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Abstract: Rabies is considered a neglected disease among many developing Asian and African
countries, including Mozambique, where its re-emergence is often attributed to low dog parenteral
vaccination coverage. The objectives of this study were two-fold: (1) to assess the level of antibodies
against rabies virus in dogs (n = 418) in Limpopo National Park (LNP), and (2) to genetically
characterise selected rabies viruses from brain tissue samples collected in 2017 and 2018. To meet
the first objective, we used the BioProTM Rabies blocking ELISA antibody kit, and the results were
expressed as the percentage of blocking (%PB). Dog sera with PB ≥ 40% were considered positive
for antibodies to rabies virus, whereas sera with PB < 40% were negative. Just under ninety percent
(89.2%; n = 373) of dogs were seronegative, and the rest (10.8%; n = 45) had detectable levels of rabies
virus-specific antibodies. All eight brain tissue samples were positive for rabies virus antigen using a
direct fluorescent antibody test and amplified in a quantitative real-time PCR, but only five (n = 4
from dogs and n = 1 from a cat) were amplified in a conventional reverse-transcription PCR targeting
partial regions of the nucleoprotein (N) and the glycoprotein (G) genes. All samples were successfully
sequenced. Phylogenetically, the rabies viruses were all of dog origin and were very closely related to
each other (Africa 1b rabies virus lineage). Furthermore, the sequences had a common progenitor
with other rabies viruses from southern Africa, confirming the transboundary nature of rabies and the
pivotal role of dogs in maintaining rabies cycles. The study demonstrates the principal application
of the BioProTM rabies ELISA antibody for the detection of anti-lyssavirus-specific antibodies in the
serum samples of dogs, and most importantly, it highlights the low levels of antibodies against rabies
virus in this dog population.

Keywords: Limpopo National Park; Mozambique; dogs; rabies virus; rabies antibodies; phy-
logeny; seroprevalence

1. Introduction

Rabies is an acute and fatal encephalitis caused by negative-sense RNA viruses of
the Lyssavirus genus, order Mononegavirales and family Rhabdoviridae [1,2]. The prototype
species, Lyssavirus rabies, is one of 17 currently recognised within the genus and is respon-
sible for more than 99% of human rabies cases globally [1]. It is generally considered to
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be a transboundary disease that crosses national borders [3]. In Africa, approximately
21,000 people, representing 36% of all global rabies cases, are believed to succumb to
dog-mediated rabies annually, although the true number is likely to be much higher [4,5].

In Mozambique, similar to other African countries, rabies is an endemic disease
and a significant veterinary and public health problem that was first recognised in the
early 1900s [6]. It is especially problematic in remote areas where diagnostic laboratory
facilities and diagnostic capacity are generally lacking. Furthermore, a shortage of qualified
personnel and insufficient medical and veterinary infrastructure compound the problem,
leading to gross under-reporting of the disease [6–8].

Routine surveillance systems are largely inefficient, particularly in remote and resource-
limited areas of the country, resulting in many patients seeking medical care outside of the
established national health system [8–10]. In 2010, the first national rabies control strategy
(2010–2014), proposed by the veterinary and health authorities [11], was approved. It aimed
at reducing the incidence of dog bites and dog-mediated human rabies deaths through
enhanced dog vaccination coverage and the establishment of more pre- and post-exposure
prophylaxis centres throughout the country. These developments promoted responsible
dog ownership and improved laboratory diagnostic capacity but did not yield the intended
results, highlighted by the number of reported bite cases increasing from 15,222 in 2016
to 20,419 in 2017 [12]. In view of the low notification rates and an increase in dog bites
and human rabies deaths, a second strategy was formulated and approved in 2019 [13].
This new strategy aimed to raise awareness among users of health centres. The focus was
to improve rabies prevention measures; enhance vaccination coverage of dogs and cats;
collect weekly epidemiological surveillance data; establish dog population control services
in municipalities and local governments areas; identify dogs using microchips; and ensure
pre-exposure prophylaxis for frontline rabies control and prevention professionals.

