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Highlights 
 

 A hybrid diagnosis and prognosis framework is presented for mechanical systems. 

 The framework uses condition monitoring data, data-driven and physics-based models. 

 The framework is applied on turbomachine rotor blades with natural fatigue cracks. 

 Blade tip timing and Gaussian process regression are used to infer the crack length. 

 An unscented Kalman filter is used to update the crack growth model for prognosis. 
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Abstract 

Hybrid methods for prognosis of mechanical components have the potential of improving 

remaining useful life (RUL) estimations. Hybrid methods combine physics-based and data-driven 

methods to diagnose faults and predict when failures will occur. In this work, we propose a hybrid 

framework that estimates the RUL from routine maintenance inspection data and condition 

monitoring data. 

This hybrid framework is applied to turbomachine rotor blades. Blade tip timing (BTT) 

measurements are used for condition monitoring. The least squares spectral analysis (LSSA) 

method is used to find the natural frequency. The natural frequency is a function of the blade's 

health state and is used to infer the crack length in the blade’s root. To accommodate for artificial 

rotational stiffening, an interpolation model of the blade's Campbell diagram, generated from a 

finite element model, is used. 

In the proposed methodology, we use an ensemble physics-based model that serves as a prior 

probability density function for a Gaussian process regression (GPR) model. The predictive 

distribution of the GPR model is constructed by conditioning the physics-based model on the 

observed data from routine maintenance inspections. We also compare this hybrid diagnosis 

model to the physics-based technique and other data-driven methods. The hybrid diagnosis model 

outperformed the physics-based method and data-driven methods. 

The unscented Kalman filter (UKF) is used to estimate and forecast the evolution of the crack 

length over time. Paris’ law coefficients are used as hidden latent variables in a hybrid degradation 

model.  In the diagnosis and prognosis phases, we use the unscented transform to efficiently 

approximate the probability density functions of the crack length and the crack growth law 

parameters. 

Finally, we compare the applied hybrid model to a purely physics-based model and show that the 

hybrid model outperforms the physics-based model in predicting the length of a crack. We 

demonstrate that the hybrid model increases the accuracy and precision of RUL prediction from 

physics-based models with 60% on average.  

Keywords: 

Hybrid remaining useful life methods; Fatigue crack propagation; Unscented transform; 

Gaussian processes; Unscented Kalman filter; Turbomachinery. 

1. Introduction 

Reliable estimation of remaining useful life (RUL) of mechanical components is essential for 

predictive maintenance strategies as it ensures safety against inadvertent failure and could save 

significant costs by enabling components to operate well-above their designed life [1], [2]. Yet, 

there is no generally accepted best way of determining the RUL of a mechanical component from 
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condition monitoring measurements. Usually, either physics-based methods or data-driven 

models are used for predicting RUL. 

Physics-based models determine RUL from a first principles approach [3]. These models can be 

constructed prior to collecting any data of the component. However, two sources of error arise 

when using physics-based models namely (i) modelling errors due to simplifying assumptions 

and (ii) numerical simulation errors. Hence, physics-based models have unquantifiable 

uncertainty before any data is collected. Data-driven models, on the other hand, use machine 

learning techniques to determine RUL from recordings of the component’s condition over time. 

Lei et. al [4] postulated that with enough data, a data-driven model will outperform the accuracy 

of physics-based models. However, the largest drawback of data-driven methods is that it is 

expensive and impractical to obtain sufficient historical fault [5]. Many identical components 

need to undergo a complete degradation cycle - from healthy to completely damaged - to have an 

adequate database for training data-driven models.  

It is therefore essential to use methods that can alleviate the shortcomings of physics-based and 

data-driven methods for machines with limited historical fault data. Liao and Köttig [6] reviewed 

and categorised various hybrid modelling frameworks for predicting RUL from condition 

monitoring data. Hybrid models refers to combinations of physics and data-driven methods. The 

purpose of a hybrid prognosis method is to improve the precision and accuracy of the models that 

estimate (i) the condition and (ii) the RUL of a component. According to Liao and Köttig [6], the 

sort of hybrid model is determined by the type of data collected and the availability of a physics-

based model. 

Figure 1 presents a simplification of the procedure proposed in Ref. [6] for calculating the RUL 

under condition monitoring information. The first part of the framework computes condition 

indicators from sensor measurements. A diagnosis model relates the condition indicators to the 

damage, such as crack length, of the component. A damage propagation model then finally 

predicts the future damage from the estimated future operating conditions [3]. The RUL is 

determined when the predicted damage exceeds the damage specification limits [7]. These limits 

are specified at the design stage of the component.  

 

Figure 1: Simplified procedure for determining RUL of components from condition 

monitoring based on the work in Ref. [6] 

Liao and Köttig [6] presented hybrid frameworks for diagnosis and prognosis of Lithium-ion 

batteries in which the health state is unobservable. The health states in these systems are often 

inferred from real-time measurements. Many mechanical systems are subject to routine 

maintenance inspection where recordings of the damage through non-destructive testing (NDT) 

are made. During these routine NDT inspections diagnostics data is collected. The damage in 

most mechanical components is only observable during these inspections and therefore hybrid 

models for mechanical components are different from those proposed by Liao and Köttig [6].  

In Figure 2, we propose a novel hybrid framework. This framework applies to mechanical 

components with routine maintenance inspection data consisting of observable damage 

parameters. A hybrid diagnosis model is the key difference that distinguishes this model from that 
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presented by Liao and Köttig [6]. The hybrid property stems from the fact that different model 

types (physics-based and data-driven) are used within the framework. We refer to the proposed 

framework as the hybrid-diagnosis-prognosis framework. Notice that two types of data are used 

in this framework namely NDT data and condition monitoring data. The work is based on the fact 

that in many mechanical systems, physics-based degradation models are used in the design stage 

of the component are available before the component is commissioned. 

 

Figure 2: Novel hybrid framework for condition monitoring of mechanical components 

with partially observable damage states during maintenance inspections. 

In this work the proposed general framework is applied on turbomachine rotor blades with root 

cracks. Turbomachine rotor blades are subject to extreme operating conditions that mainly cause 

fatigue cracks to initiate and propagate at the root of the blade [8]. Predictive maintenance 

strategies are essential for these blades since a single blade failure could have catastrophic effects 

on the entire system. 

 The contributions of this work are as follows: 

 A novel hybrid-diagnosis-prognosis framework is proposed for mechanical systems that 

are subject to routine NDT inspections.  

 We demonstrate the benefits of the proposed method on turbomachine rotor blades using 

blade tip timing as a condition monitoring technique and show that the method performs 

much better than data-driven methods and physics-based methods when limited data is 

available. 

The paper is structured as follows: Section 2 presents the experimental test-rig and acquired data 

that are considered in this work. In Section 3, we construct the physics-based diagnostics model 

from finite element simulations of the blade. We combine the data and physics models for 

diagnosis and prognosis in Sections 4 and 5, respectively. For hybrid diagnosis, we employed a 

Gaussian process regression (GPR) model, and for hybrid prognosis, we used an unscented 

Kalman filter (UKF). Finally, in Section 6 we predict the RUL and compare the hybrid approach 

to the physics-based approach. 
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2. Experimental work 

In our work, we investigated the real-time hybrid-diagnostics-prognostics framework by 

implementing the methodology on a laboratory test rotor with a single NACA 4506 airfoil rotor 

blade made from Aluminium T6-6082.  

The experimental process is shown in Figure 3. The experimental tests were performed in two 

alternating phases, namely, (i) in situ blade tip timing (BTT) and (ii) accelerated fatigue on a 

shaker. BTT condition monitoring measurements were acquired from the turbine testbench. 

Thereafter, the blade was removed from the turbine testbench and mounted on a shaker to 

accelerate the blade fatigue failure. The BTT and crack growth phases were separated for two 

reasons: 

1. The laboratory test rotor used for the BTT experiments was not capable of generating 

adequate aerodynamic loads to grow an in-situ crack within a reasonable time. 

2. The risk of catastrophic failure becomes too large when growing in-situ cracks. This 

potential damage to the equipment and the laboratory as well as the potential harm to 

personnel made the test unacceptable.  

 

Figure 3: The experiment process flow diagram for testing a single turbomachine blade. 

