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Abstract: Using data for the group of G7 countries and China for the sample period 1996Q1 to
2020Q4, we study the role of uncertainty and spillovers for the out-of-sample forecasting of the
realized variance of gold returns and its upside (good) and downside (bad) counterparts. We go
beyond earlier research in that we do not focus exclusively on U.S.-based measures of uncertainty,
and in that we account for international spillovers of uncertainty. Our results, based on the Lasso
estimator, show that, across the various model configurations that we study, uncertainty has a more
systematic effect on out-of-sample forecast accuracy than spillovers. Our results have important
implications for investors in terms of, for example, pricing of related derivative securities and the
development of portfolio-allocation strategies.

Keywords: uncertainty; spillovers; realized variance; gold; forecasting

JEL Classification: C22; C53; D8; Q02

1. Introduction

The role of gold as a traditional “safe haven” historically is well-established, as recently
highlighted by Boubaker et al. [1], based on the entire available history of gold prices
available from 1258 until recent years. This role of gold implies that investors recurrently
are attracted to gold due to its ability to offer portfolio-diversification and/or hedging
benefits during periods of heightened economic and financial uncertainty, geopolitical
risks, high degree of risk aversion, and/or low investor sentiment. In the wake of a series of
crises over the last decade and half, such as the global financial crisis (GFC), the European
sovereign debt crisis, “Brexit”, and the ongoing COVID-19 pandemic, there has been a
sharp rise in the number of studies (see, for example, Fang et al. [2], Demirer et al. [3,4],
Asai et al. [5], Gkillas et al. [6], Bouri et al. [7]) analyzing the role of various proxies of
uncertainty in modeling and forecasting gold-market volatility. The reader is referred to the
references cited in these papers for earlier studies in this area. The interest of researchers in
inspecting the link between uncertainty and gold-market volatility is understandable
because, during episodes of recurring crises and associated heightened uncertainties
across various dimensions, accurate forecasts of gold-market volatility are of paramount
importance to investors in the pricing of related derivative securities and for devising
portfolio-allocation strategies [8,9].

Turning back now to the existing literature on proxies of uncertainty and gold-market
volatility, Demirer et al. [3], studied the in- and out-of-sample predictive value of time-
varying risk aversion of the United States (U.S.) for daily volatility of gold returns via an
extended version of the heterogeneous autoregressive (realized) volatility (HAR-RV) model.
They showed that time-varying risk aversion often captures information useful for out-of-
sample prediction of realized volatility not already contained in other predictors, namely
higher-moments, jumps, gold returns, and a leverage effect, as well as a newspapers-based
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index of economic policy uncertainty of the U.S. Along similar lines, Demirer et al. [4]
pointed out that a U.S. financial risk shock derived from the Chicago Board Options
Exchange (CBOE)’s Volatility Index (VIX), incorporated into a high-frequency (daily) data
structural model of the oil market, is important in forecasting gold (realized) volatility on
its own (though including oil price shocks in the model provides additional forecasting
power). The VIX, often called a fear index or fear gauge, is a popular measure of the
stock market’s expectation of volatility based on the S&P 500 index options, and often
is considered a very good proxy of (financial) uncertainty prevailing in the U.S. Gkillas
et al. [6], in turn, using a quantiles-dependent version of the HAR-RV model, show that
U.S. newpapers-based measure of geopolitical risks can forecast daily volatility of the gold
market, especially at longer horizons, beyond the information contained in policy-related
uncertainty of the U.S. In this regard, it should be noted that Asai et al. [5] were more
interested in modeling and forecasting the covariance matrix of the returns of crude oil
and gold futures, and, in the process, depict the role of the geopolitical risks indicator in
forecasting covolatilities of these two commodities. Finally, Bouri et al. [7] analyzed the
predictive power of a daily newspaper-based index of U.S. uncertainty associated with
infectious diseases (EMVID) for gold-market volatility. These authors documented that
incorporating EMVID into a forecasting setting significantly improves the forecast accuracy
of the volatility of gold-returns at short-, medium-, and long-run horizons, based on the
HAR-RV model.

