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A B S T R A C T   

Anthropogenic underwater noise has been shown to negatively affect marine organisms globally; yet little to no 
noise research has been conducted in most African waters including South Africa's. This study aimed to quan-
titatively describe sources of underwater noise and effects of underwater noise on the acoustic detectability of 
Antarctic blue, fin, minke, humpback, and sperm whales off South Africa's west coast. Noise from vessel traffic 
(<35 km to the location of recorders) dominated the soundscape below 500 Hz while wind-generated noise 
increased with wind speed above 5 m s− 1 and dominated the soundscape above 500 Hz. Acoustic detectability of 
humpback, minke and sperm whales decreased with increasing ambient noise levels whereas blue and fin whale 
acoustic detectability increased with the ambient noise levels. We provide baseline information on underwater 
noise sources and the effects of underwater noise on whale acoustic detectability off the west coast of South 
Africa.   

1. Introduction 

Underwater sounds are generated by biological (e.g. crustaceans, 
marine mammals and fish), anthropogenic (e.g. sonar, vessel traffic, 
wind energy, and gas and oil exploration operations), and geophonic (e. 
g. rain, wind and wave actions, sea ice, earthquakes and volcanoes) 
sources (Wenz, 1962; Urick, 1983; McKenna et al., 2013; Melcón et al., 
2012; Duarte et al., 2021). Marine organisms contend with these 
different sounds and are affected by different anthropogenic underwater 
noise to varying degrees, including loss of communication space, 
acoustic masking, and temporary and permanent shifts in their distri-
bution (Southall et al., 2007; Clark et al., 2009; Melcón et al., 2012; 
Cholewiak et al., 2018). In extreme cases, anthropogenic noise can affect 
physiological and behavioural responses of marine organisms including 
hearing loss, disorientation and sometimes death (e.g. Southall et al., 
2007; Cerchio et al., 2014; Duarte et al., 2021). Sound is important for 
marine organisms as they use it to locate prey (i.e. echolocation or 
stunning), navigation, communication, and predator detection and 
avoidance (Au and Hastings, 2008); thus, it is essential for these or-
ganisms to inhabit areas with suitable soundscapes given the effects of 

noise on their acoustic ecology and health (Erbe et al., 2016, 2019; 
Duarte et al., 2021). The west coast of South Africa is rich in marine 
mammal species biodiversity and acts as an important acoustic habitat 
(defined by Clark et al. (2011) as an “ecological space acoustically uti-
lised by particular species”) for numerous whale species including 
Antarctic blue whales (Balaenoptera musculus intermedia; vocalization 
frequency: 18–26 Hz), fin whales (B. physalus; vocalization frequency: 
18–28 Hz), Antarctic minke whales (B. bonaerensis; vocalization fre-
quency: 0.05–2 kHz), southern right whales (Eubalaena australis; 
vocalization frequency: 0.03–34 kHz), humpback whales (Megaptera 
novaeangliae; vocalization frequency: 0.02–24 kHz) and sperm whales 
(Physeter macrocephalus; vocalization frequency: 0.01–32 kHz) (Sha-
bangu et al., 2019, 2020, 2021; Shabangu and Andrew, 2020; Letsheleha 
et al., 2022; Shabangu and Kowarski, 2022). Some of the aforemen-
tioned whale species use this region for overwintering, breeding, 
opportunistic feeding, migration, or year-round habitation. 

Compared to other parts of the world, there has been little research 
evaluating the effects of noise on marine mammals in the southern Af-
rican region, with only three published studies (Cerchio et al., 2014; 
Heiler et al., 2016; Koper et al., 2016) to date. A literature review of 
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knowledge on the effects of anthropogenic noise on marine mammals 
showed a lack of research on oceanic noise in South African waters 
(Koper and Plön, 2012). Furthermore, Purdon (2018) suggests that the 
South African marine legislation might not be enough to protect marine 
life from anthropogenic noise associated with seismic surveys. Only one 
study (Schoeman et al., 2022) investigating underwater soundscape 
exist from shallow-water environment in South Africa. This disparity in 
noise research and knowledge is of great concern in the Anthropocene 
era given there is increasing pressure on the marine ecosystem due to 
anthropogenic stressors such as shipping and fishing (Purdon et al., 

2020). For instance, anthropogenic stressors such as noise pollution 
associated with Operation Phakisa, a South African government initia-
tive commissioned in 2014 with the aim to inter alia fast track the 
growth and development of the ocean economy within the South African 
Exclusive Economic Zone (EEZ) by 2030 (Zuma, 2014), are not quan-
tified yet. This South African government ocean economy growth pro-
gram works on unlocking the country's ocean economy by developing 
the following sectors: 1) marine transport and manufacturing; 2) 
offshore oil and gas exploration; 3) aquaculture; 4) marine protection 
services and ocean governance; 5) coastal and marine tourism; 6) small 

Fig. 1. Maps showing vessel density (number of vessels per 100 nm2/185 km2 grid) for each month around each autonomous acoustic recorder (AAR) mooring 
location, and examples of different vessel types tracked off the west coast of South Africa. AARs 2 and 3 were deployed on the same location, thus AAR2 location is 
overlaid by AAR3 circle in December 2015 map. Insert map shows location of the study area relative to the whole coast of South Africa. Vessel photo credit: Johannes 
Köring (passenger/merchant vessel), Bernhard Fuchs (tanker vessel), SSE (tug tow vessel), Hannes van Rijn (cargo vessel), Sea Harvest (fishing vessel), and Rob Tarr 
(other vessel). 
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harbours (Zuma, 2014; Operation Phakisa, 2015). Unarguably, most if 
not all of the above sectors will generate underwater noise directly or as 
a by-product of their operations, making it critically important now 
more than ever to identify sources of noise and monitor noise levels 
within the South African EEZ. 

