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HIGHLIGHTS 

 We investigated the association between meteorology, air pollution and hospital admissions 
for climate-sensitive diseases 

 Wavelet transform cross-correlation analysis was applied 
 Increased prevalence of pneumonia related admissions follows changes in air quality after a 

time period of 10 to 15 days 
 Increased admissions for malaria follow the co-occurrence of high temperature and rainfall 

after a 30-day interval 
 Findings have relevance for early warning system development and climate change 

adaptation planning to protect human health 
 

ABSTRACT 

Background: Climate variables impact human health and in an era of climate change, there is a 

pressing need to understand these relationships to best inform how such impacts are likely to change.  

Objectives: This study sought to investigate time series of daily admissions from two public hospitals 

in Limpopo Province in South Africa, in relation to time series of temperature, rainfall and air quality 

ground records or satellite data from the same geographical area.  

Methods: We used wavelet transform cross-correlation analysis to monitor coincidences in changes 

of meteorological (temperature and rainfall) and air quality (concentrations of PM2.5 and NO2) 

variables with admissions to hospitals for gastrointestinal illnesses including diarrhoea, pneumonia-

related diagnosis, malaria and asthma cases. We were interested to disentangle meteorological or 

environmental variables that might be associated with underlying temporal variations of disease 

prevalence measured through visits to hospitals.  

Results: We found preconditioning of prevalence of pneumonia by changes in air quality and showed 

that malaria in South Africa is a multivariate event, initiated by co-occurrence of heat and rainfall. 

We provided new statistical estimates of time delays between the change of weather or air pollution 

and increase of hospital admissions for pneumonia and malaria that are addition to already known 

seasonal variations. We found that increase of prevalence of pneumonia follows changes in air quality 

after a time period of 10 to 15 days, while the increase of incidence of malaria follows the co-

occurrence of high temperature and rainfall after a 30-day interval. 
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Discussion: Our findings have relevance for early warning system development and climate change 

adaptation planning to protect human health and well-being. 

 

GRAPHICAL ABSTRACT 

 

Keywords: Climate change; Environmental health; Infectious disease; Respiratory disease 

 

1. INTRODUCTION 

One of the ways in which climate change influences weather patterns is by increasing the frequency, 

duration and intensity of extreme events including heatwaves, floods, and droughts (Seneviratne et 

al., 2012; Thomson et al., 2019). Climate models predict changes in heatwave attributes such as 

increased frequency, intensity and duration (Hales et al., 2003). These predictions show that many 

regions across the world can expect warmer summers and milder winters (Hales et al., 2003). Over 
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the past five decades alone, South Africa has experienced increases of up to 1.50C in mean annual 

temperatures which is twice the global average (Ziervogel et al., 2014). Projections of future 

conditions based on Representative Concentration Pathway (RCP) emission scenarios demonstrate 

potentially large increases in flood frequency in Southeast Asia, India and eastern Africa (Hirabayashi 

et al., 2013). Risk of flooding is also expected to increase as global temperatures rise (Hirabayashi et 

al., 2013). Research has also shown that the frequency and intensity  of droughts has increased in 

recent decades in parts of Asia and Africa and this has been attributed to changes in weather patterns 

caused by climate change (Ebi et al., 2003). Simulations of future climate conditions have projected 

increases in the occurrence of droughts over the next century for many parts of the world including 

most of Africa, southern Europe and the Middle East, most of the Americas, Australia, and Southeast 

Asia (Dai, 2011). 

Associations between changes in weather patterns and air quality also exist (Jhun et al., 2015). 

In Canada, dry tropical weather  was associated with a fourfold increase of the likelihood of an 

extreme pollution event due to nitrogen dioxide (NO2), ozone (O3), sulphur dioxide (SO2), and 

particulate matter (PM) compared to moist tropical weather which resulted in a twofold increase 

(Vanos et al., 2015). In Greece, air pollution was higher during heatwave days than during non-

heatwave days. Pollutants such as PM10, NO2 and O3 increased by up to 38%, 29% and 12%, 

respectively (Papanastasiou et al., 2015).  

Exposure to certain meteorological conditions and air pollution has significant impacts on 

human health.  Consequently, the number of studies assessing the impacts of meteorological 

parameters and air quality on human health has grown rapidly during the last decade (Franchini and 

Mannucci, 2015; Kinney, 2008). Findings show that high temperatures and heatwaves result in 

deaths, increased hospital admissions and ambulance callouts for heat-related illnesses (see, for 

example, Nitschke et al., 2011; Sun et al., 2014).  Extremely high rates of deaths and hospitalizations 

were reported during severe recent heatwave events in France, Russia, Australia and India (WMO, 

2013; Fouillet et al., 2006; Akompab et al., 2013). Air pollution  is another contributing factor to 
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mortality and morbidity (Hanna et al., 2011; Vanos et al., 2014). The World Health Organization 

(WHO) reports that PM, O3, NO2 and SO2 are the four common air pollutants that have the strongest 

effects on health (WHO, 2006; Bohnenstengel et al., 2015). In the United States of America, exposure 

to PM2.5 was associated with 14 700 excess  deaths from 1994 – 2012 (Jhun et al., 2015). It is estimated 

that reducing PM10 to the WHO annual-mean guideline of 20 µgm-3 would reduce attributable deaths 

per year in Europe by as much as 22 000 (Bohnenstengel et al., 2015).  