During the accelerated fatigue tests, the shaker applied high amplitude vibrations to the base of 

the mounted blade. The blade was removed from the shaker table when sufficient damage was 

induced. The crack length was measured using a liquid dye penetrant test. The crack length 

measurements were used as NDT inspection data in this work. This investigation made use of ten 

blades. Each experiment started with a new blade and the BTT and accelerated crack growth 

phases of the test were successively applied until the blade was excessively damaged. Section 2.1 

describes how the BTT readings were processed to obtain the condition indicator of the blade. 

The two parts of the experimental campaign, blade tip timing measurements and accelerated 

fatigue tests, are subsequently detailed in Sections 2.2 and 2.3, respectively. 

2.1. Blade tip timing (BTT) 

The BTT technique, which was used for condition monitoring, is introduced in this section. BTT 

is a signal processing method for measuring the vibration of turbomachine rotor blades [9]. BTT 

is one of the preferred condition monitoring methods for turbomachine rotor blades because it 

measures the displacement of all the blades without interfering with the blade, does not require 
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cables connected to rotating parts, and saves costs because these sensors can withstand harsh 

operating conditions [10]. BTT condition monitoring is frequently used to measure a blade's 

natural frequency, which is very useful for health monitoring applications. The performance of 

the hybrid methodology is much dependent on the quality of the condition monitoring 

measurements and the associated signal processing methods [11]. In practical applications of the 

hybrid methodology, sensors positioned on a blade (e.g., strain gauges with telemetry) cannot be 

relied upon to provide high quality condition information over time. This emphasizes the 

importance of BTT as a condition monitoring approach for turbomachine rotor blades. 

BTT gauges the instant that a rotor blade tip passes proximity sensors mounted on the hub of the 

turbomachine. This is referred to as the time of arrival (TOA) and can be used to calculate the 

vibration of the blade tip relative to its root, assuming that the shaft speed is also accurately 

measured. Figure 4 illustrates the measurement technique. BTT is an ongoing research field, due 

to various methods of treating noise and difficulties in analysing event-based signals; research in 

this field is often divided into two categories namely (i) signal reconstruction and (ii) 

identification of vibration characteristics [12], [13]. 

 

Figure 4: Illustration of the blade tip timing measuring technique with a multiple pulse 

per revolution (MPR) shaft encoder at the shaft and proximity sensors at the outer hub. 

The signal reconstruction step converts to converting the TOA measurements from the proximity 

sensors to relative displacements of the blade tip. This process usually requires the angular 

displacement of the shaft measured with a once per revolution (OPR) or multiple pulse per 

revolution (MPR) tachometer. The recursive solution of the signal reconstruction problem  

𝜃𝑏/𝑠(𝑡𝑖+1) = ∆𝜃𝑏 − ∆𝜃𝑠 + 𝜃𝑏/𝑠(𝑡𝑖) = 𝜃𝑏(𝑡𝑖+1) − 𝜃𝑏(𝑡𝑖) − ∫ 𝜔𝑠(𝜏) 𝑑𝜏
𝑡𝑖+1

𝑡𝑖

+ 𝜃𝑏/𝑠(𝑡𝑖) (1) 

is derived from the relative dynamics equations as presented by Meriam et. al. [14]. The 

displacement of the blade tip relative to the rotor shaft, the displacement of the blade tip, the 

displacement of the shaft and the angular velocity of the shaft are denoted 𝜃𝑏/𝑠, 𝜃𝑏, 𝜃𝑠 and 𝜔𝑠 

respectively and are evaluated at the recorded TOA’s, denoted 𝑡𝑖. Note that the formulation of 

this equation assumes the relative angular displacement of the blade at TOA 𝑡𝑖 is known before 

solving the equation at TOA 𝑡𝑖+1 . However, 𝜃𝑏/𝑠(𝑡0)  is often assumed zero since the 

displacement of the blade tip cannot be calculated at the first TOA unless the rotor is started from 

rest. 

The biggest challenge for accurate signal reconstruction is how signal noise affects the calculated 

relative displacement. The signal noise either originates from TOA estimation errors or from the 
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estimation of the function 𝜔𝑠(𝑡). Each evaluation of Equation (1) accumulates noise due to 𝜔𝑠(𝑡) 

which is discretely measured from an OPR/MPR tachometer. If the function 𝜔𝑠(𝑡) is poorly 

approximated with an MPR zebra strip encoder that has geometrical errors on the zebra strip, the 

blade tip displacement is expected to reflect the accumulated noise. Diamond et al. [15] proposed 

a Bayesian approach to compensate for the geometric errors of simple optical MPR tachometers 

(e.g. zebra strips), using geometric compensation. The purpose of geometric compensation is to 

refine the measured angular velocity of the shaft such that a numerical integration of the signal is 

correctly approximated. In our experiments, we utilize geometric compensation to improve the 

signal reconstruction from the BTT measurements. 

In the vibration characteristic identification step, the resonance frequencies and the blade’s 

vibration amplitudes are estimated from processed BTT signals. The natural frequency of a rotor 

blade is an important indicator of its health since it is a property of the blade that is invariant to 

aerodynamic loads and changes predictably with increased rotor speeds owing to artificial 

rotational stiffening. 

As seen from the signal reconstruction problem, the blade displacement is only calculated at a 

TOA, which implies that the TOA sampling frequency must be a function of (i) the angular 

velocity, (ii) the number of proximity sensors and (iii) the location of the sensor around the 

circumference of the hub. This generally results in a varying sampling frequency, which makes 

Fourier methods such as the discrete Fourier transform unsuitable. 

Transient BTT analysis relies on changes in the shaft speed to observe the response of the blade 

at different frequencies. These analyses are analogous to plotting transmissibility or frequency 

response functions (FRF) of vibrating systems. The techniques utilise  

𝜃𝑏/𝑠(𝑡) = 𝐴 cos(2𝜋𝑓𝑡)  + 𝐵 sin(2𝜋𝑓𝑡) + 𝐶 (2) 

to model the response of the blade as a function of time and frequency. Regularly, a least squares 

error regression is fit for different frequencies, denoted 𝑓. That is, the model parameters 𝐴, 𝐵 and 

𝐶 are estimated from the reconstructed blade displacement data 𝜃𝑏/𝑠 at selected frequencies. The 

frequency information is obtained for frequencies that minimise the squared error between the 

data and equation (2). This least squares approach is also related to the Lomb-Scargle 

periodogram [16]. In a transient BTT analysis, the hyperparameters of the model in Equation (2) 

(namely 𝐴, 𝐵 and 𝐶) are fitted on short-time data which results in a function of both frequency 

and time. This method is called least squares spectral analysis (LSSA); LSSA constructs a time 

frequency diagram where the maximum amplitude in the diagram represents a resonance 

frequency of the blade tip. 

The natural frequency of the blade tip is not constant during rotation due to centrifugal stiffening. 

When the blade spins at high angular velocities the centrifugal loads cause the blade to stretch, 

and the natural frequency consequently increases. This effect can be captured on a Campbell 

diagram which shows measured resonance frequency lines superimposed on engine order lines. 

For the blades used in our experiments the natural frequency of the blade 𝑓𝑛,𝜔 can be described 

by 

𝑓𝑛,𝜔 = 𝑓𝑛,0 + 0.0002(𝑓𝑠) + 0.0022 (𝑓𝑠)2  (3) 

where 𝑓𝑠 is the shaft speed. Equation (3) was determined from FEM simulations of the rotating 

blade. Thus, if a resonance shaft speed (denoted 𝑓𝑟) is detected at a known engine order (denoted 

𝐸𝑂), the natural frequency without artificial stiffening (denoted 𝑓𝑛,0) can be solved from 

𝑓𝑛,0 = 𝐸𝑂 𝑓𝑟 − 0.0002(𝑓𝑟) − 0.0022 (𝑓𝑟)2 (4) 
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The importance of finding the natural frequency without artificial stiffening stems from the fact 

that the natural frequency in a fixed reference frame is determined from data collected while the 

rotor is spinning. 

2.2. Blade tip timing experiments 

During our BTT condition monitoring tests, a single blade was mounted on the rotor to reduce 

the extent of possible damage in the case of inadvertent failure of the damaged blade. The 

testbench is shown in Figure 5. The rotor setup, proximity probes and tachometer are shown in 

Figure 6. Counterbalances were added to the rotor to mitigate the presence of rotor imbalance 

loads. A single pressurised air nozzle was used to discharge high velocity air to excite the blade 

tip. The aerodynamic loads on the blade tip are not equivalent to those present in typical 

turbomachines. However, the blade excitation frequency is often observed as an integer multiple 

of the shaft rotation speed for real turbomachines [17]. This is referred to as synchronous vibration 

and is a limiting assumption about the response of the blade due to the nature of the aerodynamic 

loads. Equation (4) assumes synchronous vibration and only requires the resonance speed and the 

known engine order to evaluate the natural frequency in a stationary reference frame. 