To date, there have been no long-term measurements of offshore 
noise level trends and effects of noise levels on whale acoustic detection 
off South Africa's coasts. This study aimed to close this knowledge gap by 
providing a quantitative overview of the influence of oceanographic 
conditions and vessel traffic on ambient noise levels, and the effects of 
noise on the acoustic detection of four baleen whale species (Antarctic 
blue, fin, Antarctic minke, and humpback whales) and one toothed 
whale species (sperm whales) off the west coast of South Africa. 

2. Materials and methods 

2.1. Acoustic data collection 

Acoustic data were collected off the west coast of South Africa 
(Fig. 1) between July 2014 and January 2017 (Table 1) using autono-
mous acoustic recorders (AARs) deployed on oceanographic moorings as 
part of the South African Blue Whale Project (Shabangu et al., 2019). We 
used AARs of Autonomous Underwater Recorder for Acoustic Listening 
Model 2 version 04.1.3 manufactured by Multi-Électronique, Canada, 
with a usable frequency range of 10 Hz to 16 kHz. Sampling settings, 
hydrophone sensitivities, and details about the sampling sites are pro-
vided in Table 1. AARs 1–3 were located ~70 km from the shore, 
whereas AAR4 was ~310 km from the shore (Fig. 1). The water depth of 
855 m at AAR1 mooring location was close to the relatively fast (20–70 
cm s− 1) equatorward Benguela Current whereas the water depth (1118 
m) at AARs 2 and 3 mooring location was least affected by that current 
(Shannon, 2009). On the other hand, the water depth of 4400 m at AAR4 
mooring location was positioned on the path of the fast (2–10 Sv) 
Agulhas leakage rings associated with strong anticyclonic eddies 
(Shannon, 2009). 

2.2. Acoustic detection of whale calls 

All acoustic files were visually reviewed and inspected through 
spectrogram analysis by Shabangu et al. (2019, 2020), Shabangu and 
Andrew (2020), Letsheleha et al. (2022) and Shabangu and Kowarski 
(2022) to detect the presence and absence of whale calls (Fig. 2). For 
blue and fin whales, automated call detection analyses were imple-
mented based on the template method using spectrogram correlation by 
Shabangu et al. (2019) and Letsheleha et al. (2022) and were manually 
validated by the lead authors of those studies. False negative rates of 
those automated detections were comparable between the two studies, 
making acoustic occurrence results comparable as well. All other whale 
detections were conducted by FWS. Based on the results of these studies, 
monthly percentages of acoustic detection of whale sounds were 
calculated as the number of files with whale acoustic presence divided 
by the total number of files recorded per month. 

2.3. Oceanographic conditions 

To estimate the contribution and influence of oceanographic condi-
tions on the ambient noise around AAR locations, we considered the 
below environmental variables. A maximum radius of 80 km was 
applied across all AAR mooring locations to extract and average most 
oceanographic conditions except for ocean current speed measured 
locally via acoustic Doppler current profilers (ADCPs) deployed on these 
moorings. The 80 km buffer distance was estimated using an acoustic 
propagation modelling (BELLHOP model) as the maximum detection 
range for sperm whale clicks (Shabangu and Andrew, 2020) and likely 
represented the possible maximum range for most AARs. All oceano-
graphic data were processed using ‘raster’ package (Hijmans, 2020) in R 
(version 4.1.1; R Core Team, 2021). 

2.3.1. Ocean current speed 
Hourly ocean current speeds (cm s− 1) used as a proxy of frontal ac-

tivities were collected by upward looking 75 kHz ADCPs deployed at 
various depths on oceanographic moorings of the South Atlantic 
Meridional Overturning Circulation Basin-scale Array (SAMBA) tran-
sect. No ADCP was deployed on AAR1 mooring since this was an 
experimental SAMBA mooring deployment. Ocean current speed data 
were collected from September 2014 to November 2015 for AAR2 
(Lamont and van den Berg, 2021a); December 2015 to April 2017 for 
AARs 3 and 4 (Lamont and van den Berg, 2021b, 2021c). ADCP current 
speeds were measured in the upper water column from 69.88 to 581.88 
m, 64.56 to 576.57 m, and 60.84 to 428.84 m for AARs 2, 3 and 4 
respectively. We only considered hourly values with ≥75% good beam 
data and averaged current speed data around AARs' depth in the water 
column using measurements from the two nearby ADCP beams. 

2.3.2. Wind speed and total precipitation 
Hourly meridional (v10) and zonal (u10) wind speeds (m s− 1) and 

total precipitation (m) measured through the fifth generation of Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF) reanalyses 
(ERA5; Copernicus Climate Change Service, 2017) were downloaded 
from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis- 
era5-single-levels?tab=form. ERA5 wind speed data were collected 
using a spatial coverage of 0.25◦ × 0.25◦ global grids at a height of 10 m 
above the surface of the Earth (Copernicus Climate Change Service, 
2017). The absolute wind speed and wind direction were calculated 
from u10 and v10 vectors using equations in the Supplementary Mate-
rial. Total precipitation represents the accumulated liquid and frozen 
water from rain and snow that falls to the ocean's surface and is the sum 
of large-scale precipitation and convective precipitation sampled at a 
spatial coverage of 0.25◦ × 0.25◦ (Copernicus Climate Change Service, 
2017). 

2.3.3. Ocean waves 
We obtained ERA5 hourly data on the significant height of combined 

wind waves and swell (m; hereafter wave height) and peak wave period 
(s; hereafter wave period) with a spatial resolution of 0.5◦ × 0.5◦ from 

Table 1 
Settings and study site details of the four autonomous acoustic recorders (AARs) used in this study. AARs are numbered according to order of their chronological 
deployment. Hydrophone sensitivities are from factory calibrations of the HTI-96-MIN (High Tech Inc.) hydrophones.  

