10% and 20% proposed sample. Remember that the difference between the or-
der of crop types using number of fields and also using area coverage is because of
the different average field sizes of the crop types as shown in Figure 5.2.

When fitted on the 30% proposed sample, the classifier has a good accuracy
of 74.26%. Note that this is lower than the accuracies obtained from the 10% and
20% samples but is higher than the accuracies for the previously considered ran-
dom samples. The RMSE values is 1.695 which when normalised, gives a value
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of 0.211875. This is higher than the normalised RMSE for the 10% and 20% pro-
posed samples. This supports the statement that adding more data adds more
noise. Also looking at how the accuracy values has decreased as the sample in-
creases, this means that the model performs best when trained on the sample with
the least noise, which is the 10% proposed sample. Diving deeper into the accuracy
measures per category, precision, recall as well as F1-scores are computed for each
crop type in the 30% proposed sample. The highest precision values is for wine
grapes with a value of 95.113%, which is fairly high. This is followed by wheat
with 85.169% and the least still being canola but now with an even lower value of
29.167%. The highest recall value is for wine grapes followed by wheat, with the
lowest value of recall being 51.672% for weeds. The biggest difference between the
precision and recall values is that of canola. The recall is far higher than the preci-
sion value. This means the classifier was able to retrieve a good amount of relevant
instances, but more irrelevant were returned as well, hence the overall lower F1-
score. Table 4.4 shows that planted pastures, wine grapes, weeds and wheat had
higher precision values than recall values. Figure 5.7 compares these values to the
ones achieved in 20% proposed sample. As before, positive values mean that the
precision or recall values in the 30% proposed sample are higher than those in the
20% proposed sample.

FIGURE 5.7: Differences in the precision and recall values in the 20%
and 30% proposed sample.



66

Figure 5.7 shows that the 20% proposed sample has higher precision and recall
values than the 30% proposed sample. Crop types such as wheat seem to have been
better predicted in the 30% sample than in the 20% sample. There is a substantial
decline in the recall value of canola as it decreased by 32.258% from 100% in the
20% proposed sample to 87.5% which is still a high value.

Wine grapes has the highest correct classifications followed by wheat which is
closely followed by planted pastures and rooibos. The crop type with the least
correct classifications is canola followed by fallow. Note that this order of crop
types by correct classifications is different compared to when training on the 10%
proposed sample because then we had rooibos as the third best classified crop type,
planted pastures as fourth and lucerne/medics as second last as shown in Figure
4.6. Looking at Figure 4.11, the 20% proposed sample, the order is similar to what
we have now as planted pastures is the third best classified followed by rooibos,
but the second last is small grain grazing as opposed to fallow. When trained on
the 30% proposed sample, the classifier has F1-scores that are higher than 0.51 for all
crop types except for canola. Figure 5.8 gives the differences in the F1-scores of the
three proposed samples. Overall, the 10% proposed sample has higher F1-scores
followed by the 20% proposed sample with the ones obtained in the 30% sample
being on average the lowest.

A random sample with the same number of images as in the 30% proposed
sample is drawn. Figure 4.17 gives the comparison between the number of fields
in these two samples. Wine grapes still has the highest number of fields in both
the proposed and the random sample. However, the second most represented crop
type using number of fields in this random sample is planted pastures instead of
wheat. In the random sample, wheat is the crop type with the third highest number
of fields. The crop type with the least number of fields is still canola followed by
rooibos. The total number of fields in the random sample is 2845 whereas the ones
in the proposed sample is 4596. Comparing the two samples with the same number
of images we have that the sample coming from the proposed sampling algorithm
gives more information than the random sample. Figure 5.9 shows the difference
between the labelled and unlabelled data in the two samples. The 30% proposed
sample resulted in a sample with 27.004% uninformative data while the random
sample has over 61.7% uninformative data.
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FIGURE 5.8: F1-scores of the crop types in the 10%, 20% and 30% pro-
posed samples.

When trained on the random sample with 445 images, the classifier has an over-
all accuracy of 64.429% which is the lowest accuracy compared to the ones achieved
on the other 5 samples. The normalised RMSE is 0.238125 which is the highest one
yet. It does seem that the larger the sample size, the higher the RMSE. As the ran-
dom sample sizes increases, the normalized RMSE increases and the overall accu-
racy decreases. Note that this is also true for the proposed samples, increasing the
sample size, increased the error rate and decreased the overall accuracy. However,
we do have that the classifier performed better when trained on the proposed sam-
ples than on the random samples. The accuracy has decreased by 2.219% in the
proposed samples (20% and 30%) and by 2.369% in the random samples (278 and
445 images).

Looking at the per category measures in Figure 4.19, there are only a few neg-
ative differences. These are the precision values for planted pastures, fallow and
canola and recall value for canola. This means the precision and recall values are
higher in the 30% proposed sample than they are in the corresponding random
sample. The biggest difference is the recall measure for canola of 19.758%. This is
followed by the precision values of fallow of 8.655%. Figure 5.10 further illustrates
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FIGURE 5.9: Labelled and unlabelled data in the 30% proposed and
random sample with same number of images.

how the precision and recall values differ for the different random samples. A pos-
itive difference means a precision or recall value achieved in the random sample
with 445 images is higher than in the random sample with 278 images.

FIGURE 5.10: Differences in the precision and recall values for the ran-
dom samples.