 

Figure 5: The rotor BTT testbench used to measure the blade tip vibration for the 

condition monitoring tests. 

  
(a) (b) (c) 

Figure 6: (a) The inside of the rotor housing with a single blade mounted to the rotor 

shaft, (b) the proximity probes mounted on the outside of the rotor housing and (c) the 

optical shaft encoder used for measuring the shaft angular speed. 



8 

 

During the BTT tests the rotor angular velocity was changed linearly. The speed of the rotor was 

swept up and down to determine which speeds caused the blade tip to resonate, which was then 

used to calculate the natural frequency. For our experiments, we investigated the tenth engine 

order resonance speed; the tenth engine order is the lowest resonance that was detected for all 

blades when the rotor speed was swept-up to maximum rotor speed. In practical applications, the 

relevant engine order for excitation is not necessarily known. This is because the blade excitation 

frequency is determined by the nature of the aerodynamic loads and the shaft speed. In these 

cases, it is recommended to find two sequential resonance shaft speeds to solve for the engine 

orders and natural frequency simultaneously.  

Three proximity probes were mounted to the outer hub of the rotor. Figure 7 shows the 

reconstructed blade displacement signal obtained from a single BTT test and the angular velocity 

of the shaft, using the method described in Section 2.1. The figure shows the calculated 

displacements for each probe independently since the blade relative displacement is not known at 

the first TOA for each proximity probe. The LSSA technique accounts for this assumption by 

fitting a separate bias constant to the signal from each probe. That is, each probe has its own 

constant 𝐶 in the regression model presented in Equation (2) while sharing the other constants 𝐴 

and 𝐵. Figure 8 shows a contour graph and waterfall plot of the LSSA method applied to the 

reconstructed signal. The figure shows that at an angular speed of 20.53 Hz the amplitude of the 

blade displacement is large. This large amplitude in the blade displacement is a characteristic of 

the detected resonance rotor speed. The natural frequency of the blade is then calculated from the 

resonance speed using Equation (4). In this case, the natural frequency was measured as 204.4 

Hz. It is emphasised that the natural frequency measured from BTT is estimated in a stationary 

reference frame, by compensating for the artificial stiffening of the blade during rotation. 

Equation (4) interpolates the natural frequency line on the Campbell diagram to transform the 

natural frequency of the rotating blade to the natural frequency of the blade in the stationary 

reference frame. 

  
(a) (b) 

Figure 7: (a) The measured angular shaft speed obtained from the tachometer and (b) the 

calculated blade tip angular displacement from the three proximity probes for a single 

BTT experiment. 
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(a) (b) 

Figure 8: (a) The contour plot and (b) waterfall plot of the LSSA method applied to the 

calculated blade tip displacement in Figure 5, showing the shaft speeds that cause 

resonance. 

Once the BTT measurements were recorded and the rotor was brought to rest, a modal impact 

hammer test was conducted. The blade remained mounted to the rotor and the natural frequency 

of the blade was measured from the frequency response function (FRF) of the blade. Thus, two 

measurements of the first mode natural frequency were made, namely (i) an estimation using BTT 

while the rotor is spinning and (ii) a measurement based on the FRF while the rotor is stationary. 

These two measurements were obtained for all ten blades with multiple crack lengths. All the data 

collected in these experiments are plotted in Figure 9.  

 

Figure 9: Experimentally collected data from BTT condition monitoring test for diagnosis 

of turbomachine rotor blades from determined natural frequencies. 

Some of the BTT experiments failed to collect enough data to determine the natural frequencies 

of the blades. This was caused by a failure of the measurement equipment (optical shaft encoder 

and the proximity probe sensors), which resulted in resonance not being detected in the applied 

rotor speed range. These points are highlighted in the figure. Notice from the figure that the 

proposed BTT method approximates the modal impact test measurements for small crack lengths. 

However, for all crack lengths the deviation between the two measurements was less than 10 Hz.  



10 

 

The BTT-based estimation of the natural frequency was used to further our investigation of 

hybrid-based models. In practical implementations of turbomachines this type data is collected 

from regular maintenance interruption to measure lengths of cracks present in the blade. 

2.3. Accelerated fatigue experiments. 

The accelerated fatigue tests were implemented to safely grow a crack at the root of the blade. 

After condition monitoring measurements were acquired for the blade in a specific condition, the 

blade was removed from the blade tip timing test bench. The blade was rigidly mounted to a slip 

table that was excited using an electrodynamic shaker. The velocity of the tip of the blade was 

measured using a laser vibrometer.  

Figure 10 (a) and (b) show the blade mounted to the slip table in the same orientation as mounted 

in the rotor. The recorded velocity response of the blade tip owing to the vibration of the 

electrodynamic shaker is used to generate a frequency transmissibility function, e.g., a function 

that plots the amplitude of the vibration magnification as a function of excitation frequency. The 

resonance frequency of the blade is tracked using the peak of this transmissibility function. A 

closed feedback control loop kept the blade at resonance, during these experiments, by repeatedly 

sweeping across a small frequency range to track changes in resonance frequency of the blade. 

The vibration amplitude of the shaker was automatically controlled to guarantee that the blade tip 

was not subjected to excessively small and large vibration amplitudes. The blade's resonance 

frequency was reduced by at least 10 𝐻𝑧 during the accelerated fatigue tests. Figure 10 (c) and 

(d) show how the crack length is measured from the liquid dye penetrant test; a vernier calliper 

was used to measure the crack length. The cracks in these blades were not artificially seeded and 

instead resulted from simply shaking the blade at its resonance frequency.  

 

   
(a) (b) (c) (d) 

Figure 10: (a) Electrodynamic shaker (EDS) with blade mounted to the table and (b) a 

side-view. (c) Blade coated with red liquid dye penetrant and (d) a developed NDT result 

for measuring crack length. 

The top frame in Figure 11 (a) shows the measured crack length as a function of the number of 

cycles for a single blade, namely for blade 1. The mean applied stress intensity factor (SIF) for 

this blade is shown in the bottom frame. Figure 11 (b) depicts measured crack length as function 

of the number of loading cycles for the entire set of blades that was tested. For brevity, the stress 

amplitudes for the other blades are not shown.  
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(a) (b) 

Figure 11: The accelerated fatigue test data (a) for a single blade with the corresponding 

applied SIF amplitude and (b) the measured crack lengths for all the blades plotted 

against the number of loading cycles. 

3. Physics-based simulations 

In this section we present the necessary simulations to model the degradation of the blade using 

a physics-based approach. These simulations are part of the hybrid diagnosis model and fits in the 

highlighted portion of Figure 12.  

 

Figure 12: The hybrid framework where the highlighted part shows the physics-based 

diagnostics model that is constructed in this section. 

Two sets of simulations were performed, namely,  

(i) an ANSYS separating, morphing and remeshing (SMART) simulation for 

determining crack size, crack path and the properties of the crack subject to the 

assumed future operating loads; and  

(ii) a set of modal analyses to determine the relationship between the crack length and 

the first mode natural frequency. 
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3.1. Simulation 1: Separating, morphing and remeshing fatigue simulation 

The physics-based model is used in this work to relate the crack length to the blade’s first natural 

frequency. However, this implies that the crack geometry needs to be defined prior to the modal 

analysis. The crack geometry is unknown in the actual NACA 4506 airfoil-shaped blade during 

operation. Therefore, crack growth simulations were performed to identify the geometry of the 

crack itself, whereafter a modal analysis could be performed to determine the natural frequency 

of the cracked blade. To account for the uncertainty in the crack initiation and growth in the actual 

test specific, 10 crack growth simulations were run with various initial crack sizes to estimate the 

crack geometry and account for the uncertainty in the crack initiation and growth in the actual 

specimen. The underlying assumptions of these simulations were that (i) the geometry of the crack 

is approximated as a semi-elliptical surface crack and (ii) the location of the crack is assumed at 

the location of the maximum bending stress when the blade tip is deflected. All our experimental 

work had cracks at the same location with no prior seeding of the crack. Admittedly, this 

assumption is limiting for blades from a different failure mechanism. 