As can be seen, a general tendency of the above studies is to primarily incorporate
the role of U.S.-based measures of uncertainty in predicting movements of gold-market
volatility, barring Fang et al. [2]. These authors highlighted the importance of a newspapers-
based measure of global economic policy-related uncertainty derived from 22 countries,
using the mixed data sampling generalized autoregressive conditional heteroskedasticity
(MIDAS-GARCH) model, in forecasting gold-returns volatility. The focus on U.S. uncer-
tainty certainly reflects to some extent the dominance of the U.S. as a major player in the
gold market, and global assets market in general, besides the fact that the GFC originated
in the U.S. Based on 2019 data on production volumes derived from the Metals Focus of
the World Gold Council, the U.S. is the fourth largest gold producer. However, as has been
pointed out by Jones and Sackley [10], Raza et al. [11], and Beckmann et al. [12], uncer-
tainties associated with other economies within the G7 (comprising of Canada, France,
Germany, Italy, Japan, the United Kingdom (UK), and the U.S.), and China, also tend
to drive gold-market volatility as many of the recent major crises (for example, the Eu-
ropean sovereign debt crisis, “Brexit”, COVID-19) originated in these economies, and
also due to the importance of their position as producers, exporters, and importers in the
gold market. For further details, see https://www.gold.org/goldhub/data/historical-
mine-production, https://www.worldstopexports.com/gold-exports-country/, and https:
//www.worldstopexports.com/international-markets-for-imported-gold-by-country/ (ac-
cessed on 2 July 2021). Against this backdrop, in this paper, we forecast the quarterly
realized variance (RV) of gold-price returns, and, in the process of doing so, we consider
not only the role of uncertainties of all the G7 countries and China but also the respective
international spillovers of uncertainty to the rest of the world, over the period from 1996Q1
to 2020Q4. Accounting for the total amount of international uncertainty spillovers of
these major economies onto other countries, evidence of which is widespread (see, for
example, Klössner and Sekkel [13], Yin and Han [14], Antonakakis et al. [15], Kang and
Yoon [16]), renders it possible to better model worldwide uncertainty and its influence on
global gold demand in a parsimonious manner, i.e., without incorporating the information
from uncertainties of multiple other (135 to be exact, based on our data source, which we
shall discuss later in detail) countries in the world. This approach is further vindicated by
the fact that the network of international spillovers is so detailed that it has led to global
convergence in terms of uncertainty (Christou et al. [17]). The motivation to look at the
need to consider uncertainty at the global level, rather than just the U.S., also emanates
from the work of Fang et al. [2] discussed above.

https://www.gold.org/goldhub/data/historical-mine-production
https://www.gold.org/goldhub/data/historical-mine-production
https://www.worldstopexports.com/gold-exports-country/
https://www.worldstopexports.com/international-markets-for-imported-gold-by-country/
https://www.worldstopexports.com/international-markets-for-imported-gold-by-country/
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We measure RV in terms of the sum of squared daily returns over a quarter, which
provides an observable (unconditional) metric of volatility, which is otherwise a latent
process, and, hence, follow the existing literature discussed above in terms of the measure
of volatility. To the best of our knowledge, this is the first paper that evaluates the out-
of-sample forecasting power of uncertainties of the G7 and China and its international
spillovers for gold returns variance. Further, since market agents care not only about
the nature of variance, but also about its level, with traders making distinctions between
upside (“good”) and downside (“bad”) variance (Giot et al. [18]), we also forecast good
RV (the sum of squared daily positive returns only over a quarter) and bad RV (the sum
of squared daily negative returns only over a quarter), besides overall RV. Given that
our data sample spans a 25-year period (1996–2020) of 100 quarterly observations, and
we have 16 predictors, besides one lag of RV that captures the well-known persistence
of RV associated with the gold market (Asai et al. [19]), as our econometric approach,
we use a machine-learning technique known as least absolute shrinkage and selection
operator (Lasso), proposed by Tibshirani [20]. The Lasso estimator is a well-established
regression technique that aims at both predictor selection and model regularization (that is,
the process of limiting the dimension of a forecasting model so as to prevent overfitting) in
order to enhance the prediction accuracy and interpretability of the resulting forecasting
model. Our paper, thus, adds to the already existing large literature on the predictability of
gold-returns volatility based on a wide array of models and macroeconomic, financial, and
behavioral predictors (see, for example, Pierdzioch et al. [21], Fang et al. [22], Nguyen and
Walther [23], Salisu et al. [24], Bonato et al. [25]) by considering the role of uncertainties
of major economies of the world and the associated international spillovers. We also
would like to emphasize that our aim was not to introduce new econometric or forecasting
methods in this paper but to provide a novel and important application of forecasting RV
of the gold market, based on the informational content of uncertainty of major economies,
and also the corresponding international spillovers to the rest of the world.