Between 2001 and 2017, dog rabies accounted for 79.5% (n = 898) of all clinically
diagnosed animal rabies cases [14] in Mozambique. The rest were reported in cattle
(7.9%), pigs (5.6%), domestic cats (4.9%), goats (1.8%), and a few (0.3%) in wild unspecified
species [14]. In 2010, 9.2% (n = 123,910) of all dogs (n = 1,346,847) were vaccinated against
rabies [15], while in 2018, the number declined to 8.2% (n = 247,321/3,011,656) [13], possibly
due to poor awareness and inconsistent mass dog vaccination campaigns [12].

Despite there being four rabies diagnostic laboratories in Mozambique, there is a
dearth of molecular epidemiological information about dog rabies in the country [8,16].
The Central Veterinary Laboratory is the main diagnostic laboratory, located in the capital
city of Maputo. It is the only facility capable of diagnosing rabies using the gold standard
direct fluorescent antibody test (DFAT) and reverse transcription-PCR (RT-PCR) [17]. In
addition to conventional RT-PCR, qRT-PCR is recommended as a confirmatory diagnostic
tool for rabies infection by both the World Organisation for Animal Health (WOAH) and the
World Health Organization (WHO) [18–20]. However, simpler, less expensive diagnostic
platforms are needed to enhance laboratory capacity in rabies endemic countries.

This investigation was undertaken to evaluate the level of serum antibodies to rabies
virus infection among dogs in the Limpopo National Park (LNP) and to molecularly
characterise rabies viruses (RABV), with the aim of assisting local veterinary and health
authorities in their design of better rabies control programs.

2. Material and Methods
2.1. Study Area and Study Design

To assess rabies seroprevalence, a cross-sectional study was carried out between
November 2016 and April 2017 in Limpopo National Park (Figure 1), an area of approxi-
mately 11,000 km2, located to the west of Gaza Province and delimited by both the Limpopo
(about 260 km) and Elefantes (about 85 km) rivers in the east and south, respectively [21,22].
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2.2. Sampling and Source of the Samples

A sample size of 384 dogs was estimated for inclusion in the study, assuming 50%
prevalence (as the real prevalence was unknown), a 5% margin of error, and 95% confidence
intervals [24,25]. However, to increase precision, the sample size was increased to 418.
The number of dogs per stratum (dogs per village) (Table S1) was calculated using the
formula given by Cochran [26], taking into account the number of members in a household
owning at least one dog. Blood samples were collected from the cephalic or saphenous
vein using plain vacutainer blood tubes. The blood samples were centrifuged at 1050× g
for 15 min (Centrifuge 5430, Eppendorf, Hamburg, Germany), then transferred to 2 mL
sterile Eppendorf tubes, and stored at −40 ◦C until testing.

All owned dogs that were present in the owners’ homes or in the vicinity of nearby
streets at the time of the visit were included, provided the owners verbally agreed to blood
samples being taken.

2.3. Viruses for Molecular Characterisation

Eight rabies virus-infected brain tissues collected between 2017 and 2018 were included
in the study for molecular characterisation. These were confirmed infections in domestic
dogs (Canis familiaris) (n = 7, from Maputo, Gaza, Sofala, and Nampula Provinces) and a
domestic cat (Felis catus) (n = 1, from Sofala Province) using the DFAT in Maputo. Seven of
the samples were provided by the Virology Section of the Central Veterinary Laboratory
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(CVL) in Maputo, and the remaining sample was obtained from a 6-month-old male dog
of Africanis breed (LNP, Massingir district in Gaza Province) (Figure 1). The dog was
euthanised after it presented typical signs of rabies virus infection.

2.4. Specimen Processing
2.4.1. Blood Processing and ELISA

The blood samples were allowed to clot at 5 ◦C for two hours before the serum was
decanted into 2 mL sterile Eppendorf tubes (Eppendorf, Hamburg, Germany). To ensure
that a larger volume was obtained, the remaining serum was separated by centrifuging the
blood samples at 615× g for 15 min (Centrifuge 5430®, Eppendorf, Hamburg, Germany),
and immediately transferred to respective pre-labelled Eppendorf tubes. The serum sam-
ples were subsequently stored frozen at−40 ◦C until required for the serological analysis of
antibodies to rabies virus using the BioPro® Rabies ELISA antibody kit (O.K. Servis BioPro,
Horni Pocernice, Czech Republic), according to the manufacturer’s guidelines.