More specifically, we consider two methods for determining the crack geometry. The first method 

is a FEM simulation using ANSYS SMART crack growth to update the geometry of a crack based 

on the stress intensity factor (SIF) at the crack front and Paris’ law. Figure 13 (a) and (c) show 

different stages of the FEM and the associated SIF along the crack contour is shown in Figure 13 

(b) and (d). Because most of the contour lines in Figure 13 (b) and (d) are close to each other, the 

SIF along the crack contour indicates that the mesh surrounding the crack front is fine enough to 

estimate the properties of the crack. The second method is an approximation method that solves 

the SIF of a semi-elliptical crack in a rectangular cross-sectional plate using empirical 

relationships established by Raju and Newman. These equations are well known approximations 

to cantilever shaped structures and are listed in Refs. [18]–[20]. The length and depth of the crack 

were numerically updated using Paris’ law and a classical finite difference numerical integration 

scheme.  

 

 

 
(a) (b) 
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(c) (d) 

Figure 13: (a) ANSYS smart crack growth simulation mesh with (b) the associated crack 

geometry and SIF for a small crack and (c) the FEM mesh with (d) the crack geometry 

and SIF of a large crack. 

The length and the depth of the crack are recorded from both methods and are plotted in Figure 

14 along with the normalised SIF. Figure 14 (a) shows multiple ANSYS SMART crack growth 

simulations with cracks of different initial sizes and depths. Note that the dashed horizontal line 

indicates the thickness of the blade; the Raju-Newman approximation therefore indicates that the 

crack will break through the thickness of the blade at approximately 17 𝑚𝑚 crack length. The 

FEM simulations fail to simulate cracks close to 17 𝑚𝑚 due to a discontinuity in the crack front. 

A least-squares regression line was fit through both simulation results to approximate the crack 

depth for larger cracks. Of course, the length of the crack does not determine the depth of the 

crack; thus, the depth of the crack is an uncertain parameter and contributes to the uncertainty of 

the natural frequency. We observed from all the crack growth simulations that the depth of the 

crack may vary with a standard deviation of at least 0.1 𝑚𝑚 from the least squares regression fit 

in Figure 14 (a).  

  
(a) (b) 

Figure 14: (a) The simulated crack depth versus surface crack length from FEM 

simulations and approximated Raju-Newman equations and (b) the normalised SIF as a 

function of crack length. 

Figure 14 (b) depicts the solutions to the normalised SIF from both the FEA results and the Raju-

Newman approximation equations. The Raju-Newman equations are only applicable for a certain 

range of crack lengths and are not defined for the region shown in red. However, the correlation 
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between the two methods show that the Raju-Newman equations may be a valid engineering 

approximation to the extrapolated crack lengths for this blade. We assume that the Raju-Newman 

equations are valid for all possible crack lengths and use it to model the SIF in the remainder of 

this work. 

3.2. Simulation 2: Physics-based diagnostics model 

Physics-based models are deterministic. By including uncertainties in the model parameters, 

uncertainty boundaries can be defined for the models’ predictions. An example hereof is the 

natural frequency of a turbomachine blade. Assuming that the length of the blade is an uncertain 

parameter, the natural frequency can be calculated for various blade lengths to obtain natural 

frequency boundaries. There are several parameters that can be used as uncertain model 

parameters in physics-based simulations; however, these parameters must be constrained to 

values that sensibly contribute the most to changes in the condition indicator. The most researched 

method for constructing models from uncertain parameters is Monte Carlo based simulations [21], 

[22]. These simulations construct models from random samples of the uncertain parameters. 

Monte Carlo models are highly successful but require many samples. Since these physics-based 

models often need large computational power to evaluate the condition indicator without 

compromising on numerical accuracy, Monte Carlo methods are infeasible for this application. 

Other methods such as the unscented transform allow for approximate inference with much fewer 

model evaluations. 

In this work, the unscented transform is used to propagate uncertainties in the inputs to uncertainty 

in the output of the model. Therefore, a brief background on the unscented transform is provided 

in this section.  

Julier and Jeffrey [23] suggested a strategy for approximating Gaussian probability distributions 

through non-linear functions. This method, called the unscented transform, is fundamental to the 

familiar unscented Kalman filter (UKF). The unscented transform approximates a multivariate 

Gaussian distribution as a set of points called sigma points. Each point has a weight associated 

with it, so that when the points are processed through a non-linear transformation, a Gaussian 

distribution is created as the vector function's output. The illustration in Figure 15 (a) was adapted 

from Ref. [24] and shows the unscented transform as a two-dimensional multivariate Gaussian 

probability density function. The highlighted region represents one of the contours of the 

probability density function. In Figure 15 (a) we show that the probability density is distorted 

when passing it through the non-linear function. A one-dimensional case is also shown in Figure 

15 (b).  

 
 

(a) (b) 
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Figure 15: (a) Unscented transform of a multivariate Gaussian distribution adapted from 

[24] (b) and a one-dimensional illustration of the unscented transform. 

The accuracy of the unscented transform depends on the validity of the Gaussian distribution 

assumption.  The unscented transform should provide a computationally cheap approximation to 

the probability density function if the non-linear function is monotonic and does not generate 

extreme changes in the function outputs (e.g., lead to a bimodality).  

In this work, the unscented transform is used to build a Gaussian physics-based model that 

captures all the uncertainty of our model parameters. In our case, we would like to find the 

conditional probability distribution of the form 

𝑃(𝑐|𝑓𝑛0
) = 𝒩 (𝑐 | 𝜇(𝑓𝑛0

), 𝜎2(𝑓𝑛0
))    (5) 

In other words, the probability distribution across the crack length, 𝑐, given the measured natural 

frequency, 𝑓𝑛0
, is modelled as a Gaussian probability density function with a mean, 𝜇 , and 

variance, 𝜎2. In Section 4 the functions for the mean and variance are derived from data and 

physics. 

It is well accepted that the natural frequency is correlated with the crack length [25]. BTT provides 

the natural frequency information and therefore we parameterise the mean and variance of the 

model. As a result, the mean and variance of the estimated Gaussian distribution must be functions 

of the recorded natural frequency. In the case of this work, we identify the length of the blade and 

depth of the crack as sensitive parameters for identifying the crack length. 

The uncertain parameters are approximated by the bivariate Gaussian distribution  

𝒩(𝐱|𝝁, 𝚺 ) = 𝒩 (𝒙| {
𝜇𝑐𝑟𝑎𝑐𝑘 𝑑𝑒𝑝𝑡ℎ

𝜇𝑏𝑙𝑎𝑑𝑒 𝑙𝑒𝑛𝑔𝑡ℎ
} , [

𝜎𝑐𝑟𝑎𝑐𝑘 𝑑𝑒𝑝𝑡ℎ
2 0

0 𝜎𝑏𝑙𝑎𝑑𝑒 𝑙𝑒𝑛𝑔𝑡ℎ
2 ] )    (6) 

where 𝐱 is a two-dimensional vector that contains the crack depth as the first element and the 

blade length as the second element. As a result, the crack depth has a mean determined from 

Figure 14 (a) and a variance of 0.01 𝑚𝑚2, while the blade length has a mean of 116 𝑚𝑚 and a 

variance of 1 𝑚𝑚2. The blade length’s probability distribution is attributed to the natural variation 

that occurs during the manufacturing process due to the specified tolerances. 

The first mode natural frequency was evaluated from a FEM with different blade lengths and 

crack depths generated from the unscented transform of the Gaussian distribution in Equation (6). 

The crack in the blade was modelled by simply tracing out the contour of the crack and separating 

the top and bottom nodes of the crack face in the FEM. For each simulation, the mesh was refined 

around the crack front to reduce numerical errors and a refinement convergence tolerance of 

0.1 𝐻𝑧 was specified. At regular intervals of crack lengths, the model was evaluated to produce 

the diagnostics function depicted in Figure 16. The figure also shows where the sigma points of 

the uncertain parameters were solved. The upper and lower bounds of the 95%  confidence 

interval of the Gaussian probability distribution is shown. No rotational loads were applied to the 

FEM since the blade is diagnosed at a stationary reference frame (without artificial stiffening). In 

these physics-based models the known damage is imposed, and the condition indicator is solved. 

Hence, the model in Figure 16 is inverted such that we can determine the unknown crack length 

from a measured natural frequency. 
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Figure 16: The approximated Gaussian ensemble of possible physics-based diagnostics 

models that relates the first mode natural frequency to the crack length. 