In South Africa, associations between weather and health outcomes have been explored. 

Vulnerable groups such as children (Relative Risk (RR): 1.24, 95% Confidence Interval (CI): 1.15 - 

1.34) and older adults aged 65 and older (RR: 1.13, 95% CI: 1.07 - 1.20) were at higher risk of 

mortality due to exposure to high temperatures compared to persons between 19 and 64 years of age 

(Scovronick et al., 2018; Wichmann, 2017). Children under 5 years of age were reportedly more 

vulnerable to developing diarrhoea during very dry, hot conditions as well as during periods of high 

rainfall because hospital admissions for diarrhoea in that age group increased significantly during 

these conditions (Ikeda et al., 2019). The risk of hospitalisation due to cardiovascular disease on warm 

days increased with increasing levels of SO2, NO2 and PM in Cape Town (Lokotola et al., 2020).   

The research that quantifies effects of air pollution, temperature and rainfall on public health 

are, however, lacking. Therefore, this study aimed to explain the possible relations between weather 

variables and air pollution on four health outcomes known to be weather and/or environment sensitive 

(Godsmark et al., 2019). We used wavelet transform (WT) analysis to establish possible associations 

between temperature, rainfall, PM and NO2 (air pollutants for which data were available) on hospital 

admission symptoms relating to asthma, pneumonia, malaria, and gastrointestinal ailments obtained 

from admission records at two provincial hospitals in Limpopo Province, South Africa.  

Wavelets have been used as a data analysis tool across several scientific disciplines providing 

important new insights into the underlying characteristics of the signals involved (Addison, 2018). 

The property of WT procedure - in that it does not assume stationarity of records (Lancaster et al., 

2018) - renders its applicability to research of a range of natural or human-made complex systems 
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outputs. In this paper, we calculated wavelet power spectra (WTS), a wavelet energy density functions 

relatable (Perrieret al., 1995) to Fourier power spectra (PwS) to investigate global (i.e., over entire 

time of recording) and local (i.e., at a specific point in time) temporal behaviour of individual time 

series in our dataset. We furthermore used cross-wavelet transforms (CWT) comparable to cross-

correlation functions (Addison, 2002) and cross-correlation coefficients (Frick et al., 2001) to discern 

associations between admission records in our dataset with meteorological and air quality changes, 

by monitoring local temporal regions of their coincidental energy (Torrence and Compo, 1998; 

Addison, 2018). The study findings have relevance for early warning system development and climate 

change adaptation planning to protect human health and well-being.   

 

2. METHODS AND DATA 

2.1. Study area 

Giyani is a town in the Limpopo Province of South Africa, in the far north-eastern parts of the country 

at approximately 525 m above sea level. We present a map of a geographic area surrounding the town 

in Figure 1. The region experiences summer rainfall although summers can be extremely hot and dry. 

During the summer rainfall season, the area is prone to seasonal malaria which has a negative impact 

on public health (Gerritsen et al., 2008). Poverty levels are high in Giyani and 74% of the population 

reside in rural settings (Stats SA, 2011).  This study area is vulnerable to the adverse effects of 

exposure to regional (from neighbouring provinces and countries) and household air pollution from 

the burning of wood and coal.  
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Figure. 1. Study area depicting the two hospitals in Limpopo province, South Africa. 

 

2.2. Hospital admission data 

Handwritten, non-digitised hospital admission records for 1 January 2002 to 31 December 2017 were 

collected from two large public hospitals - Nkhensani Hospital and Maphutha L. Malatjie Hospital, 

located in Mopani District Municipality in Limpopo Province (Figure 1). Research ethics clearance 

to obtain the data for analyses was granted by the South African Medical Research Council (EC005-

3/2014). 

Hospital records were scanned using an SV 600 overhead snap scanner, pages were saved as 

soft copies (i.e., PDF files) and later printed for double data entry into an electronic database using 

EpiData (Christiansen and Lauritsen,. 2010). Each hospital admission record included patient’s date 

of birth, patient’s age, date of admission and reason for admission. The medical records included 

those from the children, female, and male wards only.  
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Gastrointestinal illnesses (GE) including diarrhoea, pneumonia-related diagnosis (hereafter 

called pneumonia), malaria and asthma cases were extracted from the hospital admission records 

database using the criteria and terms provided by South African medical doctors. Abdominal 

distention was not included in GE as it could be associated with a variety of medical conditions other 

than GE. Data were unavailable in 2006 (for reasons unknown, e.g., missing hospital admission 

books) for both hospitals as well as at one hospital for weeks 1–23 in 2002 and weeks 1–40 in 2007. 