Hydrophone Latitude 
(S) 

Longitude 
(E) 

Water 
depth (m) 

AAR 
depth (m) 

Sampling rate 
(Hz) 

Sampling schedule 
(min h− 1) 

Hydrophone sensitivity 
(dB re 1 V/μPa) 

Start 
recording date 

Stop recording 
date 

AAR1 34◦

22.21′

17◦ 37.69′ 855  200  4096  30  − 164.20 24/07/2014 01/12/2014 

AAR2 34◦

23.64′

17◦ 35.66′ 1118  300  4096  20  − 163.90 16/09/2014 01/12/2015 

AAR3 34◦

23.64′

17◦ 35.66′ 1118  300  8192  25  − 164.10 04/12/2015 01/01/2017 

AAR4 34◦

30.36′

14◦ 58.81′ 4481  200  8192  25  − 164.20 04/12/2015 13/01/2017  
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https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5- 
single-levels?tab=form. Wave height corresponds to the total wave field 
that can be observed at sea, which combines the shorter wind waves that 
are being driven by the wind and the longer swell waves that have been 
generated by distant winds and are moving across ocean basins. Wave 
period is the time when most of the wave energy is concentrated and is 
used here to determine the length of waves which influence the breaking 
characteristics and interaction with the seabed and potential noise 
caused by this process. 

2.4. Noise data analyses 

Noise analysis was conducted using a custom MATLAB program 
(Dugan et al., 2011) to estimate noise levels from each AAR. For AARs 1 
and 2, noise was categorized into three frequency bands (10–500, 
500–1000, and 1000–2000 Hz) given similar Nyquist frequency of re-
cordings. For AARs 3 and 4, noise was categorized into five frequency 
bands (10–500, 500–1000, 1000–2000, 2000–3000, and 3000–4000 Hz) 
given similar Nyquist frequency of recordings. To calculate noise levels, 
sound data were processed using a Hann window with zero overlap, and 
a fast Fourier transform with 1 s and 1 Hz resolution. We used equivalent 
continuous sound pressure level (Leq), in dB re 1 μPa, to represent the 

average unweighted sound pressure of a continuous time-varying signal, 
with an averaging time of 10 min. Visual representation of the noise 
statistics is presented using long-term spectrograms, 1/3-octave spec-
trograms, and spectral probability density (SPD) plots. 

Various sound sources in the marine environment can elevate sound 
levels within different frequency bands (Urick, 1986; Hildebrand, 
2009). For example, most large vessel noise occurs at frequencies below 
500 Hz (Wenz, 1962), while frequencies from 500 Hz to 25 kHz can be 
dominated by sea-surface agitation (Knudsen et al., 1948). To investi-
gate the potential noise contribution of different sound sources in the 
soundscape of South Africa's west coast, we measured noise levels within 
the above three or five distinct frequency bands (depending on the 
Nyquist frequency of recordings) to characterize noise at each recording 
site. We categorized measured noise into two groups based on ocean 
current speed (above and below 11 cm s− 1 where the effect of current 
speed was flat (or non-existent) as shown in Fig. S1): 1) ambient noise 
which only includes noise in the soundscape within periods when cur-
rent speeds was ≤11 cm s− 1, and 2) recorded noise which includes the 
pseudo-noise generated on the hydrophone surface by the flow of ocean 
current (Strasberg, 1979) at >11 cm s− 1, which is not part of the 
soundscape. Ocean current speed was used for filtering data as it was the 
main predictor of low frequency recorded noise levels (Fig. S1). The 

Fig. 2. Examples of whale sounds detected off the west coast of South Africa and used here to define acoustic detection: (a) Antarctic blue whale Z-calls; (b) fin whale 
20 Hz pulses showing the higher frequency pulse with a peak at 99 Hz that is associated with the eastern Antarctic fin whale acoustic population; (c) Antarctic minke 
bioduck C train that can consist of up to 98 pulses; (d) sperm whale click train; (e) humpback whale song units; (f) southern right whale gunshot series. X- and y-axes 
scales are different between plots. Spectrogram parameters (all figures were produced using Hann window and 90% overlap): (a) frame size = 1.51 s and discrete 
Fourier transform (DFT) size = 8192 samples; (b) frame size = 2.03 s and DFT size = 16,384 samples; (c) frame size = 0.399 s and DFT size = 4096 samples; (d) frame 
size = 0.170 s and DFT size = 2048 samples; (e) frame size = 0.210 s, DFT size = 2048 samples; (f) frame size = 0.125 s, DFT size = 512 samples. 
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remaining usable data after filtering represented 43% and 37% of the 
original dataset from AARs 2 and 3 respectively. Measured noise data 
from AAR1 were excluded from the ambient noise analysis since there 
were no current speed data to filter out the high pseudo-noise induced 
by the ocean current, and data from AAR4 were eliminated from 
ambient noise analysis as there was too much contamination by pseudo- 
noise (Figs. 3, S2 and S3). 

2.5. Vessel traffic 

Vessel traffic data acquired using the critical near real-time vessel 
monitoring, ocean buoy tracking and automatic identification system 
(AIS) ship tracking system were obtained from ORBCOMM (https 
://www.orbcomm.com/en/industries/maritime). We determined the 
number and types of vessels around all AARs within the maximum 
detection radius of 80 km to correspond to the buffer distance of envi-
ronmental conditions. Vessel traffic data from the first half of every hour 
were processed to match the sampling protocol used for each AAR; for 
example, vessel traffic data from the first 30 min of every hour were 
extracted for AAR1. Individual vessels were identified using their 
Maritime Mobile Service Identity number. Distance of the closest vessel 
to the AAR location within each recording session was used to define the 
closest point of approach of a vessel(s). Speed over ground of the closest 
vessel was utilized as an indication of vessel speed near the AAR loca-
tion, and speeds above 20 knots were eliminated as erroneous values. 
The location of AARs 2 and 3 was used for AAR1 since these were closely 
spaced (~5 km apart), and AAR4 was treated as independent sampling 
location given its isolated location (Fig. 1). To create the vessel density 
map, grids with resolutions of 10 × 10 nautical miles (nm) were created. 
Vessel track data were joined to these grids and then the number of 
vessels within each grid cell was calculated for each month and year and 
shown with density binned into seven classes (Fig. 1). The monthly 

number of vessels was calculated at different distance intervals to AAR 
locations: 0–1, 2–5, 6–20, 21–50, 51–100, and 101–910 km. 