4. Hybrid-based diagnosis 

Now that the physics-based diagnostics model has been constructed and experimental data has 

been collected, an approach for hybrid diagnosis is presented. In Figure 17 we show that we 

augment the previously defined ensemble-based physics model with the data that was presented 

in Section 2.2.  

 

Figure 17: The hybrid framework where the highlighted part shows the hybrid diagnosis 

stage that is proposed in this section. 

There are several methods for combining data with physics-based models to achieve hybrid 

implementations. Gaussian process regression, deep neural networks, tree-based methods, and 

support vector regression are examples of data-driven methods that can determine the length of a 

crack from a blade’s natural frequency. One of the best approaches for combining physics-based 

models with data is Bayesian inference [26]. In Bayesian inference, it is possible to incorporate 

prior knowledge regarding the model properties (e.g., expected crack length) in the inference 

process. 

A Gaussian process regression (GPR) model is an example of a Bayesian inference method that 

focuses only on the predictive probability distribution  
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𝑃(𝑐⋆|𝑓𝑛
⋆, 𝒇𝑛 

, 𝒄 )    (7) 

where we denote the measured natural frequency with 𝑓n
⋆; the crack length, inferred with the 

process described in Section 3.2, with c⋆; and the 𝑁-sized historical natural frequency and crack 

length parameters, obtained after N-NDT inspections, with 𝒇𝑛 ∈  ℝ𝑁 and 𝑐 ∈ ℝ𝑁 respectively. 

Hence, we model the probability distribution over the crack length conditioned on the natural 

frequency of the current blade under consideration and all the historical data using the GPR. 

GPR is useful for hybrid diagnosis of the crack length in a turbomachine rotor blade for the 

following reasons [26]: 

1. GPR is an analytical closed form solution to Bayesian inference. With the appropriate 

choice of a kernel, it is possible to select a near infinite number of functions to fit the data 

and obtain a tractable solution to the predictive probability distribution. Overfitting of 

GPR models is treated by selecting appropriate prior models (specifying the kernel 

functions and identifying appropriate parameters) that fit the data. 

2. GPR is a non-parametric model that does not limit the model to a specific assumption 

about the relationship between natural frequency and crack length; instead, the choice of 

a covariance function expresses a wide range of hypotheses that are marginalised through 

exact integration to find the models that best suit the data. 

3. One of the largest drawbacks is that the computational complexity of complete inference 

is 𝒪(𝑁3) for GPR models, where 𝑁 represents the number of observations. However, the 

computational cost will remain low if the GPR model is used in a hybrid framework with 

limited representative data. 

GPR use an input dependent covariance function to model the predictive distribution. A common 

covariance function is the squared exponential kernel  

𝑘(𝑓𝑛, 𝑓𝑛
′) = 𝜎𝑖

2 exp (−
(𝑓𝑛 − 𝑓𝑛

′)2

2ℓ2 )    (8) 

The model hyperparameters 𝜎𝑖
2  and ℓ2  are parameters that are optimised by selecting model 

parameters that maximise the marginal likelihood, namely 𝑃(𝒇𝒏 
|𝐜 , 𝜎𝒊

2, ℓ2) . The squared 

exponential kernel is a stationary covariance function, meaning the model is locally influenced 

by the data and is not expected to have predictive characteristics [27]. 𝐊 denotes the matrix 

function that arises when evaluating the squared exponential kernel at the input vectors. The joint 

prior probability distribution of the function over 𝒄 and c⋆, 

P ({
𝒄
𝑐⋆}) = 𝓝 ({

𝒄
𝑐⋆} | {

𝒎(𝒇𝒏)

𝒎(𝑓𝑛
⋆)

} , [
𝐊(𝒇𝒏, 𝒇𝒏) 𝐊(𝒇𝒏, 𝑓𝑛

⋆)

𝐊(𝑓𝑛
⋆, 𝒇𝒏) 𝐊(𝑓𝑛

⋆, 𝑓𝑛
⋆)

]) (9) 

is a joint multivariate Gaussian distribution with a mean vector function 𝐦(𝒇𝒏), and a covariance 

matrix function 𝐊(𝒇𝒏, 𝒇𝒏). Both the mean and covariance functions are defined for all inputs of 

the historical recorded natural frequencies. In Equation (9), 𝐦(𝑓𝑛
⋆) and 𝐊(𝑓𝑛

⋆, 𝑓𝑛
⋆) are defined for 

all inputs we wish to interrogate. Solving the GPR model allows us to compute the posterior 

multivariate Gaussian distribution 

𝒩(c⋆ |𝛍, 𝚺) = 𝒩(fn
⋆ | 𝐊(𝑓𝑛

⋆, 𝒇𝒏
 ) (𝐊(𝒇𝒏

 , 𝒇𝒏
 ))

−𝟏
 (𝐜 − 𝐦(𝒇𝒏

 )) + 𝐦(𝑓𝑛
⋆),  

𝐊(𝑓𝑛
⋆, 𝑓𝑛

⋆) − 𝐊(𝑓𝑛
⋆, 𝒇𝒏

 )(𝐊(𝒇𝒏
 , 𝒇𝒏

 ))−𝟏𝐊(𝒇𝒏
 , 𝑓𝑛

⋆))    
(10) 

GPR conventionally solves the predictive distribution from a zero mean Gaussian prior 

distribution (𝐦(𝒇𝒏
 ) = 𝟎) [27], [28]. This is due to a lack of prior understanding of the function's 
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structure. The conventional GPR method was applied to the data and is presented in Figure 18 

(a). The figure shows the data points with the mean and 2𝜎 confidence interval shaded in blue. 

The physics-based model is also plotted for comparison. The prior distribution of the function has 

a zero mean and a constant standard deviation due to the selected squared exponential kernel. 

Since this model only relies on the data, it is considered a data-driven model. The model presented 

in Figure 18 (b), on the other hand, shows the hybrid-based model and incorporates the mean and 

variance function of the prior physics-based model derived in Section 3. That is the mean vector 

function 𝐦(𝒇𝒏
 ) and the covariance matrix 𝐊(𝒇𝒏

 , 𝒇𝒏
 ) are equated to the model in Figure 16.  

  

(a) (b) 

Figure 18: (a) A GPR regression model applied only to the experimental data with a zero-

mean prior compared to the physics-based model and (b) a GPR regression model that 

uses the physics-based model as a prior to represent a hybrid-based approach to diagnosis. 

Figure 18 highlights the benefits of the suggested hybrid methodology. The physics-based model 

deviates slightly from the measured data. This can potentially be attributed to model discrepancy, 

input uncertainties, etc. In contrast, the data-driven model, which uses a zero-mean prior, tends 

towards zero in regions where data was not collected. This behaviour is non-physical and 

therefore could lead to erroneous predictions. This key difference highlights the importance of 

hybrid methods when limited data is available. The physics-based model is used as a prior in the 

proposed hybrid approach and acts as regularisation to ensure that the behaviour of the hybrid 

model is physical in regions where historical collected NDT data is scarce. As shown, the data 

driven technique requires much more data to be implemented for diagnosis.  

To further illustrate this point, a five-fold leave-one-out cross-validation (LOOCV) method was 

used in the validation procedure. This approach divides the data into five equal parts, trains the 

model on four of them, then calculates the root mean squared error (RMSE) between the model 

predicted value and the observations using the fifth division as validation data. We considered the 

following set of models for comparison: 

1. The physics-based model derived in Section 3. 

2. The Gaussian process regression model with a squared exponential kernel. The 

hyperparameters of the squared exponential kernel are optimised with respect to the 

marginal likelihood of the training data. 

3. A random forest tree-based method with a maximum depth of 2. 

4. A support vector regression with a squared exponential kernel. The hyperparameter of 

the radial-basis function kernel are also optimised with respect to the marginal likelihood 

of the training data in a similar procedure as the GPR model. 
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5. A multilayer perceptron with 20 latent variables in the first hidden layer and 10 in the 

second hidden layer and rectified linear activation functions [29].  