Entries for the day of admissions were sparse for the period before 2011. Therefore, we chose the 

time period from the beginning of 2011 to the end of 2017 for the statistical analysis in this study, to 

avoid bias to the statistical function estimation that comes from artificial jumps due to the amount of 

missing data (Rust et al., 2008) or amplification of cyclic influence coupled with the reduction of 

noise due to homogenization and optimization of the raw data (Blesic et al., 2019). This provided for 

time series of 𝑁 2557 data points for data analysis. It should be emphasized that the count for total 

admissions is not necessarily the total admissions at that hospital for that day/month/year, but rather 

a total of the admissions that was captured by the hospital staff, collected by the researchers and 

entered by the data enterers. 

 

2.3. Temperature and rainfall data 

Daily temperature data from 2011 to 2017 were obtained from the South African Weather Service. 

The closest operational automatic weather station was about 50 km from the area in which the two 

public hospitals were located. Rainfall estimate data (RFE) were obtained from RFE version 2.0 

(v2.0) implemented by the National Oceanic and Atmospheric Administration’s (NOAA) Climate 

Prediction Centre (CPC, 2001). RFE v2.0 obtains the final daily rainfall estimation by combining all 

satellite data using the maximum likelihood estimation method, thereafter, Global 

Telecommunication System (GTS) station data are used to remove bias. The daily data are then 

summed up to produce decadal (10-day) totals in mm for each month at a resolution of 8 km x 8 km. 
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2.4. Air pollution reanalysis data 

Air pollution data were taken from the Copernicus Atmosphere Monitoring Service (CAMS) global 

reanalysis dataset. The CAMS consists of 3-dimensional atmospheric composition data, including 

aerosols and chemical species. It is assimilated with the European Centre for Medium range Weather 

Forecast’s (ECMWF) Integrated Forecast System (IFS). The CAMS reanalysis data consist of 25 

pressure levels with a spatial resolution of approximately 80 km at 12-hour intervals (Inness et al., 

2019; ECMWF, 2020). The CAMS reanalysis dataset uses observations including O3, NO2, CO, 

methane (CH4) and CO2 from various satellites for input into the reanalysis data. The validation of 

the CAMS reanalysis data has shown that seasonal cycles of air quality parameters compare well to 

the observed surface data (Christophe et al., 2017). In this study, the surface daily mean values of PM 

with a diameter smaller than 2.5 µm (PM2.5) and NO2 data between 2011 and 2017 for an area over 

the study site were used in the WT analysis.  

 

2.5. Wavelet Transform analysis 

Wavelet transform analysis uses localized waveform functions, called wavelets, to decompose signals 

akin to classical Fourier transformation (FT) decompositions (Singh et al., 2017). The advantages of 

the WT over FT and corresponding linked data analysis techniques lie in the method design that is 

based on two dimensional time (or space) and scale decomposition, which disassemble data with a 

basis of self-similar functions constructed by scaling (i.e. expanding by scale) and translating along 

the time (or space) of a specifically chosen basic wavelet function, largely referred to as ‘the mother 

wavelet’ (Torrence and Compo, 1998). This property enables investigation and visualisation of 

dominant modes of variability (or cycles, or peaks, which are global properties of signals) and, unlike 

in Fourier transformations, how those modes form in time (or space, a local property of a signal) 

(Torrence and Compo, 1998). This is the advantage of WT that we specifically applied in this study 

to inspect and compare local temporal behaviours of meteorological, environmental and hospital 

admissions data. 
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In general, the wavelet transform of any data series 𝑥  𝑖 1 … 𝑁  is defined as: 

𝑊 𝑎, 𝑏
√

∑ 𝑥 𝜓∗  ,     (Eq. 1) 

where (*) marks the complex conjugate, while 𝑎 and 𝑏 are scale (dilatation) and time or space 

coordinate (translation) parameters that identify dilatated and translated version of the original 

analysing wavelet 𝜓 𝑡 ; in what follows we will mention only time as a coordinate, for we used WT 

to analyse time series. The general wavelet theory assumes that the whole set of wavelets 𝜓 𝑎, 𝑏

√
𝜓  is made from a single mother wavelet; to be able to properly decompose signals, mother 

wavelet functions are expected to meet a specific set of mathematical criteria. For further theoretical 

details, we refer to original articles that introduced WT analysis such as (Morlet, 1983) or (Grossmann 

and Morlet, 1984), or to comprehensive reviews, practical and tool guides such as (Astaf’eva, 1996), 

(Torrence and Compo, 1998), or (Addison, 2002).  

According to the definitions given in Equation 1, wavelet coefficients 𝑊 𝑎, 𝑏  contain information 

about both the investigated signal and analysing wavelet function. Even if some properties of WT 

coefficients are independent from the choice of the analysing wavelet (Stratimirović et al., 2007), it 

is always important to choose the mother wavelet which is adequate for data series and the goals of 

the analysis. For analyses that focus on local time properties, as was the case in this study, it is better 

to use wavelet functions that have good localization in physical space (Frick et al., 2001). In this 

paper, we used Morlet wavelets as the analysing wavelet basis. Morlet wavelets (Goupillaud et al., 

1984) are the most commonly used complex wavelets (Aguiar-Conraria and Soares, 2014; Addison, 

2018); the analysing wavelet is a complex sinusoid in a Gaussian envelope, defined as: 

𝜓 𝑘 / 𝑒 𝑒 / .     (Eq. 2)   