2.6. Application of statistical and machine learning models 

We modelled the influence of oceanographic conditions and vessel 
traffic on the ambient Leq, and the influence of ambient Leq on the 
acoustic detectability of four baleen whale species (Antarctic blue, fin, 
Antarctic minke, and humpback whales) and one toothed whale (sperm 
whales) off the west coast of South Africa. The influence of oceano-
graphic conditions on detected seasonal acoustic occurrence of various 
whale species has already been widely studied (Shabangu et al., 2019; 
Shabangu and Andrew, 2020; Letsheleha et al., 2022), and the potential 
influence of ambient Leq on the acoustic detectability of whale sounds is 
assessed in this study. 

Random forest (RF) model (Breiman, 2001) was the chosen model-
ling framework for modelling the influence of the environmental vari-
ables and vessel traffic on the ambient Leq at different frequency bands. 
As a machine learning technique, the RF model was chosen for this study 
due to its non-parametric inferences; it inherently includes interactions 
among predictors; has reasonably good predictive performance; returns 
estimated variable importance as part of the model fit and handles large 
and small sample sizes with high dimensional data (Breiman, 2001; 
Schonlau and Zou, 2020). Additionally, RF when growing trees, at each 
split, only evaluates a random subset of predictors to identify the best 
predictor. Overall, this results in decorrelated trees making overfitting 
less likely (Breiman, 2001; Strobl et al., 2009). 

Generalized linear model (GLM) regression (Dobson, 1990) was used 
to model the influence of ambient Leq on the probability of detecting 
whales acoustically. GLM is a statistical model that allows the response 
variable to accept an error distribution other than a normal distribution 
and expresses the relationship as a linear function/combination of all 

Fig. 3. Long-term spectrograms of recorded noise levels including pseudo-noise expressed as power spectral density (dB re 1 μPa2 Hz− 1), averaged over 1 h time 
intervals for each recording site: (a) AAR1, (b) AAR2, (c) AAR3 and (d) AAR4 across all sampled frequencies. Grey shaded areas indicate time periods without 
acoustic recordings. Frequency scales (y-axes) for panels (a) and (b) differ from panels (c) and (d). 
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the predictors. This model assumes the underlying relationship between 
the response and the predictors to be linear although one can explicitly 
incorporate non-linearity in multiple ways (e.g., as polynomial function, 
B-spline, etc.). GLM allowed us to estimate the relationship between the 
probability of whale call detection and ambient noise level at the lowest 
and highest frequency band for each AAR. Percentages of whale acoustic 
detection that would be affected by masking was estimated based on the 
relationship between detection probability and noise level. We quanti-
fied the probability of whale detections at different noise levels to a 
point of 0.5 at which a species probability of detection was above or 
below average (i.e. 50%). 

2.6.1. Tuning and testing models 
Prior to modelling the influence of environmental variables on 

ambient Leq at different frequencies, pair-wise correlations among 
environmental variables were explored for AARs 2 and 3 but no strong 
correlations were found (Figs. S4 and S5). Principal component analysis 
(Jolliffe and Cadima, 2016) was applied to Leq at different frequencies 
since there were strong correlations found among Leq at different fre-
quency bands, especially above the 500–1000 Hz frequency band 
(Figs. S6 and S7). Principal components (PCs) were plotted as vector 
plots to summarise the association of principal component and loading 
of variables (the different frequency bands). To overcome the observed 
correlation issue and for ease of interpretation, we used the lowest and 
highest frequency bands for each AAR when modelling the acoustic 
detection of whales (see sub-Section 3.2). Four different methods of 
addressing noticeable differences in class imbalance of whale acoustic 
detection were used: Synthetic Minority Over-sampling TEchnique 
(SMOTE; Chawla et al., 2002), ADAptive SYNthetic (ADASYN; He et al., 
2008), downsampling and upsampling (Nallamuthu, 2020). All models 
were tuned using 70% of the balanced data for training and the 
remaining 30% was used for testing. Training data set was further setup 
for 5-fold cross-validation. In the context of the RF used to model 
ambient Leq at different frequencies, this was used to tune the model and 
select the optimal tuning parameter. For the GLM, this helped to 
compare the performance of the model under each of the class balancing 
algorithm. Predictive performances of all models were then assessed on 
the test data set which was not used when tuning models. For the 
regression RF model that assessed the influence of environmental con-
ditions and vessel traffic on Leq at different frequency bands, root mean 
squared error, mean absolute error, and coefficient of determination (r- 
squared; which is the proportion of the variation in the dependent 
variable that is explained by the independent variable(s) in a regression 
model) were used as measures of model performance. The best value of 
tuning parameter was selected as sets that maximize r-squared. For the 
GLM, influence of ambient Leq on the acoustic detection of whales, there 
were no tuning parameters, and the cross validation was used to 
compute model performance when using the different class balancing 
algorithms. In this context, the area under the curve (AUC) receiver 
operating characteristic was used as a measure of model performance. 

2.6.2. Feature importance 
For the RF model used to model the influence of environmental 

variables and marine traffic on ambient noise, relative importance was 
assessed via improvement response variance. Vessel type was removed 
from the final RF models for Leq as it had an insignificant relative 
importance. Whereas for the GLM model used to model the influence (i. 
e. dose-response curves) of the low and high frequency band underwater 
noise on the probability of detecting whales acoustically, the relative 
importance of predictors was assessed via the firm approach (Greenwell 
et al., 2018; Scholbeck et al., 2020), where relative flatness of the partial 
effect of a variable is used to as a measure of its importance. Importance 
of all features were scaled to the maximum for each model and presented 
as percent. The GLM and RF model formulas are presented in Table S1. 
All the data processing, visualization, analysis, and summary of results 
were performed in R using multiple packages (Table S2). 