6. The hybrid method proposed in Section 4. 

The five-fold LOOCV was performed 100 times to evaluate the performance of each model. The 

models were initialised with different starting points during each run. This randomisation process 

ensures that the validation investigation is unbiased towards the data as well as the model's 

initialisation. The results of the mean and standard deviation of the RMSE of all model types are 

tabulated in Table 1. In the table's final row, we use summary statistics to estimate the percentages 

of the times that any of the model types has a lower RMSE than the hybrid technique (given a 

random set of training data). The random forest was the best of the data-driven models, but in 

more than 91% of the validation trials, the hybrid model’s RMSE surpassed the random forest’s 

RMSE. The results highlight two important points: 

 Hybrid models are important for applications where historical NDT fault data is scarce. 

 There are other potential data-driven models that can further improve the performance of 

the proposed hybrid framework (e.g., the GPR data-driven model performed second best 

of the data-driven models). Investigating further improvements are outside the scope of 

this work. 

Table 1: Average five-fold cross-validation RMS error of the different model types for 100 

random initialisation training repeats 

 
Physics-

based 

method 

GPR 
Random 

forest 

Support 

vector 

regression 

Neural 

network 

Hybrid 

method 

LOOCV 

100 repeats 

RMSE 

Mean 
2.8643 2.022 1.9666 2.1259 2.2448 1.725 

RMSE 

Standard 

deviation 

0.0 0.0999 0.1284 0.049 0.1699 0.1189 

Percentage of times that the  

𝑅𝑀𝑆𝐸𝑚𝑜𝑑𝑒𝑙 < 𝑅𝑀𝑆𝐸ℎ𝑦𝑏𝑟𝑖𝑑 
0.00% 2.79% 8.37% 0.09% 0.6 % - 

5. Hybrid based prediction of crack growth rate 

We now demonstrate the hybrid degradation model highlighted in Figure 19. In this section we 

utilise the data collected in Section 3.3, the hybrid diagnostics model derived in Section 5 and 

Paris’ law to infer the current crack length and the probability density function of the Paris law 

coefficients. 



20 

 

 

Figure 19: The hybrid framework where the highlighted part shows the hybrid 

degradation model that is presented in this section. 

Coppe et al. [30], [31] first investigated models of uncertain Paris’ law coefficients for RUL 

prediction. We propose a similar approach to these models however we incorporate the use of 

regular uncertain condition monitoring estimates of the current crack length. A hidden Markov 

chain model is proposed for treating uncertainty in the crack growth. The hidden Markov chain 

model treats the crack length and the Paris law coefficients as hidden latent variables that follow 

a Markov process. A noisy estimation of the crack length was observed at regular intervals when 

BTT condition monitoring tests were conducted. The mean and variance of this estimation are 

determined from the diagnosis model in Figure 18 (b). The unobserved crack length changes 

according to Paris’ law whereas the Paris law coefficients remain constant. It has become standard 

practice in condition monitoring to use Bayesian filtering methods to solve the posterior 

distribution of the state-of-health for condition indicators [21]. 

Gathering measurement samples, from BTT tests, and predicting the hidden crack length allows 

us to compute the posterior probability distribution of the crack length given all the observations 

and future operating conditions. The posterior distribution of the hidden state vector is of great 

importance, because all the parameters of the hidden state are essential in predicting RUL (RUL 

is a function of the crack length and Paris law coefficients) [3], [32]. Continuing our use of the 

unscented transform, we evaluate this posterior distribution using the unscented Kalman filter 

(UKF). The UKF approximates the hidden state vector as a multivariate Gaussian distribution but 

allows for nonlinear transition functions which the traditional Kalman filter fails to model.  

The UKF was applied to the measured natural frequencies obtained from the BTT experiments. 

Two models are proposed namely (i) a physics -diagnostics-prognostics model and (ii) a hybrid-

diagnosis-prognostics model. The physics-diagnostics-prognostics model only uses the BTT 

natural frequencies and the model in Figure 16 as the observations for the UKF. The state 

transition function is derived from Paris law with constant coefficients. The hybrid-diagnosis- 

prognosis model, alternatively, uses (i) the collected diagnostics data, (ii) the BTT natural 

frequency and (iii) the model in Figure 18 (b) as observations. Although the state vector of this 

UKF includes the Paris law coefficients, the transition function is constant for these parameters. 

Table 2 summarises the two UKF models. The prior distribution of the Paris’ law coefficients we 

determined from literature for the specific material [33]–[35].   
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Table 2: UKF model comparison for physics-based and data-driven models 

 
Physics-based-diagnostics-

physics-based-prognostics 

Hybrid-diagnosis-hybrid-

prognostics 

State vector Crack length. 
Crack length and Paris law 

coefficients (C and m). 

Prior mean 

vector 
{𝑎0} = {0.1} {

𝑎0

𝐶0

𝑚0

} = {
0.1

2.136 × 10−10

2.612
} 

Prior 

covariance 

matrix 

𝚺𝟎 = [1] 𝚺𝟎 = [
1 0 0
0 8.08 × 10−11 0
0 0 0.069

] 

Measurement 

Evaluate physics-based model at 

measured BTT natural frequency 

to estimate the crack length. 

Evaluate hybrid GPR model at 

estimated BTT natural frequency to 

infer the crack length. 

Measurement 

noise 

Physics-based diagnostics model 

uncertainty. 

Hybrid diagnostics model 

uncertainty. 

Transition 

Known nominal stress amplitude 

and number of cycles are used in 

the integrated Paris law with 

constant coefficients to predict 

the crack length transition. 

Known nominal stress amplitude and 

number of cycles are used in 

integrated Paris law with coefficients 

in state vector. Coefficients in state 

vector are kept constant, while the 

crack length is updated. 

Transition 

noise 

Constant noise of 0.1 𝑚𝑚 

variance. See Section 3.1 

Constant noise of 0.1 𝑚𝑚 variance 

of crack length with zero noise for 

Paris law coefficients. See Section 

3.1 

Figure 20 presents the measured crack lengths and number of cycles for all 10 blades used in our 

experiments. The crack length estimates of the two UKF models are also presented. It is evident 

that the hybrid UKF is closer to the true measurements and is therefore better. 
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Figure 20: UKF estimations of crack length from hybrid-diagnostics-hybrid-prognostics 

model (green) and physics-based-diagnostics-physics-based-prognostics model (orange).  

The updated Paris law coefficients are shown in Figure 21 with the prior 95% confidence interval 

(CI). The Paris law coefficients are given a Gaussian prior with the same covariances as the prior 

of the hybrid technique when using the physics-based model for prediction. This is to overcome 

the deterministic nature of Paris’ law and to compare the ensemble-based techniques. 

  
(a) (b) 

Figure 21: Posterior estimates of Paris law coefficients obtained from UKF of (a) constant 

C and (b) exponent m as a function of the number of BTT tests for a single blade.   
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6. Estimating remaining useful life 

Ultimately the models derived in the previous sections need to be combined to determine the RUL 

of the turbomachine rotor blade. The hybrid UKF model consists of all the parameters needed to 

predict the RUL of the blade when assuming the future operating conditions (nominal stress 

amplitude and number of cycles) and the maximum allowable crack length. In the case of these 

experiments, we chose to evaluate the model performance by predicting the number of cycles 

required to reach the final measured crack length of each blade. Samples from the posterior 

distribution is used for predicting RUL. We determine the RUL from an unscented transformation 

of the multivariate Gaussian probability distribution consisting of the current crack length and the 

Paris law coefficients used in Section 5. Each sigma point was used to predict the RUL and finally 

the RUL probability density function. The RUL estimates of both the hybrid and data-driven 

methods are tabulated in Table 3.  Figure 22 presents box plots of the RUL estimations from both 

UKF models at the BTT measurement intervals. The precision and accuracy of the model at each 

BTT measurement interval are plotted in Figure 23 (a) and (b) respectively. It is evident that with 

each condition monitoring interval the RUL estimate becomes more precise and less uncertain. 

The figure indicates that both the physics-based and hybrid-based prognostics models have super 

linear convergence rates to the true RUL. This is an expected result since each BTT measurement 

provides evidence of the current crack length. The hybrid model is also shown to outperform its 

physics-based counterpart, since the absolute error and standard deviation decreases faster for 

each BTT condition monitoring interval. 

Table 3: Remaining useful life estimation from hybrid and physics-based methods for all 

blades. 