In Equation 2, 𝑓  represents the order, or the central frequency of the wavelet; in this study, we used 

Morlet wavelets of the 6th order. The choice of the order 𝑓 6 is determined by the mathematical 

criteria that in theory wavelets must meet (please see explanation of admissibility criterion in (Farge, 

1992)). Morlet wavelets have to date been used to study non-stationary time series across disciplines 
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– for analysis of records in geosciences and geophysics, in remote sensing of vegetation, in 

engineering, hydrology and finance, medicine, ecology and social sciences (Rhif et al., 2019). We 

used Morlet wavelets of the 6th order to study time series in neurosciences, economy and finance, 

and in climate sciences (Stratimirovic et al., 2001; Stratimirovic et al., 2018; Blesic et al., 2019), 

alone or in comparison to other wavelet groups (Stratimirovic et al., 2001, 2007).  

In this paper, we firstly estimated the local wavelet power spectra (LWTS), the localized contributions 

of the analysed time series energy at a specific time scale 𝑎 and time point 𝑏, defined as: 

𝐸 𝑎, 𝑏 |𝑊 𝑎, 𝑏 | .       (Eq. 3) 

A plot of 𝐸 𝑎, 𝑏  is also called a scalogram and is usually presented as a colour map of intensities of 

WT coefficients (that is, |𝑊 𝑎, 𝑏 | ) in real time (x-axis) and over the time scale (y-axis) plots. Such 

presentations enable detection of locations in time of data recording when some property developed, 

which manifest as changes in |𝑊 𝑎, 𝑏 |  values at the very onset of y-axis, and investigation of how 

those events contribute to dominant modes, by following their vertical (along the y-axis) variations. 

Each vertical line in LWTS represents a local wavelet power spectrum for a particular time 𝑡 (position 

at the x-axis). Finally, LWTS can be integrated (or summed, in the case of discrete datasets) over 

time 𝑏 to produce distribution of data series energy over scale 𝑎, the global wavelet power spectrum 

(WTS):  

  𝐸 𝑎 ∑ 𝐸 𝑎, 𝑏 .      (Eq. 4) 

The WTS 𝐸 𝑎  are mathematically comparable to Fourier spectra PwS (Perrier et al., 1995). In the 

case of records with long-range autocorrelations (the long-term persistent, or LTP data), both WTS 

and PwS are due to the inherent dynamics connected to such order of the power-law type (Climate 

Dialogue, 2014). If this is the case, both functions are linear in log-log presentations, with the same 

slope – power-law exponent that can be used for further characterization of such records (Blesić et 

al., 2019). 
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In this paper, we also used the cross-wavelet transform (CWT) to investigate effects of 

meteorological and environmental variables on hospital admission data by monitoring coincidence or 

similar structures between their WT energy levels. For this purpose, we used local wavelet cross-

correlation spectra (LCWTS) that are for any two data series 𝑥  and 𝑦  (𝑖 1 … 𝑁) defined (Torrence 

and Compo, 1998; Addison, 2002) as: 

𝐶𝐸 , 𝑎, 𝑏 𝐸∗ 𝑎, 𝑏 𝐸 𝑎, 𝑏 .    (Eq. 5) 

The LCWTS are complex functions. In this study, we used their absolute values 𝐶𝐸 , 𝑎, 𝑏  that 

can be visualized and inspected in the same way as wavelet scalograms LWTS. LCWTS give local 

covariance of different time series at each moment in time and scale and thus provide local insight 

into the similarity of LWTS of the two records (Aguiar-Conraria and Soares, 2014). In analogy to the 

global wavelet spectra, a global cross-correlation wavelet spectrum can be defined as an integral or a 

sum of LCWTS over time or space. Assessments of wavelet cross-correlations are usually followed 

by assessments of phase differences between the two records 𝑥  and 𝑦 . We did not calculate phase 

differences in this study because we assumed that the public health outcomes under investigation here 

tend to follow meteorological or environmental variations (Godsmark et al., 2019; Raymond et al., 

2020).  

To obtain statistically significant results and avoid effects of records’ finite sizes on WTS 

statistics, we calculated WTSs between the time scales of 𝑎 1 and 𝑎 𝑁/5 . We used this scale 

range for visualization of our results. In drawing conclusions, however, we limited ourselves to a 

more rigorous, maximum meaningful scale of 𝑎 𝑁/10 (Koscielny-Bunde et al., 2006). To 

assess the significance of our results we used tests of significance for detection of cycles in WTS and 

CWTS functions in this study; we used the technique explained in (Torrence and Compo, 1998) 

against the analysed signals as LTP noise backgrounds. We provide illustration of the results of this 

significance testing on the wavelet spectrum of the ‘all admissions’ record from our dataset (please 

see explanation in Results below) in Supplemental material to this paper where we also explain our 
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choice of the background noise. For critical assessment of some of the results related to significance 

testing for WT please also see (Aguiar-Conraria and Soares, 2014) and (Rodríguez-Murillo and 

Filella, 2020).  