The remainder of the paper is organized as follows: In Section 2, we describe our data.
In Section 3, we briefly discuss the forecasting models, along with the Lasso approach
used to estimate these models. In Section 4, we present the results from our forecasting
experiment. In Section 5, we conclude.

2. Data

As far as the gold price is concerned, we use daily data of the U.S. dollar-based (per
troy ounce) gold-fixing price (at 3:00 P.M. London time) in the London Bullion Market.
The data is downloadable from the FRED database of the Federal Reserve Bank of St.
Louis at: https://fred.stlouisfed.org/series/GOLDPMGBD228NLBM (accessed on 2 July
2021). After transforming the data to daily log-returns, we compute quarterly overall,
upside (“good”), and downside (“bad”) realized variances by summing up the daily
squared returns, positive returns only, and negative returns only over a specific quarter,
and Figure 1 plots the realized variance along with its “good” and “bad” counterparts.
The peak in the realized variance in the final quarter of the year 2008 witnesses the impact
of the Global Financial Crisis on gold-price dynamics. Figure 2 plots the corresponding
autocorrelation functions. The autocorrelation functions show that using a first-order
autocorrelated process as our benchmark model should suffice to capture the persistence
of realized variance.

https://fred.stlouisfed.org/series/GOLDPMGBD228NLBM
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Figure 1. The Data. Note: RV: Realized variance. RVB: Downside (“bad”) realized variance. RVG:
Upside (“good”) realized variance.
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Figure 2. Autocorrelation Functions. Note: RV: Realized variance. RVB: Downside (“bad”) realized variance. RVG: Upside
(“good”) realized variance.

One must realize that uncertainty is a latent variable, and, hence, researchers need to
find ways to measure it. In this regard, besides the widely-studied metrics of uncertainty
associated with financial markets (such as implied-volatility indices, like the popular VIX,
realized volatility, idiosyncratic volatility of equity returns, corporate spreads), there are
primarily three approaches to quantify uncertainty (Gupta et al. [26]): (1) A text-based
approach builds on the idea that uncertainty can be measured by searching major newspapers
or country reports for terms related to (economic and policy) uncertainty, and then to use the
results to construct indices of uncertainty; (2) another approach is to measure uncertainty by
estimating stochastic volatility extracted from various types of small and large-scale structural
models related to macroeconomics and finance; and (3) yet another approach is to compute
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uncertainty based on the dispersion of professional forecaster disagreement. In our empirical
research, we use the first approach outlined by Ahir et al. [27]. Our decision to use the first
approach reflects that it does not require any complicated estimation of a large-scale model
and, hence, is not model-specific. Besides, the uncertainty data, and the associated spillover
of the G7 economies and China on to other economies in the world, are available publicly for
download (https://worlduncertaintyindex.com/data/ (accessed on 2 July 2021)).