Briefly, 60 µL of diluent buffer was distributed into dummy microplate wells, followed
by 60 µL of serum samples or control sera. The sera and diluent were thoroughly mixed
and 100 µL of diluted test and control sera were then dispensed into the rabies glycoprotein-
coated microplates.

The microplates were covered with adhesive foil and incubated overnight at 4 ◦C with
gentle shaking at 125 RPM on an orbital shaker, and then washed six times. Thereafter,
100 µL of the biotinylated anti-rabies antibodies were distributed into each well and the
plates were incubated for a further 30 min at 37 ◦C with gentle shaking. After incubation,
four washes were performed before 100 µL of the streptavidin peroxidase conjugate was
distributed into each well. This was followed by 30 min of incubation at 37 ◦C with gentle
shaking, and a further four washes. Finally, 100 µL of 3,3′, 5,5-tetramethylbenzidine (TMB)
chromogen solution was added to each well. The microplates were subsequently incubated
in the dark for 20 min at room temperature with gentle shaking, and the reaction was
stopped by the addition of 50 µL of a 0.5 M H2SO4 stop solution.

The absorbance values were read at 450 nm using a microplate reader (Original Multi-
skan EX; Labsystems Inc., Helsinki, Finland). The percentages of the blocking values were
calculated using a formula provided by the manufacturer. According to the manufacturer,
dog sera with percentage blocking (PB) < 40% were considered negative for antibodies to
rabies virus, whereas sera with PB ≥ 40% were considered positive.

2.4.2. Lyssavirus Rabies Detection and Sequencing

RNA was extracted from the original RABV-infected brain tissues using TRI reagent
(Sigma–Aldrich, St. Louis, MO, USA), as described in the manufacturer’s protocol. For both
genes, the cDNA was synthetised, reverse transcribed, and amplified using the primers 001lys
(+) 5′1ACGCTTAACGAMAAA153′ and 550 (−) 5′647GTRCTCCARTTAGCRCACAT6663′ for
a partial region of the nucleoprotein (N) gene and G- (+) 5′4665GACTTGGGTCTCCCGAACT
GGGG46873′ and L (−) 5′5543CAAAGGAGAGTTGAGATTGTAGTC55203′ [27,28] for a par-
tial region of the glycoprotein (G) gene and the G-L intergenic regions of the rabies viruses.
The annealing positions and polarity of the primers used were designated according to the
Pasteur Virus (PV) genome [28].

The PCR amplicons for both partial regions of the N and G genes were purified
from the reaction mixtures (comprising salts, nucleotides, primers, and primer dimers)
using spin columns (Promega, Madison, WI, USA) and sequenced in both the forward
and reverse directions with the same primers used in amplification reactions. Sequencing
of the amplicons was performed on an ABI3700 sequencer using the Big DyeTM v3.1 se-
quencing kit (Applied Biosystems, Massachusetts, Foster City, CA, USA), according to the
manufacturer’s instructions.

Quantitative real time-PCR is a molecular method that allows for “real-time” moni-
toring and detection of amplified products in a PCR reaction. The assay in question was
designed for the amplification and detection of a 126 bp fragment of the nucleoprotein gene
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of African lyssaviruses. It permits the rapid and accurate quantitative detection of African
lyssavirus RNA and was performed following the protocol described by Coertse et al. [29].

2.4.3. Phylogenetic Analysis

Phylogenetic analysis used an alignment of nucleotide sequences spanning the partial
regions of the highly conserved N gene (647 bp) and the partial G gene and the G-L
intergenic regions (518 bp) as inputs for tree reconstruction.