 

Mean
Standard 

deviation
Mean

Standard 

deviation
Mean

Standard 

deviation
Mean

Standard 

deviation

7,678E+05 1,485E+06 6,642E+05 1,485E+06 6,642E+05 4,874E+05 1,264E+06 6,054E+05 1,264E+06 6,054E+05

3,248E+05 6,666E+05 2,289E+05 8,740E+05 3,316E+05 3,191E+05 5,514E+05 1,504E+05 6,493E+05 2,260E+05

2,918E+05 3,715E+05 6,420E+04 4,686E+05 1,475E+05 2,552E+05 4,612E+05 1,310E+05 6,118E+05 2,414E+05

1,951E+05 2,660E+05 4,034E+04 3,661E+05 1,164E+05 1,912E+05 3,459E+05 9,034E+04 4,881E+05 2,135E+05

1,320E+05 1,550E+05 1,223E+04 2,371E+05 6,493E+04 1,322E+05 2,590E+05 6,784E+04 3,849E+05 1,710E+05

4,874E+04 5,249E+04 7,024E+03 1,080E+05 4,119E+04 0,000E+00 3,659E+04 1,639E+04 1,307E+05 8,191E+04

0,000E+00 4,740E+02 4,155E+02 2,860E+04 1,811E+04 5,062E+05 1,292E+06 6,090E+05 1,292E+06 6,090E+05

5,628E+05 1,356E+06 6,313E+05 1,356E+06 6,313E+05 3,353E+05 5,510E+05 1,400E+05 6,566E+05 2,354E+05

3,862E+05 7,159E+05 2,256E+05 8,069E+05 2,956E+05 2,811E+05 4,647E+05 1,105E+05 6,040E+05 2,129E+05

2,709E+05 6,519E+05 2,009E+05 8,213E+05 3,403E+05 2,263E+05 4,099E+05 9,938E+04 5,632E+05 2,290E+05

2,131E+05 4,207E+05 1,180E+05 4,956E+05 1,839E+05 8,597E+04 1,910E+05 5,599E+04 2,944E+05 1,405E+05

1,503E+05 2,136E+05 3,889E+04 2,880E+05 9,576E+04 0,000E+00 3,164E+04 1,468E+04 1,045E+05 6,576E+04

0,000E+00 7,571E+03 3,955E+03 4,571E+04 2,910E+04 4,873E+05 1,292E+06 6,139E+05 1,292E+06 6,139E+05

8,244E+05 1,524E+06 6,396E+05 1,524E+06 6,396E+05 3,184E+05 6,529E+05 2,183E+05 7,428E+05 2,730E+05

6,563E+05 1,014E+06 1,821E+05 1,198E+06 3,738E+05 2,650E+05 4,361E+05 9,923E+04 5,447E+05 1,953E+05

4,422E+05 6,501E+05 1,185E+05 8,066E+05 2,393E+05 2,207E+05 3,457E+05 7,277E+04 4,233E+05 1,222E+05

3,061E+05 4,402E+05 7,703E+04 5,848E+05 1,849E+05 1,485E+05 2,522E+05 5,963E+04 3,400E+05 1,334E+05

1,616E+05 1,990E+05 1,940E+04 3,254E+05 1,103E+05 0,000E+00 2,548E+04 1,261E+04 1,013E+05 6,380E+04

0,000E+00 3,334E+03 2,402E+03 5,254E+04 3,331E+04 8,359E+05 1,479E+06 6,120E+05 1,479E+06 6,120E+05

5,831E+05 1,365E+06 6,168E+05 1,365E+06 6,168E+05 6,507E+05 8,912E+05 1,706E+05 1,029E+06 2,801E+05

4,354E+05 1,426E+06 7,960E+05 1,451E+06 7,819E+05 5,951E+05 9,061E+05 1,830E+05 1,014E+06 2,835E+05

3,551E+05 7,021E+05 1,878E+05 8,354E+05 3,224E+05 4,928E+05 7,041E+05 1,146E+05 8,703E+05 2,485E+05

2,351E+05 3,330E+05 6,203E+04 4,103E+05 1,236E+05 2,299E+05 3,147E+05 4,559E+04 4,420E+05 1,257E+05

1,050E+05 1,199E+05 1,278E+04 1,751E+05 5,389E+04 0,000E+00 1,087E+04 5,241E+03 8,264E+04 5,208E+04

0,000E+00 -2,943E+03 1,916E+03 5,702E+03 6,308E+03 5,421E+05 1,344E+06 6,209E+05 1,344E+06 6,209E+05

5,153E+05 1,274E+06 5,945E+05 1,274E+06 5,945E+05 3,552E+05 5,820E+05 1,534E+05 6,869E+05 2,180E+05

3,303E+05 1,628E+06 9,606E+05 1,615E+06 9,144E+05 3,020E+05 5,172E+05 1,097E+05 6,657E+05 2,613E+05

2,654E+05 8,011E+05 3,213E+05 9,296E+05 4,272E+05 2,267E+05 4,253E+05 1,276E+05 5,618E+05 2,276E+05

1,116E+05 2,325E+05 6,235E+04 3,219E+05 1,423E+05 1,543E+05 2,569E+05 6,289E+04 3,528E+05 1,337E+05

0,000E+00 2,909E+04 1,348E+04 7,946E+04 5,032E+04 0,000E+00 1,127E+04 5,662E+03 7,624E+04 4,818E+04

Hybrid-based 
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Physics-based 

method

1

2

3
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Physics-based 

method
True RULBlade Blade True RUL
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6

7
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Since all blades are plotted together in Figure 23 (a) and (b) it may not be evident that the hybrid 

model is more accurate than the physics-based method. Therefore, we define the relative accuracy 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
|𝑅𝑈𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑠 − 𝑅𝑈𝐿𝑡𝑟𝑢𝑒| − |𝑅𝑈𝐿ℎ𝑦𝑏𝑟𝑖𝑑 − 𝑅𝑈𝐿𝑡𝑟𝑢𝑒|

|𝑅𝑈𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑠 − 𝑅𝑈𝐿𝑡𝑟𝑢𝑒|
 (11) 

and relative precision metrics  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝜎ℎ𝑦𝑏𝑟𝑖𝑑 − 𝜎𝑝ℎ𝑦𝑠𝑖𝑐𝑠

𝜎𝑝ℎ𝑦𝑠𝑖𝑐𝑠
 (12) 

and plot them in Figure 24 (a) and (b) respectively. The figure shows that the hybrid model can 

predict the RUL with an average improvement of at least 80% while reducing the average 

model uncertainty at least 85% after five BTT condition monitoring measurements. We identify 

that there was no improvement for two of the blades when at least two BTT tests were 

conducted, however after the five BTT tests an improvement of at least 60% was shown. 
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Figure 22: RUL for all 10 blades estimated from UKF posterior probability density 

function based on hybrid-diagnostics-hybrid-prognostics model (green) and physics-

based-diagnostics-physics-based-prognostics model (orange). 

  
(a) (b) 

Figure 23: (a) Precision of RUL estimates relative to the true measured RUL as a function 

of the number of BTT tests and (b) the uncertainty of the RUL estimates.  

  
(a) (b) 

Figure 24: (a) Relative accuracy improvement and (b) relative precision improvement of 

hybrid RUL estimation compared to physics-based methods. 

7. Conclusion 

In this article we proposed a novel hybrid framework for determining RUL of mechanical 

components. These components have partially observable damage states that can be monitored 
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through routine inspections to accumulate NDT data. We identified an opportunity for 

demonstrating the hybrid method on fatigue cracks in turbomachine rotor blades. 

We highlight the use of BTT as a condition monitoring technique for turbomachine rotor blades. 

An LSSA method was implemented on the BTT measurements of 10 blades, with varying crack 

lengths, to estimate the stationary referenced natural frequency of the blade. Experimental results 

showed that the natural frequency was estimated within 10 𝐻𝑧  from the measured natural 

frequency of modal impact hammer tests. A novel hybrid implementation of a GPR model was 

used to diagnose cracks in the blade from a physics-based prior model constructed from FEM 

simulations. The hybrid-based diagnostics model was shown to improve the physics-based model 

by reducing the model uncertainty near the measured diagnostics data points. It was shown that 

using a GPR model without a physics-based prior and limited data resulted in inaccurate diagnosis 

of the crack length from the measured natural frequency. A further investigation highlighted that 

data-driven techniques are not as effective as hybrid diagnosis methods when limited data are 

available.  Subsequently, we proposed a hybrid prognostics model in the form of a UKF that treats 

the current damage and crack growth rate parameters as hidden state parameters. It was shown 

that the hybrid implementation had increased precision and accuracy of the RUL when trying to 

predict the number of cycles until the last measured crack length of the blade is reached.  