Ahir et al. [27] construct quarterly indices of economic uncertainty for 143 countries
(37 countries in Africa, 22 in Asia and the Pacific, 35 in Europe, 27 in the Middle East
and Central Asia, and 22 in the Western Hemisphere, of which we use 8 for the G7 and
China), from 1996 onwards using frequency counts of “uncertainty” (and variants thereof)
in the quarterly Economist Intelligence Unit (EIU) country reports. The EIU reports discuss
significant political and economic developments in a country, and also lay out analyses
and forecasts of political, policy, and economic conditions. The analyses are undertaken by
country-specific teams of analysts and a central EIU editorial team. In order to make the
uncertainty indexes comparable across the large number of countries, the raw counts are
scaled by the total number of words in each report. In addition to the uncertainty indexes
of each of the 143 countries, the dataset of Ahir et al. [27] also comprises the uncertainty
spillover metrics for the G7 and China, which, in turn, determines the choice of the countries
that we analyze in our empirical study, and the quarterly sample period of 1996Q1 to
2020Q4, which is the latest available data at the time of writing this paper. Specifically, the
eight (G7 plus China) uncertainty spillover indexes of one of these particular countries
to the remaining 142 countries is computed by counting the percent of word “uncertain”
(or its variant) which is mentioned within a proximity to a word related to a particular
G7 country or China in the EIU country reports. The spillover index is then rescaled by
multiplying with 1,000,000, with a higher number, suggesting higher uncertainty related to
the specific country involving the G7 or China, and vice versa. For further details regarding
the words related to the G7 and China that are used, the reader is referred to Ahir et al. [27].
We use the cross-sectional sum over time to obtain the total uncertainty spillover (on to the
remaining 142 economies) indexes of each of these 8 countries.

We would like to point out that the data frequency we use for our analysis, i.e.,
quarterly, and the sample period, i.e., 1996Q1 to 2020Q4, is purely driven by the availability
of data of the metrics of uncertainty of the G7 countries and China, and its associated
spillovers to the rest of the world.

3. Methodologies

For the forecasting analysis, we use a parsimonious autoregressive model as our
benchmark model. The benchmark model uses an intercept and the contemporaneous
(that is, period-t) realized variance as predictors. In order to study the predictive value of
uncertainty, U, and international spillovers, S, we then enlarge the benchmark model as
specified in the following equations:

RVt+h = β0 + βRVt + εt+h, (1)

RVt+h = β0 + βRVt +
nu

∑
j=1

βu,jUt,j + εt+h, (2)

RVt+h = β0 + βRVt +
ns

∑
j=1

βs,jSt,j + εt+h, (3)

RVt+h = β0 + βRVt +
nu

∑
j=1

βu,jUt,j +
ns

∑
j=1

βs,jSt,j + εt+h. (4)

The index h denotes the forecast horizon, εt+h denotes an error term, and nu and ns
denote the number of uncertainties and international spillovers. For longer-term forecasts
(that is, for h > 1), we use, as in a long-horizon regression, the average realized variance
over the forecast horizon as our dependent variable. We set h = 1,2, and 4 and, thereby,

https://worlduncertaintyindex.com/data/
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study the predictive value of uncertainty and spillovers over a short term, a medium-term,
and a long term-forecast horizon. In this process, we structure the data matrix such that
the total number of forecasts is the same across all three forecast horizons.

In order to measure the realized variance of gold returns, we use the sum of squared
daily returns per quarter. In other words, we use the following widely-studied classical
estimator of RV (see, e.g., Andersen and Bollerslev [28]):

RVt =
M

∑
i=1

r2
t,i, (5)

where rt,i denotes the daily return (computed as the log-difference in consecutive daily
prices), and i = 1, . . . , M denotes the number of trading days per quarter. In one of our
robustness analyses, we shall also use

√
RV as our dependent variable. In empirical appli-

cations, researchers often use the term “volatility” to refer to the square root of RV. Finally,
we also consider upward (“good”, RVG) and downward (“bad”, RVB) realized variance
as dependent variables in our forecasting models. Like Barndorff-Nielsen et al. [29], we
compute bad and good realized variance as follows (1 = indicator function):

RVGt=
M

∑
i=1

r2
t,i 1[(rt,i)>0], (6)

RVBt=
M

∑
i=1

r2
t,i 1[(rt,i)<0]. (7)

Given that the dimension of our forecasting models becomes relatively large (relative
to the length of the sample period) once we add the numerous uncertainties and inter-
national spillovers to the benchmark forecasting model, we estimate the core model by
the standard ordinary-least-squares technique and the extended models by means of the
least absolute shrinkage and selection operator (Lasso) estimator. The Lasso estimates of
the coefficients, β, βu,1, βu,2, . . . , βs,1, βu,2, . . . minimize the following expression (N = the
number of observations; for a textbook exposition of the Lasso, see, for example, Hastie
et al. [30]):