3. Results 

3.1. Noise overview 

The average Leq at 10–500 Hz frequency band for AARs 2 and 3 
dropped from 110 dB re 1 μPa (range: 97.0–138.9 dB re 1 μPa) to 107 dB 
re 1 μPa (range: 77.1–109.9 dB re 1 μPa) after filtering out pseudo-noise 
induced by the ocean current speed >11 cm s− 1 (Figs. 4, S1, S3, S8 and 
S9). The power spectra decreased gradually above 100 Hz for AARs 2 
and 3 (Fig. 4). Distinct power spectra peaks were evident between 18 
and 26 Hz at 25th and 50th percentiles and at 65 Hz for the AAR2 
unfiltered data representing recorded noise, whereas peaks were present 
between 18 and 26 Hz at the 25th–75th percentiles and 22 and 32 Hz at 
the 95th percentile for AA2 filtered data representing ambient noise 
(Fig. 4). Power spectra peaks were present between 30 and 40 Hz for 
AAR3 unfiltered data, between 18 and 26 Hz at the 50th–75th percen-
tiles, and a 40 Hz hump at the 95th percentile for the AAR3 filtered data 
(Fig. 4). Specific spectra peaks between 18 and 26 Hz correspond to blue 
and fin whale vocalization frequency (Fig. 2). Overall, the filtered data 
had lower power spectra and ambient noise levels than unfiltered data 
for AARs 2 and 3 (Figs. 4, S8 and S9). No seismic survey signals were 
detected from any of the recording sites (Figs. 3 and S2). 

3.2. Ambient noise over frequency bands 

The most common feature of the vector plots was that PC2 was 
commonly associated to ambient Leq at the low frequency band (10–500 
Hz) indicating that PC2 represents the low frequency noise whereas PC1 
represents the joint medium to high frequency band noise (Fig. 5). When 
looking specifically at AAR2, PC1 was negatively correlated to Leq at 
500–1000 and 1000–2000 Hz frequency bands and PC2 was positively 
correlated to Leq at 10–500 Hz frequency band (Fig. 5a). For AAR3, PC1 
was strongly positively correlated to Leq at 1000–2000, 2000–3000 and 
3000–4000 Hz frequency bands whereas PC2 was negatively correlated 
to Leq at the low frequency bands (10–500 and 500–1000 Hz; Fig. 5b). 

3.3. Model performance 

Predictive performance of the RF models evaluating the influence of 
environmental variables and vessel traffic on ambient Leq showed 
comparable predictive performance for AARs 2 and 3 (Fig. S10). The 
performance of the RF model on the test set shows a better performance 
for predicted values (Fig. S11). The AUC results indicate that all sample 
balancing methods can be used for modelling the five whale species 
acoustic detection from the two stations (Fig. S12). Additionally, cali-
bration plots indicate that all sample balancing methods can be used for 
acoustic detectability modelling as they have reasonable fits of predicted 
data to observed data (Figs. S13 and S14). 

3.4. Predictors of ambient noise 

The RF models indicated that the 0–35 km distance of the closest 
vessel to the location of AARs had the highest effect on the ambient noise 
for all frequency bands, and the partial effect decreased as the distance 
to the AAR location increased. For example, the AAR3 Leq decreased 
from 113 dB re 1 μPa at 0 km to 105 dB re 1 μPa at 35 km for the 10–500 
Hz frequency band (Fig. 6). Thus, vessel noise contributed 8 dB to the 
AAR3 ambient noise level for the 10–500 Hz frequency band; similar 
interpretation is applicable to other frequency bands and other vari-
ables. The ocean current speed influence on ambient Leq was constant for 
all frequency bands although there was a slight increase in influence 
from 8 to 11 cm s− 1 for the 10–500 Hz frequency band (Fig. 6). The 
partial effect of hour of day on Leq was constant throughout different 
hours for different frequency bands indicating no diel pattern in noise 
variation. Autumn through mid-spring (April–October) months had the 
highest partial effect on Leq of 10–500 Hz frequency band from both 
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Fig. 4. Spectral probability density plots illustrating the statistical distribution of power spectral density percentiles at a frequency resolution of 1 Hz for (a) AAR2 
unfiltered data including pseudo-noise, (b) AAR2 data filtered at ≤11 cm s− 1 current speed to represent the ambient noise, (c) AAR3 unfiltered data including pseudo- 
noise, and (d) AAR3 data filtered at ≤11 cm s− 1 current speed to represent the ambient noise. Frequency scales (x-axes) for panels (a) and (b) differ from panels (c) 
and (d). 

Fig. 5. Principal component analyses vector plots of ambient equivalent continuous sound pressure levels at different frequency bands for autonomous acoustic 
recorders (AARs) 2 and 3 data filtered at ≤11 cm s− 1 current speed. Each vector points in the direction of the steepest increase of values. 
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AARs (Fig. 6). November and December had the highest effect on Leq of 
other frequency bands from AAR2, and September through December 
had the highest effect on Leq of other frequency bands from AAR3 
(Fig. 6). 

Partial effects of vessel traffic on the 10–500 Hz Leq increased with 
the number of vessels up to 40 vessels within a recording session (20 min 
per hour) for AAR2 and then plateaued whereas AAR3 partial effects of 

the vessel traffic on Leq increased with the number of vessels up to 35 
vessels within a recording session (25 min per hour). The effect of the 
number of vessels was flat for the other frequency bands (Fig. 6). The 
vessel speed over ground influence increased from 8.5 to 20 knots for the 
10–500 Hz frequency band, and the influence was flat for the other 
frequency bands. The total precipitation influence increased sharply 
from zero to 0.001 m and plateaued throughout different frequency 

Fig. 6. Random forest (RF) model partial effect of predictor variables (x-axis) on the ambient equivalent continuous sound pressure level (y-axis) at different fre-
quency bands from the three autonomous acoustic recorders (AARs) using data filtered at ≤11 cm s− 1 current speed. No variance around predicted lines is shown as 
RF model results have little variation. Kt is for knots. 