 

3. RESULTS 

Figure 2 presents all extracted admissions records used for this study (in what follows: all admissions 

records or data) for the period January 2011 to December 2017 in the form of raw data (upper panel 

of Figure 2) and their global wavelet spectrum (WTS, lower panel in Figure 2). The raw admissions 

data show visible annual variability in all records except for year 2015 that has more missing data 

than other years (123 data entries for the entire year) and less daily variability (daily entries are largely 

for the days in the first halves of each month). In addition, records after 2015 show a slight increase 

in daily number of admissions in comparison to period from 2011 to 2015. Due to the amount of 

missing data, we were cautious when interpreting events in 2015 from our results.  

The WTS spectrum of all admissions records in Figure 2 is calculated for the range of time 

scales that are statistically meaningful bearing in mind the finite size of our records (Koscielny-Bunde 

et al., 2006). The WTS shows cycles that are typical for human activity in the lower time scales (or 

high frequency) region. The cycles of five days (one working week, probably showing larger number 

of entries during the working week than over the weekends), 10 days (two working weeks), two 

weeks, and one month appear at these scales. The cycles at higher scales can still be connected to the 

pattern of human behaviour but they can also arise from other factors such as meteorological and 

environmental variables.  At these higher time scales, visible cycles in WTS appear at two, four and 

six months, followed by an annual peak. All the peaks in this record are statistically significant against 

the corresponding LTP noise as noise background, which was our choice for statistical significance 

testing, as shown in Supplemental material to this paper. The same overall significance was obtained 

for the white noise background of the stochastic AR(1) process used by (Torrence and Compo, 1998), 

while only cycles at 5 and 30 days, and seasonal cycles at 180 and 365 days are significant against 
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the (Torrence and Compo, 1998) red noise AR(1) spectrum. This result was consistent for other 

records that we analysed.   

 

 

Figure 2: All hospital admission records (regardless of disease/illness type) for the period January 2011 to December 

2017: (upper panel) raw data and (lower panel) global power spectrum. The global spectrum (WTS) presents with several 

cycles that are marked by the vertical light grey lines. The abbreviations in cycle annotations are the following: ww – 

working week, w – week, m – month and y - year.   

 

In the next step of our analysis, we investigated time series of different health outcomes that 

were listed by medical professionals as causes for admissions. We differentiated time series of GE, 

pneumonia, malaria and asthma admissions. In Figure 3, we depict raw data for admissions for those 

diagnoses, together with their wavelet power spectra. The WTSs of these different diseases or 

conditions are presented in comparison with the WTS of all admissions data, displaying different 

slopes of WTS functions (which are given on log-log graphs in Figure 3) with different cyclical 

consistency. This is especially prominent for pneumonia, malaria and asthma WTS functions that 

display prominence of higher order peaks (from 30 days onwards, particularly in the case of malaria) 
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that could arise as effects of meteorological and environmental factors. We used these WTs functions 

to partially inform the choice of health outcomes that we used for cross-correlation wavelet analysis 

and to in part guide that analysis – we investigated if some of the significant WTS cycles that appear 

in Figure 3(E) could be related to changes in meteorological or air quality variables. 

 

Figure 3: Daily admission records for (A) GE, (B) pneumonia (PN), (C) malaria (MLR), and (D) asthma or asthmatic 

conditions with (E) WTS functions for these disorders, compared with WTS of all admissions data. In (E) vertical grey 

lines serve as visual guides for significant cycles. 

 

We thus further investigated pneumonia and malaria admissions data with respect to their 

potential meteorological or environmental drivers. We excluded GE records from further analysis 

because GE data includes different GE-related complications and is a complex variable that would 

not allow for conclusions that lead to clear dependences between the environment and ‘single’ disease 

development. We also excluded asthma records because their WTS displayed significant low-
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frequency cycles (annual cycle and probably higher, multi-annual cycles); we did not have enough 

data points for asthma to be able to assess effects of these cycles in a statistically meaningful way. In 

Figure 4, we present LWTS of pneumonia and malaria admissions. We present pneumonia local 

wavelet spectra for the whole time period of 2011-2017, and malaria local wavelet spectra only for 

the period 2011-2015. Namely, in the case of the malaria data, because of a sudden increase in hospital 

admissions in 2015 and especially for the abrupt increase in cases in 2017 (see raw data in Figure 3C) 

the LWTS and WTS spectra of malaria display a prominent event over the time period from 2015 to 

mid-2017 (results not shown here). This is a methodological effect of the presence of extreme values 

in malaria record that appears due to the sensitivity of Morlet wavelets to significant singular events 

in data (Grossmann et al., 1987). It extends over all scales and significantly affects wavelet cross-

spectra that compare malaria with other variables. Therefore, to avoid false detection of cross-

correlations due to methodological limitations, we further limited the analysis that relates to malaria 

admissions to the time period 2011-2015. 