N

∑
t=1

(
RVt+h − β0 − βRVt −

nu

∑
j=1

βu,jUt,j −
ns

∑
j=1

βs,jSt,j

)2

+ λ

(
|β|+

nu

∑
j=1
|βu,j|+

ns

∑
j=1
|βs,j|

)
. (8)

The minimization problem specified in Equation (8) shows that the Lasso estimator
shrinks the magnitude of the coefficient vectors toward zero, where shrinkage takes place
under the L1 norm. When the shrinkage parameter, λ, is sufficiently large, the Lasso
estimator shrinks and even sets to zero some of the coefficients. In other words, the Lasso
estimator can be interpreted as a predictor-selection technique. Because the choice of
a “good” value of the shrinkage parameter is crucial, we use 10-fold cross validation to
identify the value of the shrinkage parameter, λ, that minimizes the minimum mean cross-
validated error (using instead 5-fold cross-validation as a robustness check gave results,
available from the authors upon request) that are qualitatively similar to those we shall
report in Table 1 and, thus, corroborated our main finding that uncertainty tends to play
a more prominent role than international spillovers for out-of-sample forecasting of gold
RV.). All estimations are carried out in the R environment for statistical computing (R Core
Team [31]), and the R add-on package “glmnet” (Friedman et al. [32]) is used for estimation
of the Lasso.

We use a a recursively expanding estimation window to compute out-of-sample
forecasts, where we use data for a training period of 10 years to start the estimations. In
order to test for significant differences in forecasting performance across our four different
forecasting models, we use the Clark and West test [33]. The test is implemented by
estimating a regression of the quantity f̂t+h = (RVt+h− R̂VA,t+h)

2− [(RVt+h− R̂VB,t+h)
2−

(R̂VA,t+h − R̂VB,t+h)
2] on a constant. A hat above a variable denotes a forecast of RV, and
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the subindices A and B refer to the two models being studied. Model A denotes the
benchmark model with an intercept and the period-t realized variance as predictors, while
B denotes the larger model that features, in addition, uncertainty and/or international
spillovers. The null hypothesis of the CW test is that the models under scrutiny produce
an equal out-of-sample mean-squared prediction error (MSPE), the alternative hypothesis
is that Model B produces a smaller MSPE than Model A. The CW test, hence, is a one-sided
test, which is standard when comparing forecasts from nested forecasting models. The
null hypothesis can be rejected if the t-statistic of the constant in this regression model is
significantly positive. We use Newey-West robust standard errors to assess the significance
of the t-statistic.

4. Empirical Results

The forecasting results (p-values of the CW test) that we report in Panel A of Table 1
show that, at the medium and especially at the long forecasting horizon, uncertainty does
have predictive value for subsequent realized variance. The test results for international
spillovers are only weakly significant at the short forecast horizon. The significance of the
test results for uncertainty strengthens when we use a somewhat longer training period
in Panel B. The test results for international spillovers also strengthen, especially at the
medium forecasting horizon, but overall remain weak. We report in Panel C results for a
shorter out-of-sample period, where we drop some forecasts at the end of the sample period
in order to control for the potential exceptional impact of the recent COVID-19 pandemic.
The results show that uncertainty has predictive value mainly at the long forecasting
horizon, while test results for international spillovers, in turn, are significant at the short
horizon. We conclude that the recent COVID-19 pandemic has strengthened the predictive
value of uncertainty for realized variance. Finally, we observe that adding simultaneously
both uncertainty and international spillovers as predictors to the forecasting model (column
“All”, which is this forecasting model, features both uncertainty and international spillovers
as predictors; the benchmark model still uses an intercept and the contemporaneous
realized variance as predictors) does not improve forecasting performance in a systematic
way. Only the test results for the medium and long forecasting horizon are significant, and
only when we study the longer training period. To sum up, the test results support the
view that uncertainty has predictive value for realized variance, mainly at the medium
and long forecasting horizon, while the evidence of an effect of spillovers on subsequent
realized variance mainly is centered at the short forecasting horizon.

