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Azithromycin

Azithromycin (AZM) was synthesised in the 1980s as a semi-
synthetic derivative of erythromycin. This second-generation 
macrolide gained popularity due to its increased effects on 
host-defences and chronic human diseases. Furthermore, its 
popularity increased as it showed improved spectrum of ac-
tivity, tissue pharmacokinetic characteristics and stability in an 
acid environment compared to erythromycin. It is also known 
for its activity against some Gram-negative organisms such as 
Haemophilus influenza.1-3 Although azithromycin has the same 
antibacterial mechanism of action as other macrolides, its ability 
to inhibit bacterial quorum sensing, formation of biofilm and 
mucus production further increased its esteem.1 

Chemistry

In order to provide AZM with acid stability, it consists of a 
15-membered macrocyclic lactone ring, with a sugar and 
an amino sugar attached, compared to the 14-membered 
macrocyclic lactone ring of the other macrolides. The alcohol 
and tertiary amino groups on the amino sugar (desosamine) 
are crucial for activity.5 One major disadvantage of AZM is the 

fact that it is very poorly soluble in aqueous environments  

(± 0.1 mgml-1), which contributes to its relatively low absolute 

oral bioavailability of only 37%.6-8

Poor water solubility could lead to variable dissolution rates, and 

ultimately it will detrimentally influence the bioavailability and 

subsequently the treatment effectiveness of patients.9

The amorphous solid-state form of AZM has shown improved 

aqueous solubility and intestinal membrane permeability. This 

improved solubility ranged from 1.4 to 4.2 times the solubility 

of the crystalline form compared to the amorphous solid-state 

form.9

Pharmacology

An additional methyl-substituted nitrogen atom combined into 

the lactone ring of erythromycin makes AZM a 15-membered 

lactone ring.10 Its main role is on protein synthesis whereby it 

acts by inhibiting bacterial protein synthesis through binding 

to the 50S ribosomal subunit of susceptible organisms.11 AZM’s 

convenient once-daily dosing for 3–5 days is due to its long half-

life thus sustaining high concentration of the drug in the tissue.

A 500 mg single dose of AZM achieves 37% bioavailability while 

the drugs’ delivery into tissues is up to 100-fold higher than in 

the plasma.1,12,13 Furthermore, AZM’s concentrations are high in 

macrophages and polymorphonuclear leucocytes, tonsils, lung, 

prostate, liver and lymph nodes while fat and muscle displayed 

lower concentrations.3 These high tissue and intracellular con-

centration levels are dependent on the dosing schedule of 

AZM.3,13 AZM has shown high concentrations in infected fluids 

and tissues even after there are reduced concentrations in the 

plasma.13

Azithromycin is a second-generation macrolide that was developed in the early 1980s as a semi-synthetic derivative of erythromycin. 
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Figure 1: Molecular structure of AZM4
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Antimicrobial spectrum

Due to the similarity of AZM to erythromycin, the antimicrobial 
spectrum activity extends to erythromycin susceptible, Gram-
positive organisms and is much more effective against Gram-
negative bacteria compared to the other macrolides.11

Clinical uses

AZM is effective in the treatment of a multitude of conditions.11

The benefits of AZM have shown clinical effectiveness against 
many respiratory viral conditions such as influenza and Middle 
East respiratory syndrome coronavirus (MERS-CoV) and thus its 
use against the severe acute respiratory syndrome coronavirus 2 
(SARSCoV-2) that causes the coronavirus disease-19 (COVID-19) 
is of no surprise. Furthermore, in vitro activity of AZM against 
viruses such as Ebola, Zika, rhinovirus and influenza has also 
been shown.14