From Figure 5.10, the random sample with 278 images has more higher preci-
sion and recall values than the other random sample with 445 images. The biggest
difference is the recall value for crop type canola with a decline of 23.864% followed
by a decline in precision value for rooibos of 13.259%. One can conclude based on
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the precision, recall, overall accuracy as well as normalised RMSE that the model
performs better when trained on the random sample with 278 images as opposed
to the one with 445 images. So far, the classifier performs best when trained on
the 10% proposed sample. The list below shows the order in which the classifier
performs, from best to least, when trained on the different samples.

1. 10% proposed sample (136 images).

2. 20% proposed sample (278 images).

3. 30% proposed sample (445 images).

4. Random sample with 136 images.

5. Random sample with 278 images.

6. Random sample with 445 images.

Figure 5.11 is a plot of accuracy values achieved by the classifier when trained on
the different random and proposed samples.

FIGURE 5.11: Accuracy values of the classifier when trained on the
different random and proposed samples.

Summary

Before the classification, feature engineering and selection processes are performed
on the images. With image bands being the features, three additional features are
created, namely the vegetation index (NDVI) and two water indices (NDWI_blue
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and NDWI_green). Then three feature selection process, namely mutual informa-
tion regression, mRMR and the F-test are performed. These revealed that the ad-
ditional indices, the B04. B06, B07 and B8A are the most informative features. A
random forest classifier with default arguments is trained on these samples as well
as random samples with the same number of images as in the proposed samples
for comparison. The 10%, 20% and 30% samples with the lowest Euclidean norms
are used for classification. These are the samples with 136, 278 and 445 images
respectively.

The classifier performed best when trained on the 10% proposed sample as it
gave the highest accuracy, lowest normalised RMSE and overall higher F1-scores.
This is then followed by the 20% proposed sample then by the 30% proposed sam-
ple. The classifier performs better when trained on the proposed samples than it
does on the random samples with the same number of images. Also, increasing the
sample sizes decreases the overall accuracy and increases the training error, this is
true for both the proposed samples and the random samples. The main reason for
this is the amount of informative data in the samples. The proposed samples have
higher informative data than the random samples. And in both samples, the more
data sampled, the more uninformative the data is.
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Chapter 6

Conclusion

This mini-dissertation’s objectives listed in Chapter 1 have been achieved as fol-
lows: First, metadata is obtained and constructed in the form of a dataframe that
contains descriptive information of the images to be used for sampling. Next, a
multivariate stratified sampling strategy is developed that aims to minimise the
number of images sampled, keep the area-wise proportions in the sample and the
population similar and maximise the information obtained from the images sam-
pled. The proposed algorithm has two parameters, namely cropAmax and cropBmax.
cropAmax is imposed on the first considered crop type (the highest contained crop
type in the population) and cropBmax is imposed on the second considered crop
type (least contained crop type in the population). The Euclidean norm is used to
measure the closeness of the area-wise proportions in the samples to the ones in
the population. The 10%, 20% and 30% samples with the lowest Euclidean norms
are used for classification. These are the samples with 136, 278 and 445 images
respectively.

A random forest classifier with default arguments is trained on these samples as
well as random samples with the same number of images as in the proposed sam-
ples for comparison. The classifier performed best when trained on the 10% pro-
posed sample as it gave the highest accuracy, lowest normalised RMSE and overall
higher F1-scores. This is then followed by the 20% proposed sample then by the
30% proposed sample. The classifier performs better when trained on the proposed
samples than it does on the random samples with the same number of images.
Also, increasing the sample sizes decreases the overall accuracy and increases the
training error, this is true for both the proposed samples and the random samples.
The main reason for this is the amount of informative data in the samples. The
proposed samples have higher informative data than the random samples. And in
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both samples, the more data sampled, the more the uninformative data.
The importance of this research is to alleviate the memory requirement problem

that often occurs when handling big geospatial data. The use of metadata and sam-
pling from the metadata avoids having to read in all images whenever one wants to
use them. The proposed sampling algorithm returned the lowest Euclidean norm
for a 10% sample, which means the sample with least number of images has pro-
portions closer to the population compared to the other samples (20% and above).
Feature selection and engineering reduced the number of features from 12 bands to
7 informative bands, meaning less data to train on. In classification, the classifier
performed best when trained on the proposed sample with the least number of im-
ages since it has the most informative images. Not only do all these alleviate the
memory requirement problem, but also reduces time-consumption and the need for
complex solutions. In summary:

• In Chapter 2, metadata of the large database of images is constructed.

• In Chapter 3, a stratified algorithm is developed that aims to keep proportions
the same while minimising number of images sampled.

• The proposed sampling algorithm proved to be efficient and gave samples
that are representative of the population.

• In Chapter 4, the various samples obtained from the proposed algorithm gave
high accuracy values and low error values when a random forest classifier is
trained on them.

• The classifier performed better when trained on the proposed samples than it
did on the random samples with equivalent number of images.

One limitation includes lack of understanding in the changes of the recall and
precision values for crop type canola in the different samples. A further investi-
gation may address this issue. Even though the 30% proposed sample has 445 im-
ages, which is almost 17% of all images, training on these images is computationally
heavy, hence higher samples were not considered. Proposals for future research in-
clude the usage of other land cover datasets to thoroughly assess the effectiveness
of the proposed sampling algorithm.
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Considering all the information the accuracy measures provided, the usage of
metadata as well as the proposed sampling algorithm is beneficial for land cover
detection purposes. This will help with the extraction of information, choosing a
sample that best represents the population with least number of images but lot of
information.
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