Table 2 summarizes, as a robustness check, root-mean-squared-forecasting error
(RMSFE) ratios and mean-absolute-forecasting error (MAFE) ratios. The ratios are de-
fined as the RMSFE (MAFE) of the benchmark model (that is, the model that features
an intercept and the period-t realized variance as predictors) and the extended model
(the model that features also uncertainty and/or international spillovers). With one ex-
ception, the ratios exceed unity and, thus, indicate a superior forecasting performance of
the extended model. Moreover, the ratios are (again with one exception) larger for the
models that feature uncertainty than for the models that feature international spillovers
as additional predictors. Combining uncertainty and international spillovers in a unified
model (that is, using “All” predictors) yields better results than the benchmark model, but
using the “All” predictors model rather than focusing on uncertainty alone is advantageous
in terms of forecasting performance only for the short forecasting horizon.
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Table 1. Baseline forecasting results.

Panel A: Training Period 10 Years

Model h = 1 h = 2 h = 4

Uncertainty 0.1382 0.0978 0.0494
Spillovers 0.0920 0.1174 0.1811

All 0.1483 0.1228 0.1116

Panel B: Longer training period

Model h = 1 h = 2 h = 4

Uncertainty 0.1442 0.0121 0.0007
Spillovers 0.0851 0.0847 0.1182

All 0.2619 0.0729 0.0179

Panel C: Shorter out-of-sample period

Model h = 1 h = 2 h = 4

Uncertainty 0.1420 0.1102 0.0564
Spillovers 0.0847 0.1084 0.1730

All 0.1457 0.1183 0.1032
Note: CW test: p-value (based on Newey–West robust standard errors) of the Clark–West test. For the longer
training (shorter out-of-sample) period, we drop the first (last) 20 (5) out-of-sample forecasts. All: The forecasting
model features both uncertainty and international spillovers as predictors.

Table 2. Additional forecasting statistics.

Panel A: RMSFE Ratios

Model h = 1 h = 2 h = 4

Uncertainty 1.0108 1.0634 1.0684
Spillovers 1.0161 1.0374 1.0454

All 1.0617 1.0352 1.0400

Panel B: MAFE ratios

Model h = 1 h = 2 h = 4

Uncertainty 1.0257 1.0926 1.0893
Spillovers 0.9982 1.0429 1.0267

All 1.0451 1.0286 1.0435
Note: RMSFE: Root-mean-squared-forecasting error. MAFE: Mean-absolute-forecasting error. The RMSFE-
ratio (MAFE-ratio) is defined as the RMSFE (MAFE) of the benchmark model (the model that features an
intercept and the period-t realized variance as predictors) and the extended model (the model that features also
uncertainty and/or international spillovers). A value of the ratio larger than unity indicates a superior forecasting
performance of the extended model. All: The forecasting model features both uncertainty and international
spillovers as predictors.

Table 3 summarizes the test results for good and bad realized variance. In terms of bad
variance, we again observe significant test results for uncertainty at the medium and long
forecast horizons in Panels A to C (and in Panel B, where we use a longer training period,
also at the short forecast horizon). Further, the test results for international spillovers
are significant at the short and the medium forecast horizons in Panel A and for all three
forecast horizons in Panel C (where we delete some forecasts computed at the end of the
sample period). In addition, the test results are significant when we add both uncertainty
and international spillovers at the same time to the forecasting model. Turning to the
test results for good variance, we find that uncertainty has significant predictive value for
realized variance mainly at the long forecast horizon (Panels D to F), while the test results
for international spillovers are statistically insignificant (with one exception, but only at
the 10% level of significance). There is also some evidence, mainly concentrated at the long
forecasting horizon, that the combined use of uncertainty and international spillovers in a
unified forecasting model has predictive value.
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Table 3. Forecasting results for upside and downside volatility.