From the results we conclude that the hybrid implementation, indeed, improves the accuracy and 

precision of predicting RUL for turbomachine rotor blades. This highlights that hybrid methods 

are essential for remaining useful life estimation in practical circumstances where limited data is 

available. 

References 

[1] A. Saxena, “Conference Slides: Prognostics Tutorial,” in Annual Conference of the PHM 

Society (PHM2010), 2010. 

[2] K. Kai Goebel, A. Abhinav Saxena, S. Sankalita Saha, B. Bhaskar Saha, and J. Jose 

Celaya, “Prognostic performance metrics,” in Machine Learning and Knowledge 

Discovery for Engineering Systems Health Management, 2011, pp. 149–171. 

[3] A. Cubillo, S. Perinpanayagam, and M. Esperon-Miguez, “A review of physics-based 

models in prognostics: Application to gears and bearings of rotating machinery,” 

Advances in Mechanical Engineering, vol. 8, no. 8, pp. 1–21, 2016. 

[4] Y. Lei, N. Li, L. Guo, N. Li, T. Yan, and J. Lin, “Machinery health prognostics: A 

systematic review from data acquisition to RUL prediction,” Mechanical Systems and 

Signal Processing, vol. 104, pp. 799–834, 2018. 

[5] D. An, N. H. Kim, and J. H. Choi, “Practical options for selecting data-driven or physics-

based prognostics algorithms with reviews,” Reliability Engineering and System Safety, 

vol. 133, pp. 223–236, 2015. 

[6] L. Liao and F. Köttig, “Review of hybrid prognostics approaches for remaining useful life 

prediction of engineered systems, and an application to battery life prediction,” IEEE 

Transactions on Reliability, vol. 63, no. 1, pp. 191–207, 2014. 

[7] “ISO 13381-1,” Condition monitoring and diagnostics of machines — Prognostics — Part 

1: General guidelines, 2015. 

[8] J. C. P. Brits, “An experimental and stochastic approach to estimate the fatigue crack life 

of a turbomachinery blade using finite element modelling,” University of Pretoria, 2016. 

[9] D. H. Diamond, “A probabilistic approach to blade tip timing data processing,” University 



27 

 

of Pretoria, 2016. 

[10] M. Mohamed, P. Bonello, and P. Russhard, “A novel method for the determination of the 

change in blade tip timing probe sensing position due to steady movements,” Mechanical 

Systems and Signal Processing, vol. 126, pp. 686–710, 2019. 

[11] L. Biggio and I. Kastanis, “Prognostics and health management of industrial assets: 

Current progress and road ahead,” Frontiers in Artificial Intelligence, 2020. 

[12] F. Jia, Y. Lei, J. Lin, X. Zhou, and N. Lu, “Deep neural networks: A promising tool for 

fault characteristic mining and intelligent diagnosis of rotating machinery with massive 

data,” Mechanical Systems and Signal Processing, vol. 72–73, pp. 303–315, 2016. 

[13] K. Chen, W. Wang, X. Zhang, and Y. Zhang, “New step to improve the accuracy of blade 

tip timing method without once per revolution,” Mechanical Systems and Signal 

Processing, vol. 134, p. 106321, Dec. 2019. 

[14] J. L. Meriam, L. G. Kraige, and J. N. Bolton, Engineering Mechanics: Dynamics, 9th 

Edition. 2018. 

[15] D. H. Diamond, P. S. Heyns, and A. J. Oberholster, “Improved blade tip timing 

measurements during transient conditions using a state space model,” Mechanical Systems 

and Signal Processing, vol. 122, pp. 555–579, 2019. 

[16] J. T. VanderPlas, “Understanding the Lomb–Scargle periodogram,” The Astrophysical 

Journal Supplement Series, vol. 236, no. 1, p. 16, May 2018. 

[17] J. Gallego-Garrido, G. Dimitriadis, and J. R. Wright, “A Class of Methods for the Analysis 

of Blade Tip Timing Data from Bladed Assemblies Undergoing Simultaneous 

Resonances—Part I: Theoretical Development,” International Journal of Rotating 

Machinery, vol. 2007, pp. 1–11, 2007. 

[18] L. Witek, “Simulation of crack growth in the compressor blade subjected to resonant 

vibration using hybrid method,” Engineering Failure Analysis, vol. 49, pp. 57–66, 2015. 

[19] J. C. Newman and I. S. Raju, “An empirical stress-intensity factor equation for the surface 

crack,” Engineering Fracture Mechanics, vol. 15, no. 1–2, pp. 185–192, 1981. 

[20] J. C. Raju and I. S. Newman, “Stress intensity factor equations for cracks in three-

dimensional bodies subjected to tension and bending loads,” NASA Technical 

meomorandum, no. May, 1984. 

[21] M. Corbetta, C. Sbarufatti, M. Giglio, and M. D. Todd, “Optimization of nonlinear, non-

Gaussian Bayesian filtering for diagnosis and prognosis of monotonic degradation 

processes,” Mechanical Systems and Signal Processing, vol. 104, pp. 305–322, 2018. 

[22] P. Baraldi, F. Cadini, F. Mangili, and E. Zio, “Prognostics under different available 

information,” Chemical Engineering Transactions, vol. 33, pp. 163–168, 2013. 

[23] S. J. Julier and U. K. Jeffrey, “A new extension of the Kalman filter to nonlinear systems,” 

AeroSense’97. International Society for Optics and Photonics, pp. 182–193, 1997. 

[24] H. Singh, “The Unscented Kalman Filter: Anything EKF can do I can do it better!,” 

Towards Data Science, 2018. [Online]. Available: https://towardsdatascience.com/the-

unscented-kalman-filter-anything-ekf-can-do-i-can-do-it-better-ce7c773cf88d. 

[Accessed: 21-Oct-2019]. 

[25] M. Elshamy, W. A. Crosby, and M. Elhadary, “Crack detection of cantilever beam by 

natural frequency tracking using experimental and finite element analysis,” Alexandria 

Engineering Journal, vol. 57, no. 4, pp. 3755–3766, 2018. 

[26] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006. 



28 

 

[27] D. K. Duvenaud, “Automatic Model Construction with Gaussian Processes,” University 

of Cambridge, 2014. 

[28] C. E. Rasmussen and C. K. I. Wiliams, Gaussian Processes for Machine Learning. 2006. 

[29] A. F. Agarap, “Deep Learning using Rectified Linear Units (ReLU),” 2018. 

[30] A. Coppe, M. J. Pais, R. T. Haftka, and N. H. Kim, “Using a simple crack growth model 

in predicting remaining useful life,” Journal of Aircraft, vol. 49, no. 6, pp. 1965–1973, 

2012. 

[31] A. Coppe, R. T. Haftka, N. H. Kim, and F. G. Yuan, “Uncertainty reduction of damage 

growth properties using structural health monitoring,” Journal of Aircraft, vol. 47, no. 6, 

pp. 2030–2038, 2010. 

[32] M. Jouin, R. Gouriveau, D. Hissel, M. C. Péra, and N. Zerhouni, “Particle filter-based 

prognostics: Review, discussion and perspectives,” Mechanical Systems and Signal 

Processing, vol. 72, pp. 2–31, 2016. 

[33] W. Wang, W. Hu, and N. Armstrong, “Fatigue crack prognosis using Bayesian 

probabilistic modelling,” Mechanical Engineering Journal, vol. 4, no. 5, pp. 16-00702-

16–00702, 2017. 

[34] G. Mrowka-Nowotnik, J. Sieniawski, and A. Nowotnik, “Tensile properties and fracture 

toughness of heat treated 6082 alloy,” Journal of Achievements in Materials and 

Manufacturing Engineering (JAMME), vol. 17, no. 1–2, pp. 105–108, 2006. 

[35] W. F. Wu and C. C. Ni, “Statistical aspects of some fatigue crack growth data,” 11th 

International Conference on Fracture 2005, ICF11, vol. 8, pp. 5801–5806, 2005. 

 



B Ellis: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, 

Resources, Writing - Original Draft, Visualization P Stephan Heyns: Supervision, Writing - Review 

& Editing S Schmidt: Supervision, Writing - Review & Editing 

Credit Author Statement



Declaration of interests 
  
☒ The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper. 
  
☐ The authors declare the following financial interests/personal relationships which may be considered 
as potential competing interests: 
 

 
  
  
  
 

Declaration of Interest Statement (Please upload in word format)