It is visible from Figure 4 that admissions for pneumonia and for malaria are statistically 

different variables. Admissions for pneumonia display complex structure, with appearance of events 

(admissions) distributed over the entire year (see structures that form at the onset of y-axis), and 

cycles (repetitions of events) forming visibly at short time scale values of less than 50 days, as well 

as at seasonal – 6-months and annual scales. In contrast, admissions for malaria are clearly events 

isolated to winter months, where they form at the start of y-axis and extend vertically to contribute to 

the dominant annual cycle and not so prominent 6-month cycle. In the case of admissions for malaria, 

and in the absence of physical causes or lower time scale structures from which those can originate, 

the appearance of a semi-annual cycle may present only as a sub-harmonic component of a dominant 

annual cycle.     
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Figure 4: LWTS for pneumonia (left) and malaria (right) admissions. Horizontal green lines at time scales (y-axis) values 

of 180 and 365 days are given to serve as visual guides.  

 

We calculated wavelet cross-correlation spectra for pneumonia and malaria records with 

datasets of maximum temperature (Tmax), rainfall, PM2.5 and NO2 concentration from observational 

or satellite data for the geographical area. We provide graphs of the raw data of meteorological and 

air quality records that we used, with their LWTSs, in the Supplemental material to this paper. In 

Figures 5 and 6, we present results of the wavelet cross-correlation analysis of hospital admissions 

for pneumonia and the four physical variables. The LCWTS given in Figure 5 indicates that the Tmax 

may probably be a factor influencing pneumonia variability at larger scales. The temperature 

seasonality, due to the restriction of statistical significance of analysed scales here, visible only at a 

6-months cycle in Figure 5, is probably influencing seasonality in appearance of this disease. In 

addition, it is visible from Figure 6 that the air quality variability probably significantly influences 

appearance of pneumonia at lower time scales. From Figure 6, it appears that changes in 

concentrations of ambient PM2.5 and NO2 may influence prevalence of pneumonia on scales of up to 

120 days, where patterns of pneumonia-air quality correlations follow in shape pneumonia LWTS 

patterns. This is particularly prominent in the period January 2014 to December 2017. 
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Figure 5: LWTS of pneumonia admissions (top), with LCWTS of pneumonia admissions in comparison to Tmax records 

(a) and rainfall data (b). Panel a) shows a visible 6-month cycle of pneumonia - Tmax coincidence that is present 

throughout the entire period of recording. We used statistically meaningful time scales of up to 256 days. 
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Figure 6: LWTS of pneumonia admissions (top), with LCWTS of pneumonia admissions in comparison to PM2.5 (a) and 

NO2 data (b). Significant cross-correlations with both air quality variables are visible at lower scales, particularly for the 

period from 2014 onwards. In panel a) a formation of a continuous 30-day cycle in cross-correlations of pneumonia with 

PM2.5 is visible. 

 

To investigate the co-dependence of admissions for pneumonia from air quality data at lower 

time scales, we narrowed the range of LCWT time scales (y-axis on LCWT graphs) to up to 64 days 
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(Figure 7).  From Figure 7, the structures forming cycles at 15 (and even 10) and 30 days are visible 

from LCWTSs of pneumonia in comparison to PM2.5 and NO2 concentrations. Considering that the 

appearance of pneumonia follows changes in air quality, the cycles at certain scales represent the 

delay of appearance of disease after physical events that may have been associated with them. In that 

respect, we added a global WTS of pneumonia records to Figure 7 (graph on the right labelled (C)), 

where we marked cycles that could be attributed to physical variables that we investigated, along with 

other influences that we did not investigate. The cycles that are not marked are probably results of 

combinations of these and other effects that cannot be clearly differentiated by the analyses in this 

study. 

 

 

Figure 7: Local wavelet cross spectra of pneumonia in comparison to PM2.5 (A) and NO2 (B) concentrations, for time 

scales on y-axes of up to 64 days. Horizontal lines at scales of 10, 15 and 30 days in (A) and (B) are given as visual 

guides. In the pneumonia WTS graph (C) cycles are marked that may result as effects of air quality or temperature. 

According to our results pneumonia may appear because of the change in air quality with 10-, 15- or 30-day delays. 
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In Figures 8 and 9, results of the cross-correlation wavelet analysis of malaria records with 

meteorological and air quality data are presented and are analogous to results in Figures 5 and 6.  It 

is visible from Figure 8 that the prominence of seasonal variations in malaria record translates into 

dominance of seasonal cycles in malaria versus Tmax cross-correlogram (Figure 8a), and to an extent 

in cross-correlograms with air quality data in Figure 9. Due to statistical significance, seasonality at 

annual time scales is outside of the range of our analysis, but we can presume that the annual 

seasonality is also present in malaria LCWTSs. The events on lower scales, when these appear, are 

probably connected to the combination of influences of temperature and rainfall. To inspect this, we 

calculated LCWTS of Tmax and rainfall (results are given in Supplemental material to this paper) – 

changes in those two meteorological variables indeed coincide almost exclusively during the rainy 

season, establishing conditions for combined effect on development of malaria. 
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Figure 8:  LWTS of malaria admissions (top), with LCWTS of malaria admissions in comparison to Tmax records (a) 

and rainfall data (b). Figure shows probable combined influence of temperature and rainfall on formation of malaria 

LWTS structures on smaller (than 6-months) time scales. 
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Figure 9:  LWTS of malaria admissions (top), with LCWTS of malaria admissions in comparison to PM2.5 (a) and NO2 

data (b). No significant cross-correlations of prevalence of malaria with air quality variability are visible at lower time 

scales. 
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Detailed analysis of Tmax and rainfall influence on malaria appearances for time scales of up 

to 128 days presented in Figure 10 suggest that intermediate cycles visible in malaria global WTS at 

30 and 60 days (Figure 10 (C)) may be related to combined effects of temperature and rainfall. It is 

visible from LCWTSs of malaria versus Tmax and rainfall data that these cycles are aperiodic, that 

is, they do not stretch across the entire time range of recording, but are isolated events caused by co-

occurrence of heat and rainfall. They appear with changing strength of cross-correlations with malaria 

prevalence during summer months of each year. 