Panel A: Bad Realized Variance

Model h = 1 h = 2 h = 4

Uncertainty 0.1462 0.0235 0.0036
Spillovers 0.0658 0.0733 0.1045

All 0.0729 0.0664 0.0374

Panel B: Bad realized variance (longer training period)

Model h = 1 h = 2 h = 4

Uncertainty 0.0852 0.0274 0.0036
Spillovers 0.2200 0.1191 0.1204

All 0.1250 0.1362 0.0714

Panel C: Bad realized variance (shorter out-of-sample period)

Model h = 1 h = 2 h = 4

Uncertainty 0.1613 0.0362 0.0089
Spillovers 0.0391 0.0472 0.0790

All 0.0508 0.0555 0.0338

Panel D: Good realized variance

Model h = 1 h = 2 h = 4

Uncertainty 0.1787 0.1133 0.0888
Spillovers 0.1343 0.2013 0.1355

All 0.1738 0.1121 0.0824

Panel E: Good realized variance (longer training period)

Model h = 1 h = 2 h = 4

Uncertainty 0.2398 0.0992 0.0012
Spillovers 0.0939 0.3320 0.1332

All 0.1336 0.0198 0.0348

Panel F: Good realized variance (shorter out-of-sample period)

Model h = 1 h = 2 h = 4

Uncertainty 0.1742 0.1116 0.0858
Spillovers 0.1353 0.1949 0.1132

All 0.1800 0.1087 0.0699
Note: CW test: p-value (based on Newey–West robust standard errors) of the Clark–West test. For the longer
training (shorter out-of-sample) period, we drop the first (last) 20 (5) out-of-sample forecasts. All: The forecasting
model features both uncertainty and international spillovers as predictors.

Table 4 summarizes the results for
√

RV. Again, we find evidence that uncertainty has
predictive value for

√
RV at the medium and, especially, the long forecast horizon. The

test results for international spillovers, in contrast, are insignificant. On balance, thus, our
empirical findings suggest that the predictive value of uncertainty for realized variance is
more robust to the specific details a researcher uses to develop a forecasting model than
the predictive value of international spillovers.

As yet another robustness check, we report in Table 5 the results we obtain when
we forecast the natural logarithm of RV, as one often encounters such a specification in
earlier literature. The test results lend further support to the notion that uncertainty adds
to predictive value of the forecasting model at the medium and long forecast horizon. The
test results for international spillovers, in turn, are not significant, corroborating that the
predictive value of international spillovers is more sensitive to the details of the forecasting
model than the predictive value of uncertainties.
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Table 4. Forecasting results for
√

RV.

Panel A: Training Period 10 Years

Model h = 1 h = 2 h = 4

Uncertainty 0.1481 0.0989 0.0602
Spillovers 0.1333 0.1469 0.2599

All 0.1523 0.1223 0.0731

Panel B: Longer training period

Model h = 1 h = 2 h = 4

Uncertainty 0.1739 0.0618 0.0081
Spillovers 0.2299 0.2389 0.2453

All 0.2579 0.0651 0.0079

Panel C: Shorter out-of-sample period

Model h = 1 h = 2 h = 4

Uncertainty 0.1463 0.1077 0.0584
Spillovers 0.1300 0.1324 0.2381

All 0.1485 0.1185 0.0727
Note: CW test: p-value (based on Newey–West robust standard errors) of the Clark–West test. For the longer
training (shorter out-of-sample) period, we drop the first (last) 20 (5) out-of-sample forecasts. All: The forecasting
model features both uncertainty and international spillovers as predictors.

Table 5. Forecasting results for ln RV.

Panel A: Training Period 10 Years

Model h = 1 h = 2 h = 4

Uncertainty 0.9649 0.0120 0.0434
Spillovers 0.1111 0.7883 0.9299

All 0.7094 0.0250 0.0084

Panel B: Longer training period

Model h = 1 h = 2 h = 4

Uncertainty 0.6251 0.0184 0.0383
Spillovers 0.0741 0.4753 0.6700

All 0.4563 0.0187 0.0076

Panel C: Shorter out-of-sample period

Model h = 1 h = 2 h = 4

Uncertainty 0.9595 0.0210 0.0651
Spillovers 0.1074 0.7155 0.9003

All 0.5887 0.0292 0.0145
Note: CW test: p-value (based on Newey–West robust standard errors) of the Clark–West test. For the longer
training (shorter out-of-sample) period, we drop the first (last) 20 (5) out-of-sample forecasts. All: The forecasting
model features both uncertainty and international spillovers as predictors.