Drug interactions

AZM has been considered to be a safe drug with adverse drug 
reactions that affect the gastrointestinal system and central 
and peripheral nervous system. Ventricular depolarisation (QTc) 
interval prolongation, torsade de pointes (TdP), ventricular 
tachycardia and sudden cardiac death have been associated 
with macrolides, however, the incidences have been low 
globally. Cardiotoxicity in patients with SARS-CoV-2 pneumonia, 
however, has been a concern. Furthermore, the combination 
use of hydroxychloroquine and AZM in hospitalised patients 
has shown a higher risk of cardiac adverse events with risk being 
more likely related to the hydroxychloroquine.14 Unlike other 
macrolide antibiotics such as erythromycin and clarithromycin, 
AZM is only a weak cytochrome P450 inhibitor.14

Contraindications14

•	 Hepatic dysfunction

•	 Cholestatic jaundice

•	 Sensitivity to macrolides

Caution14

•	 Hepatotoxicity

•	 Infantile hypertrophic pyloric stenosis

•	 Clostridioides difficile-associated diarrhoea

•	 Myasthenia gravis (this antibiotic may exacerbate muscle 
weakness) 

•	 Patients with the previous prolongation of QTc interval or TdP

Azithromycin for COVID‑19

In contrast to chloroquine (CQ) or hydroxychloroquine (HCQ), 
AZM antiviral activity has been shown in vitro and/or in vivo on 
a large panel of viruses: Ebola, Zika, respiratory syncytial virus, 
influenza H1N1 virus, enterovirus, and rhinovirus.15-24 Its activity 
against respiratory syncytial virus has been demonstrated in 
a randomised study in infants.21 AZM exhibited a synergistic 
antiviral effect against SARS-CoV-2 when combined with HCQ 
both in vitro,22 and in a clinical setting.24 Andreani et al. also 
reported a significant antiviral effect of AZM alone on SARS-

CoV-2.22 The mechanisms of the antiviral effect of AZM support 
a large-spectrum of antiviral activity. AZM appears to de- 
crease the virus entry into cells.19,25 In addition, it can enhance 
the immune response against viruses by several actions. 
AZM up-regulates the production of type I and III interferons 
(especially interferon-β and interferon-λ), and genes involved in 
virus recognition such as melanoma differentiation-associated 
(MDA)5 gene and retinoic acid-inducible gene (RIG)-I.18,23,24,26,27 
These mechanisms are universally involved in the innate 
response against infectious agents, and potentially against 
SARS-CoV-2. The immunomodulation properties of AZM are the 
rationale of its use against inflammatory manifestations leading 
to interstitial lung disease.28,29

AZM regulates and/or decreases the production of interleukin 
(IL)-1β, IL-6, IL-8, IL-10, IL-12, and Interferon alfa (IFN-α).21,30,31 AZM 
and HCQ both decrease the production of major inflammatory 
cytokines such as IL-1 and IL-6. However, the different profiles of 
immunomodulation between the two drugs may be crucial for 
selecting one of them for the treatment of COVID-19, in relation 
to the pathogenicity of the virus. Indeed, HCQ may decrease 
IL-2 levels but not AZM, while AZM may decrease IL-8 levels but 
not HCQ. AZM could allow a sufficient memory T-cell count to 
be maintained and therefore better immunisation.32 Another 
property of AZM is its antibacterial effect, which may be most 
interesting to prevent or treat co-infection by bacteria and SARS-
CoV-2. Recent data suggested that anaerobic bacteria of lung 
microbiota may be involved in the SARS-CoV-2 pathogenesis. 
Prevotella cells, which have been found in abnormal quantities 
in patients with severe disease, could internalise SARS-Cov2 
and enhance its pathogenicity.33-35 AZM is a possible treatment 
for Prevotella infections and decreases Prevotella-induced 
inflammation.36,37 In addition, AZM is extensively distributed into 
tissue, especially in the lungs.38

Conclusion

Azithromycin acts as an antibacterial, antiviral and an im-
munomodulator. It is used successfully in the treatment of 
respiratory conditions, urethritis and recently in COVID-19. 
Although most of the side-effects are manageable, there is a 
cardiovascular risk especially when used in combination with 
HCQ or CQ and patients need to be monitored carefully. 
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