The partial N gene nucleotide sequences (n = 44) were aligned using the ClustalW sub-
routine of the MEGA X software package [30]. The best fitting nucleotide substitution model
was identified as the transition model plus invariable sites and Gamma (TIM2 + I + G) us-
ing the Akaike information criterion (AIC) subroutine of the j-Model test software package
(version 2.1.10). Similarly, 32 nucleotide sequences for the G-L intergenic region were
aligned using ClustalW as before, and the best fitting nucleotide substitution model was
found to be the transition model plus invariable sites (TIM1 + I). Phylogenetic analysis of
both partial regions of the genome was performed using a Bayesian Markov Chain Monte
Carlo (MCMC) method in the BEAST software package (version 2.5.0) using a relaxed
exponential clock [31]. Three independent MCMC analyses sampled for 10 million states
and a sampling frequency of 10,000 were combined after discarding at least 10% burn. The
posterior distributions were subsequently inspected using Tracer software (version 1.7.1) to
ensure adequate mixing and convergence before the associated statistics were summarised
as a maximum clade credibility tree and visualised using FigTree v 1.4.4.

2.5. Statistical Analysis

The statistical analysis was focused on calculating the frequency of the values of
interest. Binary logistic regression was used to determine the associations between the
level of rabies antibodies and the independent variables (sex and age of the dogs). Ninety-
five percent confidence intervals (CI 95.0%) and the p values were calculated using SPSS
Statistics software for Windows version 18.0 (SPSS Inc., Chicago, IL, USA).

3. Results
3.1. Seroprevalence of Rabies Virus

All of the dogs included in this study were of the Africanis breed. Specific details of
the dog population and their vaccination status and antibody levels against rabies virus are
shown in Table 1.

Table 1. Details of the dog population and their vaccination and rabies virus seroprevalence status.

Variables Frequency (%)

Dog age groups
<1 Year 164 (39.2)

1–2 Years 65 (15.6)
>2 Years 189 (45.2)

Sex of the dogs
Male 280 (66.9)

Female 138 (33.1)
History of dog vaccination

Unvaccinated 335 (80.1)
Vaccinated 83 (19.9)

Antibody Level
PB < 40% (Negative) 373 (89.2)
PB ≥ 40% (Positive) 45 (10.8)

The majority (n = 280, 66.9%) of surveyed dogs were male, 39.2% were less than
one year of age, 15.6% were one to two years of age, and the remaining 45.2% (n = 189)
were over two years of age. Nearly 20% (n = 83) had a history of vaccination or a rabies
certificate confirming vaccination at least once in the year prior to sampling. Most of
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the dogs (n = 335, 80.1%) had no vaccination history or rabies certificate. Across both
vaccinated and unvaccinated groups, only 10.8% (n = 45) of the dogs were seroconverted.

Table 2 shows the frequency of vaccinated and unvaccinated dogs according to the age
and sex groups, and serological status according to the dog vaccination records. Younger
dogs were in the lower percentage for both the vaccinated and non-vaccinated dogs
(p > 0.05), while males had higher proportions for both statuses (p < 0.05). Of the total
number of unvaccinated dogs (n = 335), only 8.7% had antibodies to rabies virus and of
these, 1.5% (n = 5) were under 1 year of age.

Table 2. Serological status and proportion of vaccinated and unvaccinated dogs according to age
and sex.

Variables Frequency (%)

Age of dogs Unvaccinated Vaccinated Total
<1 Year 141 (42.1) 22 (26.5) 163

1–2 Years 54 (16.1) 12 (14.5) 66
>2 Years 140 (41.8) 49 (59.1) 189

Sex of dogs Unvaccinated Vaccinated Total
Male 216 (77.1) 64 (22.9) 280

Female 119 (86.2) 19 (13.8) 138
Vaccination status according to PB Negative Positive Total

Unvaccinated 306 (91.3) 29 (8.7) 335
Vaccinated 67 (80.7) 16 (19.3) 83

The proportion of seronegative dogs was significantly greater than the proportion of
seropositive dogs, and there was a direct association between seropositivity and increasing
age (p < 0.05) (Table 3). The results presented in Table 4 reveal that all (100%; n = 8) brain
samples submitted to DFAT were positive for rabies virus.

Table 3. Serological results according to age and sex of dogs.