Where does the predictive value of uncertainty come from? In order to shed light on
this question, we report in Table 6 the inclusion of the various predictors (in percent) in
the Lasso models. The results show that, at the medium and long forecasting horizons,
uncertainties originating in China and the U.S. are important sources of predictive value. In
addition, Italy and, to a lesser extent, France, appear to be important sources of uncertainty,
which is likely to reflect the impact of the European sovereign debt crisis. The international
spillover predictors, in turn, are less often included in the forecasting models, as one would
have expected given the results of the CW tests. Interestingly, the Lasso estimator selects at
the short forecasting horizon relatively often the international spillovers from Italy and, at
the medium forecasting horizon, from Germany and France.
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Table 6. Inclusion of predictors in the Lasso model.

Horizon IN AR1 UN_CAN UN_CHI UN_FRA UN_GER UN_ITA UN_JAP UN_UKI UN_USA SP_CAN SP_CHI SP_FRA SP_GER SP_ITA SP_JAP SP_UKI SP_USA

h = 1 100 100.00 0.00 14.29 1.79 0.00 10.71 1.79 0.00 5.36 0.00 3.57 0.00 5.36 48.21 10.71 0.00 0.00
h = 2 100 96.43 21.43 76.79 1.79 0.00 46.43 0.00 10.71 55.36 0.00 1.79 26.79 42.86 41.07 19.64 0.00 17.86
h = 4 100 91.07 41.07 91.07 51.79 1.79 51.79 0.00 7.14 64.29 0.00 0.00 0.00 3.57 30.36 0.00 7.14 21.43

Note: Inclusion of predictors (in percent) in the Lasso models. IN: Intercept. UN: Uncertainty. SP: Spillover

5. Conclusions

Being based on a dataset for the group of G7 countries and China, our results show
that uncertainty and international spillovers have predictive value in an out-of-sample
forecasting exercise for the realized variance of gold returns. The predictive value of
uncertainty is mainly concentrated at the medium and long forecasting horizons, while
the predictive value of international spillovers is concentrated at the short and medium
forecasting horizons. Moreover, our results show that the predictive value of uncertainty
is more robust across the various model specifications that we have studied than the
corresponding role of international spillovers, which is likely due to the fact that, besides
being major players on the demand- and supply-side of the gold market, the central banks
of the G7 and China features prominently in the Top 10 countries in terms of holding of
gold reserves, according to the recent figures from the World Gold Council. China, Italy,
and the U.S. appear to be important sources of uncertainty that help to predict the realized
variance of gold returns.

With volatility being a key input in investment decisions (Poon and Granger [34]),
the predictive value of uncertainties emanating in the G7 and China for gold-returns
variance should be of paramount importance to traders in the gold market in gauging
accurately the risks of investing in this precious metal, and, in the process, construct optimal
portfolios. As discussed in the introductory section of this paper, higher uncertainty is a key
determinant of gold-market volatility due to more trading in this precious metal, and since
uncertainty is a latent variable, gold-price movements can be used as a metric of global
uncertainty by policymakers (Piffer and Podstawski [35]), and design in a timely way
appropriately tailored fiscal and monetary policy responses to shelter economies from the
well-established recessionary impact of uncertainty (Gupta et al. [36]). Having pointed out
the important implications of our results, it is also necessary to acknowledge one limitation
of our study in terms of the low-frequency of our data. Ideally, we would have preferred to
conducted the forecasting exercise of realized variance of gold at a higher frequency (as
done in the existing literature using primarily U.S.-based proxies of uncertainties), as this
would be of greater importance to investors and policymakers in making timely portfolio
and policy decisions, but the uncertainty spillover indexes are available only quarterly and,
hence, constrain us in our ability to provide higher-frequency (say, for example, daily or
monthly) results. In addition, we could have utilized a MIDAS-GARCH framework, too,
for providing gold volatility forecasts at a daily frequency, but then this framework would
not have been able to handle as many as 16 of the uncertainty indexes simultaneously as
used by us in this paper.

As part of future research, it is interesting to go beyond our analysis and to study
other prominent precious metals, like platinum, palladium, rhodium, and silver, which,
too, have been known to have safe-haven characteristics (Baur and Smales [37]), based on
updated data that stretches into 2021, if and when available, for our uncertainty-based
predictors, to better capture the role of heightened global uncertainty due to the ongoing
impact of the COVID-19 pandemic.
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