Fig. 7. Random forest (RF) model relative importance of predictor variables on influencing the ambient equivalent continuous sound pressure level at the different 
frequency bands from the two autonomous acoustic recorders (AARs) using data filtered at ≤11 cm s− 1 current speed. Blank boxes represent cases when no data were 
available for AAR2 due to the Nyquist frequency limit of recordings. 
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bands (Fig. 6). The wave height influence on Leq increased with its in-
crease for all frequency bands (Fig. 6). The partial effects of wave period 
on Leq decreased with the increase in wave period over different fre-
quency bands (Fig. 6). Wind direction between 0 and 100◦ and around 
360◦ had the highest influence on Leq for 10–500 Hz frequency band, 
while direction around 360◦ had the highest influence for other fre-
quency bands. Wind speed influence on the 10–500 Hz frequency band 
noise level was flat for both AARs but increased above 12.5 m s− 1 for 
10–500 Hz frequency band from AAR3 (Fig. 6). Partial effects of wind 
speed on Leq from other frequency bands increased from 5 to 15 m s− 1 

(Fig. 6). 
Based on RF models, the distance of the closest vessel to the AAR 

location was the most important predictor of 10–500 Hz frequency band 
Leq from both AARs and was the second most important predictor of the 
500–1000 Hz frequency band from AAR3 (Fig. 7). Wind speed was the 
most important predictor of Leq for 500–1000, 1000–2000, 2000–3000, 
and 3000–4000 Hz frequency bands (Fig. 7). Other remaining variables 
were the moderate to least important predictors of Leq. Notably, ocean 
current speed was the least important predictor of ambient noise 
(Fig. 7). The number of vessels per distance interval indicated that most 
vessel traffic transited >20 km from AARs 1–3 locations but >100 km to 
AAR4 location (Fig. 8). Vessel numbers varied from month to month but 
did not increase over time (2014–2017). Vessel density indicates that 
more ships were transiting through the area of AARs 1–3 whilst some 
were entering or exiting the Cape Town Harbour (Fig. 1). Different 
vessel types were tracked transiting through the west coast of South 
Africa including tug/tow, tanker, pleasure craft/sailing, passenger, 
military, fishing, cargo and other (Fig. 1). 

3.5. Effects of ambient noise on whale acoustic detectability 

The overall monthly percentage of acoustic detection of all whale 
species relative to recorded Leq was higher in winter and spring than in 
the other seasons (Fig. S15). The probability of detecting blue and fin 
whale calls from both AARs 2 and 3 increased with the ambient noise 
level at the 10–500 Hz frequency band based on different sample 
balancing methods (Fig. 9). On the other hand, blue and fin whale 
probability of detection decreased with increasing ambient noise levels 
at highest frequency bands (1000–2000 and 3000–4000 Hz) from AARs 
2 and 3. When evaluating the influence of recorded noise, including 

pseudo-noise on whale detectability, GLM dose-response curves of all 
whales including southern right whales showed that whales' detect-
ability decreased with increasing noise levels at the low frequency band 
(10–500 Hz) except for blue whales from AAR1 that increased with noise 
level (Figs. S21–S25). 

The probability of detecting humpback, minke, and sperm whales 
decreased with increasing ambient noise levels at both low and high 
frequency bands apart from humpback whales at the highest frequency 
band from AAR2 (Fig. 9). The probability of detecting humpback, 
minke, and sperm whales was low above 110 dB re 1 μPa Leq for the 
10–500 Hz frequency band from AARs 2 and 3 based on different sample 
balancing methods (Fig. 9). Blue and fin whale detectability was high 
above 110 dB re 1 μPa Leq for the 10–500 Hz frequency band. Sample 
balancing was critical for improving model performance as shown by 
better predictive performances of GLMs with balanced sample sizes, 
whereas unbalanced data showed poor predictability performances 
compared to sample balanced methods for most whale species (Fig. 9). 
About 80% of acoustic detectability of humpback, minke, and sperm 
whales was below the 50% point for AARs 2 and 3 at the low frequency 
band. The 50% point was passed at low ambient noise levels around 90 
dB re 1 μPa at the highest frequency bands for all whales from AARs 2 
and 3 based on different sample balancing methods (Fig. 9). 

4. Discussion 

In general, our ambient noise level measurements show that tem-
poral trends of the underwater noise levels off the west coast of South 
Africa were strongly predicted by vessel traffic for the frequency band 
below 500 Hz and by wind speed for frequency bands above 500 Hz. 
Results of this study highlight this region as an area with spectrally, 
temporally, and spatially dynamic ambient noise levels. The probability 
of acoustic detection of whales suggests species-specific responses to 
noise levels at different frequency bands. This study provides the base-
line information of the underwater noise sources and acoustic detect-
ability of whales for the west coast of South Africa. 

4.1. Noise trends and predictors 

Density plots and long-term spectrograms showed higher recorded 
noise levels for AARs 1 and 4 than for AARs 2 and 3, which reflects the 

Fig. 8. Number of vessels per month at different distance intervals from the location of autonomous acoustic recorders (AARs) 1–3 (top panel) and AAR4 (bottom 
panel). No ship tracks were found from June 2016 but does not imply complete absence of ships. Grey shaded area for AAR4 location indicates time without passive 
acoustic monitoring effort. 
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influence of ocean current speed associated with water depths where 
those AAR moorings were deployed in the Benguela ecosystem (Shan-
non, 2009). Recorded noise levels, including pseudo-noise from AARs 1 
and 2, were not comparable during period of recording overlap (Fig. 3), 
although the two instruments were closely spaced (~5 km apart). This 
discrepancy could only be explained by the thermocline depth relative 
to the hydrophone depth in the water column as the thermocline acted 
as an acoustic barrier to the deeper instrument (Shabangu et al., 2021). 
On the other hand, sound speed profiles for this region did not change 
significantly between seasons to have induced seasonal differences in 
noise detection between AAR locations (Shabangu and Andrew, 2020). 
Gradual decline in power spectra above 100 Hz for AARs 2 and 3 shown 
in SPD plots reflects that low frequency sounds below 100 Hz (attributed 
to shipping) dominated the soundscape of the west coast of South Africa 
and that acoustic masking would possibly be high for species vocalizing 
below that frequency level (Clark et al., 2009; Cholewiak et al., 2018). 
Nonetheless, power spectra peaks in the vocalization frequency range of 
blue and fin whales before and after filtering out pseudo-noise from 
AARs 2 and 3 data suggests that whales contribute to the region's 
soundscape as well. 