Variables
Frequency (%)

Total p-Value
Negative Positive

Group age
<1 Year 156 (95.7) 7 (4.3) 163 (100) 0.001

1–2 Years 61 (92.4) 5 (7.6) 66 (100) 0.001
>2 Years 156 (82.5) 33 (17.5) 189 (100) 0.059

Total 373 (89.2) 45 (10.8) 418 (100)
Sex

Female 124 (89.9) 14 (10.1) 138 (100)
0.774Male 249 (88.9) 31(11.1) 280 (100)

Total 373 (89.2) 18 (10.8) 418 (100)

Table 4. Results of rabies virus antigen detection using DFAT and PCR.

Lab Reference Animal Collection Site DFAT RT-PCR qRT-PCR Gene Copies/µL

496/18 Canine Maputo Positive Negative Positive 640
597/18 Canine Sofala Positive Negative Positive 789
501/18 Canine Gaza Positive Negative Positive 708

MW248383 Canine Gaza Positive Positive Positive 6.4 × 106

124/18 Canine Maputo Positive Positive Positive 1 × 107

393/18 Feline Sofala Positive Positive Positive 2.5 × 106

468/17 Canine Gaza Positive Positive Positive 8.8 × 106

368/18 Canine Nampula Positive Positive Positive 1 × 107



Pathogens 2022, 11, 1043 7 of 13

3.2. Phylogenetic Analysis

For the N gene, phylogenetic analysis demonstrated that all lyssaviruses recovered
from dogs and a cat from Mozambique were closely related and clustered with other rabies
viruses of dog origin from South Africa. The rabies viruses shared approximately 99%
nucleotide sequence homology and 96% nucleotide sequence identity with those from
neighbouring Zimbabwe and Tanzania. All rabies viruses included in the study belonged
to the Africa 1b RABV lineage (Figure 2). For the G gene, the rabies viruses from Nampula
(MW349550) and a feline rabies virus from Sofala (MW377782) clustered with previously
characterised rabies viruses from Mozambique and Zimbabwe within Clade I (Figure 3).
The remaining rabies viruses (MW349549, MW377781, and MW377783) clustered with
rabies viruses from other host species from Mozambique and South Africa in clade II-A
(Figure 3).
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from Mozambique and neighbouring countries. Nucleotide sequences of a partial region of the
N gene were used in the analysis. The phylogenetic analysis was conducted using BEAST software
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supporting the branches and only those equal to or above 0.75 were retained. The analysis involved
44 rabies nucleotide sequences, and those used in this study (Table S2) are represented by a dark
circle and red letters.
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Figure 3. Maximum clade credibility tree showing the placement of the five Mozambican RABVs.
Nucleotide sequences of a partial region of the glycoprotein gene and the G-L intergenic region
were used in the analysis. The phylogenetic analysis was conducted using BEAST software version
2.5.0. [31] with posterior probabilities of 0.75. The posterior probabilities are shown on the nodes
supporting the branches, and only those equal to or above 0.75 were retained. The analysis involved
32 nucleotide sequences, and those used in this study (Table S3) are represented by red letters.

4. Discussion and Conclusions

The immunization of dogs remains one of the most cost-effective measures for control-
ling rabies. It has the potential to reduce dog-mediated human rabies cases by drastically
reducing the number of dogs susceptible to infection [32], as demonstrated in North Amer-
ica and Europe [33]. In these regions, other measures, including the removal of stray dogs
and responsible dog ownership (i.e. movement restriction), have been pivotal towards
the elimination of dog rabies [34]. Latin America provides a more recent example of how
parenteral dog vaccination has contributed to the elimination of dog-mediated human
rabies [5,35,36]. In Mozambique, the low seroprevalence of rabies virus among dogs ele-
vates the risk for the possible spillover of RABV infection into wildlife carnivore species,
humans, and companion animals within the LNP and national parks in neighbouring
countries [37–39].