Figure 10: Local wavelet cross spectra of MLR in comparison to Tmax (A) and rainfall (B) data, for time scales on 

y-axis of up to 128 days. MLR WTS is given in (C), in the same manner as in Figure 6. Horizontal lines at time scales 

of 30 and 60 days in (A) and (B) serve as visual guides. 

 

4. DISCUSSION 

We undertook time series analysis of daily hospital admissions from two large public hospitals in 

Limpopo Province in South Africa, in relation to meteorological and air quality ground-based records 

or satellite data variability. We were interested to disentangle meteorological or environmental 
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changes that might be associated with underlying temporal variations of disease prevalence. We used 

wavelet transform analysis for this purpose. 

All our admission records have global wavelet power spectra (WTS) of the power-law type 

(that is, those present as or can be fitted by straight lines on log-log graphs), indicating that they are 

outputs of complex sets of causes acting on different time scales (Stanley, 2000). The ‘all admissions’ 

dataset showed the existence of cycles, or peaks in WTS that result from societal organization of daily 

life (Stratimirovic et al., 2018, 2021), on admission time scales of one to several working weeks or 

weeks.  

We investigated WTS cycles that appeared on higher time scales in global admissions data in 

more detail for prevalence of pneumonia and malaria in our records. We used local wavelet cross-

correlation spectra (LCWTs) to monitor coincidences in changes of meteorological and air quality 

variables with admissions to hospitals for these diseases. It is important to note here that, while in 

general no direct causal attribution is possible based on the power spectral or cross-power spectral 

analysis (Torrence and Compo, 1998), the existence of auto- or cross-correlations between variables 

and established connections with triggered variable’s (admissions, in this paper) significant WTS 

peaks are used to suggests a possible association. By using such an approach, we were able to provide 

new (other than already known seasonal variations) statistical estimates of time delays between the 

change of weather or air pollution and hospital admissions for pneumonia and malaria. In order to 

assess uncertainties related to provided associations between the hospital admissions and 

meteorological or air quality variables time series on a case-to-case basis, it is necessary to extend in 

the future our work in time series analysis with event-based event coincidence analysis (Donges et 

al., 2016). 

The LCWTs for pneumonia data showed the existence of seasonality in the prevalence of 

pneumonia that could be ‘connected’ to changes in temperature. Even if admissions for pneumonia 

in our dataset occurred throughout all seasons, this result is in agreement with several other recent 

studies that investigated links between seasonal variations in pneumonia with changes in 
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meteorological variables (Adegboye et al., 2020; Cilloniz et al., 2017; Tian et al., 2017). Those point 

to increased association of pneumonia hospitalization with low temperature; low temperature effects 

are probably causing the annual seasonality of pneumonia in our dataset too. In addition, pneumonia 

admissions in this paper display a prominent semi-annual cycle that appears in pneumonia-Tmax 

LCWTS. The appearance of this cycle may be attributed to the impacts of the increase of rainfall in 

wet seasons on pneumonia (Adegboye et al., 2020; Xu et al., 2014) that by way of high temperature-

rainfall coincidence presents in pneumonia-Tmax LCWTSs as well. Factors influencing seasonal 

appearance of pneumonia with the change of temperature and rainfall could be caused by the human 

activity, seasonal variability in human immune system function, or effects of cold air on respiratory 

defences against infections (Fares 2013; Eccles, 2002; Adegboye et al., 2020). Our results have not 

clearly indicated lag times between changes in meteorological variables and seasonal prevalence of 

pneumonia. Adegboye et al. (2020) used time-varying distributed lag nonlinear model for the purpose 

and found time lags of 0-6 weeks for effects of low temperature and 0-8 weeks for effects of rainfall 

on hospitalization for pneumonia in North Australia.   

Our LCWTS analysis additionally showed probable ‘preconditioning’ (Zscheischler et al., 

2020) of pneumonia by changes in air quality. In a preconditioned event, a hazard such as disease can 

develop only because of a pre-existing climate- or environment-driven health condition (Zscheischler 

et al., 2020). In our data, the effects of air quality on pneumonia appeared on time scales of 10 to 15 

and 30 days. This gave a period (also called a lag or delay) of 10-15 days between the change in air 

quality and development of pneumonia or pneumonia-related diseases, with the cycle at 30 days that 

can be a multiple of this period or an independent air quality-related delay. The relation of change in 

air quality with development of respiratory diseases is well documented (Schwartz et al., 1991; 

Gruzieva et al., 2013; Wu et al., 2020). Previous research has shown that long-term exposure to 

pollutants such as PM2.5 or NO2 reduces lung function (Kwon et al., 2020; Adam et al., 2015; Chen 

et al., 2019) and can cause persistent inflammatory response that increases the risk of infection by 

viruses that target the respiratory tract (Croft et al., 2019; Domingo and Rovira, 2020). Our study 
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adds to this body of knowledge by both confirming the association between air quality and prevalence 

of respiratory diseases, and by additionally providing a statistical estimate of the time delay between 

the change in air quality and hospital admissions for pneumonia specifically. 