Recorders deployed approximately at 200 m (AARs 1 and 4) below 
the sea surface had higher recorded Leq than those deployed at 300 m 
(AARs 2 and 3), an indication that recorders deployed in relatively 
shallow waters are more susceptible to contamination by pseudo-noise 
than those deployed in relatively deep waters where the current speed 
is slightly weaker as ocean current speeds decrease with depth in this 
region (Carr, 2017). Ocean current speed induced pseudo-noise is a 
downside of midwater recorder deployments where noise due to 
mooring vibration and water flow on the hydrophone can sometimes be 

very prominent (Strasberg, 1979). It is recommended for future de-
ployments that recorders be deployed as close to the seafloor as possible 
to avoid such high noise levels induced by ocean current speed in the 
offshore environment. Implementing flow noise mitigation techniques 
in the recording equipment like those used in this study is also 
recommended. 

The average Leq at 10–500 Hz frequency band dropped below 110 dB 
re 1 μPa after filtering out pseudo-noise induced by the ocean current, 
indicating the effectiveness of the filter at >11 cm s− 1 current speed at 
eliminating pseudo-noise. According to results of our RF models, 
ambient noise levels from the 10–500 Hz frequency band were strongly 
predicted by the distance of the closest vessel to both AARs 2 and 3 
location, an indication that noise pollution by vessel traffic (an 
anthropogenic activity) is prominent in this region. The influence of 
distance of the closest vessel to the recorder location on the ambient 
noise decreased with range due to transmission loss as the sound prop-
agates in the water column (Urick, 1983; McKenna et al., 2012). The 8 
dB contribution of vessel traffic to the ambient noise level of AAR3 from 
vessels within 35 km radius is lower than the 15–20 dB contribution 
reported by McKenna et al. (2012) from vessel within 4 km distance to 
the recorder, the difference between the two studies might be due to 
different types of vessels studied, water depth, environment, and dis-
tance of vessels to the recorders. Wind speed was the most important 
predictor of ambient Leq for the other frequency bands (500–1000, 
1000–2000, 2000–3000 and 3000–4000 Hz) from AARs 2 and 3, as wind 
speed mainly contributes noise above 500 Hz frequency bands (Wenz, 
1962; Knudsen et al., 1948; Estabrook et al., 2016; Duarte et al., 2021). 
Nonetheless, vessel traffic also contributed towards the 500–1000 Hz 
frequency band noise from AAR3, supporting previous observations that 

Fig. 9. Generalized linear model (GLM) partial effect of ambient equivalent continuous sound pressure level on probability of detecting whales acoustically at the 
lowest (continuous lines) and highest (dashed lines) frequency bands for each autonomous acoustic recorder (AAR) stations based on different sample balancing 
methods. Empty boxes represent cases where whale acoustic detection was <20 occurrences for that species. The dashed horizontal line at 0.5 represents the 50% 
point for whale acoustic detection at a given noise level. Y- and x-axes scales are different among plots. For legibility purpose, the 95% confidence intervals of these 
GLM curves are shown in Figs. S16–S20. 
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vessel noise can sometimes contribute to noise above 500 Hz when 
vessels are at close range (Wenz, 1962; McKenna et al., 2013; Duarte 
et al., 2021). Ocean wave action contribution to the ambient noise at 
different frequency bands was moderately important as this source was 
overshadowed by other more prominent sources. Total precipitation had 
moderate to low influence on the ambient noise levels as noise from 
other sources dominated the soundscape. Late autumn through spring 
(April through October) had the highest influence on the low frequency 
band (10–500 Hz) ambient noise level from AARs 2 and 3 since those 
months were characterized by high vessel traffic (Figs. 1 and 8). Spring 
and summer (September through December) had a high effect on the 
high frequency bands (1000–2000 and 3000–4000 Hz) as those seasons 
are associated with high wind speeds (Shannon, 2009). 

We found a good relationship between ambient noise levels at 
10–500 Hz frequency band and the number of vessels for AARs 2 and 3 
as found by previous studies (McKenna et al., 2013; Merchant et al., 
2012). Our RF model results for ambient noise indicated that marine 
vessel traffic contributed significantly to underwater noise below 500 Hz 
off the west coast of South Africa (an important acoustic habitat) be-
tween 2014 and 2017, which is concerning given its effect on marine 
mammal communication space (e.g. Cholewiak et al., 2018). Reduction 
of vessel cruising speed might be critical for reducing noise levels in this 
region as moderate to high speeds (8.5–20 knots) were highly influential 
at predicting ambient noise levels but that will result in vessels spending 
more time in the region and challenging operability of ships (McKenna 
et al., 2013). Although the vessel traffic data used in this study were 
derived from multiple sources, these data possibly still excluded smaller 
vessels and those vessels that did not log their AIS positions. Corre-
spondingly, our results provide conservative but realistic effects of 
vessel traffic on ambient noise levels. High vessel traffic around AARs 2 
and 3 (Figs. 1 and 8) of >1100 vessels per month within the 80 km radius 
increased ambient noise level in this region and in turn will likely result 
in fatal vessel collisions with whales as recently (April 2021) seen with 
an Antarctic blue whale off Namibia and previously observed with 
southern right whales in South African waters (Best et al., 2001). 

Miksis-Olds and Nichols (2016) found no common global trend in 
noise level variation as noise increased while it decreased in certain 
parts of the world, our results indicated that the ambient noise levels 
vary seasonally but not inter-annually between AARs 2 and 3 off the 
west coast of South Africa. Importantly, these results highlight the need 
for acoustic monitoring over decades to delineate the possible temporal 
and spatial trends in noise levels and effects of anthropogenic activities. 
Multidecadal underwater noise research conducted off California coast 
by Andrew et al. (2002) is a good example of the kind of research needed 
in this region. No seismic survey signals were detected from any of the 
AARs as either there were no seismic surveys or surveys were conducted 
far from AAR locations (330 and 510 km away from AARs 3 and 4 
respectively to the nearest track line of the 2D seismic survey conducted 
in summer 2015/2016) during the deployment period of recorders 
(Fig. S26). It is encouraging that no noise pollution due to seismic survey 
signals was detected off the west coast of South Africa, a signal that this 
ecosystem was then not negatively affected by that anthropogenic ac-
tivity and that the environment in South African waters does not support 
long range propagation of seismic signals. 