The low number of seroconverted dogs detected in our investigation and in a study
by Simone [40] in Manica Province, Mozambique highlights the risk of contracting RABV
in the event of an outbreak. To our knowledge, this is the first study investigating the
seroprevalence against RABV infection in a conservation area in Mozambique. While we
utilised antibody tests, Moore et al. [41] stated that population-level antibody prevalence in
dogs is not a perfect means of assessing the effectiveness of oral rabies vaccine baits. Indeed,
antibodies are not the only informative measure of immunity against RABV infection. Both
cellular and humoral immunity, as well as innate immunity, are crucial in preventing
disease. Observations from a challenge study on several animal species demonstrated that
animals with antibody levels above the 40% PB threshold associated with the BioPro ELISA
were, in fact, equipped with better humoral responses to vaccination and infection [41].

The findings obtained from the serology experiments of our study underscore the need
for local governments and related authorities to invest more in the parenteral immunization
of dogs.
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In 2015, about a year prior to our study commencing, a small-scale, anti-rabies vacci-
nation campaign was conducted in the region. Vaccination coverages ≥ 70% of the canine
population are needed to break the transmission cycles between dogs and humans [13,41].
Many factors contribute to low vaccination coverage in LNP, resulting in inadequate an-
tibody titres among dogs in this remote region. These include but are not limited to
inconsistent parenteral vaccination campaigns; a lack of information among communities
about impending vaccination campaigns; the absence of owners at the time of vaccination;
a lack of awareness about the need to vaccinate dogs; and an apparent lack of time for
household owners to take their pets for vaccination [23].

Although 8.7% of unvaccinated dogs (29/335) had detectable anti-rabies antibody
titres, the likelihood of false positive reactions was low [42]. This ELISA is unlikely to be
affected by non-specific reactions compared to virus-neutralising antibody assays, such
as RFFIT and FAVNT. Neutralising antibody tests use live viruses and cells, and thus,
they are very sensitive to non-specific reactions, resulting in false positives [43]. Moore
et al. [41] showed a stronger correlation between the RFFIT and the indirect ELISA (from
Biorad) values, but it was not linear, since the two assays measure different antibody
functions. In our study, dog vaccination history was provided not only by the heads of
households but also by teenage children and may be susceptible to recall bias. Antibody
levels to rabies virus detected in unvaccinated dogs may also have been derived from
maternal antibodies rather than direct infection [44], or from anamnestic immune responses
to previous natural rabies exposures [45,46]. The latter has been also reported in studies
carried out in Nigeria, Kenya, and India [42,44,47,48], and additional research is warranted
to verify these findings.

Interestingly, most of the dogs < 1 year of age in our study had no vaccination history.
We, therefore, advocate that veterinary authorities consider immunization campaigns for
younger dogs and also carefully consider including puppies at six weeks of age in accor-
dance with the recommendations proposed by Arega et al. [49]. This is especially important
since puppies do not have appreciable levels of maternally-derived antibodies. Further-
more, maternally-derived antibodies do not limit the protective efficacy of inactivated
adjuvanted rabies vaccines [49]. Younger dogs are also easier to capture and handle for
parenteral vaccination than free-roaming adults who may benefit from baited vaccines such
as Raboral-VRG. In addition, in India, it was demonstrated that humans are susceptible to
RABV-infection from puppies less than three months old [50].

As shown in other similar studies [51,52], and irrespective of vaccination status, the
adult dogs in our study had significantly higher levels of anti-rabies-specific antibodies
than younger dogs. It is thus likely that they have received more than one vaccination. In
a study carried out to understand the ecology of dogs in LNP by Mapatse [53], 70.2% of
respondents reported that their dogs were given to them as a gift, implying that they may
have been previously vaccinated. There was no statistically significant association between
gender and rabies antibody titres (p > 0.05) in dogs, agreeing with the findings from other
independent studies [54–56].