We found seasonal correlation in hospital admissions for malaria with temperature variations. 

Local wavelet cross-correlation analysis additionally showed that malaria is probably a multivariate 

event (Zscheischler et al., 2020) caused by co-occurrence of specific temperature conditions (namely 

heat) and rainfall. Aside from a visible seasonality in malaria prevalence, our LCWTS data showed 

that it probably follows the co-occurrence of high temperature and rainfall after a 30-day interval. 

This association was most noticeable during the summer months of November, December, January, 

and February which are characterized by high temperature and rainfall. This finding is corroborated 

by previous studies conducted in Limpopo Province that have found malaria prevalence peak during 

these months (Gerritsen et al., 2008; Ikeda et al., 2017).  

In South Africa, variations in air quality can be caused by anthropogenic aerosols, such as 

biomass burning, vehicle and industry emissions, as well as population, geography, climate and 

economy (Kumar et al., 2014). Although seasonality of these changes exists for the winter season, 

there also exist multiple factors that can cause air quality change during the entire year that therefore 

pose challenges when planning preventive public health interventions. Characterization and 

quantification of physical causes and connected delay (disease development) times for respiratory 

diseases of the kind presented in this study may be a way forward to assist such efforts.  

Our study furthermore provides a measure of time needed for all the conditions for malaria to 

develop after the onset of its meteorological driver. It thus links observed seasonality in prevalence 

of malaria with climate change and its impacts on multivariate events caused by co-occurrence of 

heat and humidity (Raymond et al., 2020). 

A few limitations were identified during this study. Firstly, all the hospital records were 

handwritten and posed numerous challenges such as faded ink and handwriting being illegible, daily 

use of books leading to torn pages, errors in recording (for example: a male patient captured in a 
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female ward) and missing data (for example: date of admission and patient age). In this way a large 

part of the collected dataset was unusable for the statistical analysis. This in turn constrained our 

analysis to time scales of up to approximately 250 days and prevented our insight into annual and 

multiannual cycles of hospital admissions data. It specifically prompted us to exclude asthma records 

from detailed statistical analysis. In our dataset, admissions for asthma records showed prominent 

seasonal variations for which we did not have enough data points to conduct statistically significant 

analysis. Additionally, we decided to exclude GE records from detailed WT analysis due to inability 

to differentiate between various gastrointestinal ailments. Therefore, we were not able to investigate 

climate or environmental drivers of, for example, diarrhoeal disease, which is a major contributor to 

the burden of infectious disease among young children in sub-Saharan Africa (WHO, 2018). This 

limitation could be mitigated in the future by digitalization of hospital records that may offer 

possibilities to flag diarrhoeal diseases and thus include it in hospital statistics. 

With respect to weather data, due to the lack of ground-based observations of air quality in 

the Giyani region, reanalysis data were used. Although the current CAMS model has smaller biases 

O3, CO and NO2 compared with observations than previous versions there are still uncertainties due 

to the inherent properties of numerical models, relating to observational datasets, parameterizations, 

and spatial and temporal resolution. It is possible that the data pre-processing averages out details of 

statistical behaviour of air quality variables in time (Bunde and Lennartz, 2012) and over space 

(Blesić et al., 2019). This leads to lack of complexity in their wavelet cross-correlations with disease 

prevalence too. In that respect it is preferable to use data with better spatial resolution whenever it is 

possible to avoid methodological uncertainty and obtain more accurate or even novel results (Blesić 

et al., 2019). 

 

5. CONCLUSIONS 

Climate and weather information are important to understand with respect to health impacts given the 

ways in which weather and climate influence health risks, outcomes, and health service delivery. In 
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this study, we provided an example of a multidisciplinary effort of climate science, data science and 

public health expertise to connect and understand prevalence of diseases such as pneumonia and 

malaria with their multiple physical (specifically meteorological) ‘causes’ to better inform public 

health interventions for health promotion. This approach can be further extended to model future 

impacts of climate change on heat-and-humidity-related hospital admissions by using future climate 

projections and obtained relations of climate with disease development (Vardoulakis et al., 2014). 

Relationships between weather, environmental and health variables identified in this study – 

i.e., preconditioning and joint occurrence – between meteorological or air quality variables and health 

outcomes, together with specified time delay parameters between the onset of a driver and 

development of a disease, may be of use as parameter inputs to and non-trivial realistic tests for the 

predictive models and early warning systems of exposure and health impacts of climate change. They 

can additionally serve as a data-led understanding to inform relevant local actors and help facilitate 

novel adaptation measures in public health systems. 
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