4.2. Whale detection relative to ambient noise levels 

Specific spectra peaks were observed within vocalization frequencies 
of blue and fin whales in the ambient SPD, indicating that they 
contributed to the soundscape of this region. The lack of specific spectra 
peaks within vocalization frequencies of other whales in the recorded 
SPD indicates that biological sounds were often overshadowed by the 
ambient noise. Nonetheless, whale calls were detected in noisy condi-
tions (Fig. S15) indicating that some calls potentially originating from 
nearby whales can be detected even in noisy conditions and that visual 
detection of whale calls was less influenced by noise compared to 

automated call detectors. Specifically, blue and fin whale acoustic 
detectability increased with ambient noise level (highly predicted by the 
closest vessel distance to the recorder location) in the low frequency 
band (10–500 Hz), an indication that these whales could have increased 
their vocalization rate in the presence of noise from vessels to overcome 
the ambient noise levels (Lombard response) to maintain acoustic con-
tact with conspecifics. Similar vocalization rate increase in the presence 
of vessels has been observed for blue whales in the Southern California 
Bight (Melcón et al., 2012). Fin whales were previously reported to 
change their call characteristics in response to shipping and seismic 
noise (Castellote et al., 2012). 

Blue and fin whale probability of detection decreased with the in-
crease in highest frequency band (1000–2000 and 3000–4000 Hz) 
ambient noise levels from AARs 2 and 3 although those bands are above 
the vocalization frequency of these whales but corresponds to noise 
induced by wind speed. This observed decrease in detectability of blue 
and fin whale calls with increasing ambient noise at the highest fre-
quency bands indicates that whales can be affected by noise above their 
vocalization frequency (e.g. Melcón et al., 2012). Likewise, Shabangu 
et al. (2017, 2019) found call rates of blue and fin whales to decrease 
with increasing wind speed in the Antarctic and South African waters, 
which indicates that geophonic noise affected whale call detectability. 
Sub-surface air bubbles that were formed during high wind speeds could 
also have attenuated whale calls that should have been reflected into the 
water column by the sea surface in good weather conditions as Shabangu 
et al. (2014) have shown that echosounder pings transmitted on the sea 
surface were attenuated by wind-induced air bubbles. 

The probability of detecting whale calls at the lowest and highest 
frequency bands indicated that ambient noise levels reduced the 
detectability of humpback, minke and sperm whales and would have 
also masked whale calls that could have been detected by AARs 2 and 3. 
Humpback whale probability of detection from AAR2 showed a different 
pattern to the above where detectability increased with the noise asso-
ciated with wind speed at the highest frequency band, displaying 
Lombard response to geophonic noise. Sperm whale acoustic detect-
ability was mainly influenced by noise levels from both low and high 
frequency bands, as clicks of this odontocete sweep through a wide 
frequency range and their acoustic detection decreased with increasing 
wind speed in South African waters (Shabangu and Andrew, 2020). 
Responses of the aforementioned whale species to this vessel noise will 
likely not only affect their health and welfare, but also increase their risk 
of colliding with vessels when considering Lloyd's mirror effect (Gerstein 
et al., 2005). 

Species-specific acoustic detectability was observed as acoustic 
detectability increased with noise level for some species while it 
decreased for some species, indicating that species-specific noise miti-
gation measures are needed. Different noise levels at which the average 
50% point was passed for each species between sites further suggest that 
there was some site-specific difference in whale detection. The acoustic 
communication space (detection range) of these whales was signifi-
cantly reduced by 80% or more by underwater noise as indicated by this 
study (Fig. 9) and elsewhere (Cholewiak et al., 2018). Additionally, as 
the whale acoustic occurrence peaked in winter and spring, whale calls 
contributed to the soundscape before and after filtering out pseudo- 
noise. GLM curves on acoustic detectability of whales including 
pseudo-noise show that whales' detectability decreased further with 
increasing noise (Figs. S21–S25), an important technical consideration 
for this study but not for the global whale detectability as that noise is 
not audible in the soundscape. Deployment of animal-borne passive 
acoustic recording tags will provide direct information on the behav-
ioural responses of these whales to both anthropogenic and geophonic 
noise. Different responses of the studied whales to noise indicate that 
species-specific and flexible mitigation measures are necessary to pro-
tect these marine mammals and other marine organisms from the ever- 
changing anthropogenic impacts on the marine ecosystem, including 
that of the west coast of South Africa which is currently undergoing 
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ocean economic development and growth. 

5. Conclusion 

We provide the first empirical ambient noise level measurements for 
the west coast of South Africa, and the quantitative description of pre-
dictors of ambient noise levels together with the effects of underwater 
noise on acoustic detection of some of the endangered, threatened, and 
vulnerable whale species in the Southern Hemisphere. Underwater noise 
levels varied spectrally and temporally between recording sites. Un-
derwater noise pollution from vessel traffic contributed significantly to 
the ambient noise level below 500 Hz. Noise induced by wind speed 
dominated soundscape above 500 Hz, an indication of the contribution 
of geophonic sources to the soundscape of this region. The four baleen 
whale species showed species-specific responses to ambient noise levels. 
On the other hand, sperm whale acoustic detection was influenced by 
noise levels from both the low and high frequency bands given its 
broadband vocalization frequency range. The soundscape ecology 
paradigm of the west coast of South Africa appears not to be affected by 
seismic survey activities but by vessel traffic. Results of this study 
advance the scientific understanding of the relationship among 
anthropogenic activities, natural processes, and marine mammals, 
which is critically important for the conservation, management, and 
sustainability of this marine ecosystem. 
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