Phylogenetic analysis, based on partial regions of the N and G genes, showed that the
rabies viruses (RABVs) recovered from domestic animals all belonged to the Africa 1b RABV
lineage. These viruses, in addition to being closely related, clustered with RABVs from
Tanzania, Zimbabwe, RSA, and Mozambique [57], suggesting a common progenitor [58]
and confirming the transboundary nature of rabies. The Africa 1b RABV variants, which
include the canid variant of southern Africa [42,44], also clustered together. The genetic
relationship between the RABV lineages in this study strengthens the evidence for the
historical introduction of rabies to the sub-region and Mozambique in the late 1950s [59].
Furthermore, the data demonstrate that rabies viruses currently circulating in the country
are very closely related, considering that the Mozambican viruses are grouped (in clades I
and II) with those from the neighbouring countries (along the borders of Zimbabwe and
South Africa).
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In Mozambique, the diagnosis of most animal rabies cases is based on clinical signs
and the history of bites rather than laboratory confirmation [8,17]. Very few brain samples
are submitted from the field (in distant provinces) to diagnostic laboratories [60]. In cases
where samples are submitted from distant locations, they reach the diagnostic facility in
a decomposed state and are consequently not suitable for the DFAT. Passive surveillance
data for most canine rabies endemic countries, including Mozambique, are inadequate for
estimating the burden of the disease. Therefore, after thorough validation, molecular tests
should be considered as alternatives and applied to samples that test negative using DFAT
but where there was a known human contact/bite. Traditional techniques, such as Seller’s
staining, have now been discontinued [18] and are no longer recommended by the WOAH.
Other immunohistochemical tests, such as the dRIT, which has similar diagnostic sensitivity
and specificity as the gold standard DFAT, are therefore appropriate as field-based assays
and can increase the number of field samples tested, thereby improving rabies surveillance.

The canid RABV variant is maintained primarily in dog populations in Mpumalanga and
Limpopo Provinces on the eastern seaboard, with occasional spillover into wildlife host species,
including the black-backed jackal (Canis mesomelas) and bat-eared fox (Otocyon megalotis) in
South Africa [61], and more recently, the aardwolf [62]. These three wildlife hosts maintain
RABV independently from domestic dogs [63,64]. It is, therefore, important to understand
the rabies transmission dynamics between domestic and wildlife hosts in Mozambique in
order to break the rabies transmission cycles.

The findings from our study demonstrate that the dog vaccination campaigns in
Mozambique are not consistent. Hence, vaccination coverage and educating communi-
ties about the public health hazards of rabies and responsible dog ownership should be
substantially enhanced. Rabies surveillance and laboratory diagnosis are still inadequate
and there is a clear need for field technicians and veterinarians to submit more samples
to diagnostic laboratories. The decentralisation of rabies testing and the introduction of
point-of-care diagnostics is another option that may overcome low sample submission for
rabies surveillance in Mozambique. Such measures can overcome the current problem
of underreporting of rabies, not only in Mozambique but throughout the whole region.
Rabies viruses identified in dogs in the current study are similar to the rabies virus variant
circulating in dogs in the neighbouring countries of South Africa and Zimbabwe. This
observation not only highlights the important and pivotal role that domestic dogs play in
rabies transmission cycles in Mozambique but also the transboundary nature of the disease.

The data from this study will serve to strengthen rabies control programs and inter-
ventions in Mozambique through the formulation of appropriate and targeted vaccination
campaign strategies, particularly in hot spot areas in rural communities, including LNP.
The veterinary and public health service sectors in the Massingir District should ensure
that epidemiological surveillance systems are more effective by reviewing the policies
and strategies for disease control, as the level of protection for dogs against rabies virus
infection is currently ineffective.

5. Study Limitations

The lack of accurate, systematic, and up-to-date dog population census data was the
main limiting factor, as it made it extremely difficult to ascertain vaccination coverages.
Other limiting factors included a lack of research data pertaining to animal rabies cases
in Mozambique and a low number of samples submitted for diagnosis in the central and
regional laboratories of the country. From 2017 to 2018, only eight brain samples from
dogs and a cat from the five provinces of the country were submitted to the CVL, the main
laboratory of the Ministry of Agriculture and Rural Development.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens11091043/s1, Table S1: Details of the sample size of
the canine population covered in this study; Table S2: Rabies virus sequences used for partial N gene
phylogenetic analysis; Table S3: Rabies virus sequences used for G gene phylogenetic analysis.
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