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Differences in individual locomotor activity patterns may be linked to a number
of ecological factors, such as changes in ambient temperature or photoperiod.
Observations on subterranean mammals suggest that they exhibit diel rhythms despite
the lack of visual cues in their underground burrows, but it is unknown how seasonality
and individual characteristics affect their activity. In this study we use RFID technology
to monitor daily activity patterns of wild, social Natal mole-rats (Cryptomys hottentotus
natalensis) during the summer and winter to investigate how their activity varies with
season and whether their activity depends on individual characteristics such as body
mass, sex and reproductive status. We found that in winter, individuals were more active
during the time with the highest soil temperatures, whereas in summer, they showed
a bimodal activity pattern during early morning and late afternoon coinciding with
cooler soil temperatures. Individual characteristics, including reproductive status, did
not affect general activity indicating that reproductive and non-reproductive individuals
contribute equally to cooperative behaviors. We suggest that the activity patterns may
be a behavioral adaptation to avoid extreme burrow temperatures and a mechanism
to maintain a stable core body temperature. We highlight the advantages of RFID
technology to study wild small mammal movements.

Keywords: locomotor activity, temperature, subterranean mammal, mole-rat, RFID, circadian rhythm

INTRODUCTION

Animal locomotor activity patterns have been the subject of much interest in the study of animal
behavior. These activity patterns may be influenced by endogenous (i.e., intrinsic) or exogenous
(i.e., environmental) factors, which may or may not persist under constant conditions (Hazlerigg
and Tyler, 2019). When a biological rhythm persists in a near-24-h period under constant
conditions (e.g., complete darkness), the circadian rhythm is assumed to “free run,” showing
evidence for control by a biological clock (Benstaali et al., 2001). Conversely, the lack of an
endogenous clock may result in the degradation of rhythmic patterns under constant conditions
(Hazlerigg and Tyler, 2019). Biological clocks conform to daily and predictable exogenous cues
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known as zeitgebers in a process referred to as entrainment in
which the clock’s rhythm becomes equal to the cycle of the
zeitgeber (Johnson et al., 2003).

It is widely accepted that the light-dark cycle (i.e., rising
and setting of the sun) is the most common zeitgeber for
the entrainment of circadian rhythms (Benstaali et al., 2001).
Ambient temperature may also affect circadian rhythms in both
homeothermic (e.g., most mammals) and heterothermic (e.g.,
birds, squamates, some mammals) vertebrates (Rensing and
Ruoff, 2002; Refinetti, 2015). Some mammals dwelling in arid
or arctic regions exhibit adaptive heterothermy, where the core
body temperature may fluctuate with ambient temperature under
certain conditions (Cain et al., 2006; Williams et al., 2012;
Allali et al., 2013; Farsi et al., 2020b). For example, camels
(Camelus dromedarius) exhibit heterothermy when dehydrated
(Allali et al., 2013) and arctic ground squirrels (Urocitellus
parryii) during hibernation (Williams et al., 2012). Recently
it has been discovered that ambient temperature instead of
the light-dark cycle may entrain circadian rhythms in body
temperature, melatonin cycles and locomotor activity in some
of these species (Allali et al., 2013; Farsi et al., 2020a,b). While
ambient temperature may not be as strong a zeitgeber compared
to light-dark cycle in homeothermic mammals, many will adjust
their activity patterns in response to ambient temperature to
avoid exposure in harsh environments (Cain et al., 2006; Roll
et al., 2006, however see Farsi et al., 2020b). For example, arid
dwelling rodents avoid the hottest period of the day and by
becoming nocturnal (Randall, 1993; Roll et al., 2006). Lastly,
biotic cues, such as feeding time, food availability, social cues,
or predation, may also affect activity patterns (Mistlberger and
Skene, 2004; Halle, 2006; Getz, 2009; Refinetti, 2015; Beale
et al., 2016). Individuals in a population may synchronize their
activity patterns via social cues to be active nearly simultaneously
even in complete darkness (e.g., under snowfall, Korslund,
2006), and isolated individuals may exhibit asynchronous activity
patterns (Getz, 2009; Lövy et al., 2013). It has been suggested
that simultaneous activity in voles provides an individual with
protection against predation due to “safety in numbers” or
possibly confusing predators by a “swarming” effect (Gerkema
and Daan, 1985; Inman and Krebs, 1987) and species may alter
their activity patterns in response to predation pressure which
may act as a weak zeitgeber (Getz, 2009; Vlasatá et al., 2017).

In the subterranean ecotope, and other photic void
environments, occupants are rarely, if ever, exposed to
light. Despite limited exposure to light, many subterranean
mammals kept in constant darkness and temperature whilst
under laboratory conditions still exhibit strong circadian
rhythms of locomotor and physiological activity (e.g., melatonin
and body temperature cycles). A large body of work has
focused on physiological circadian rhythms and entrainment
to photoperiod in many species including African mole-rats
(Family Bathyergidae: Riccio and Goldman, 2000; Oosthuizen
et al., 2003; van Jaarsveld et al., 2019; Hart et al., 2021), blind
mole rats (Family Spalacidae: Rado et al., 1993), coruros
(Family Octodonidae: Begall et al., 2002), and tuco-tucos
(Family Ctenomyidae: Jannetti et al., 2019; Flôres et al., 2021).
However, the majority of these experiments lack the complex

environmental conditions that these animals may experience
in the wild, including changes in infrequent light pulses,
atmospheric conditions, burrow microclimate, social cues, or
predator-prey interactions. Therefore, other zeitgebers may
be involved in entraining circadian rhythms in these animals
(reviewed in Beale et al., 2016). Observations of free-ranging
subterranean mammals have revealed that some species may
exhibit arrhythmic activity patterns over the 24-h period,
such as some pocket gophers (Thomomys; Andersen and
MacMahon, 1981; Gettinger, 1984), yet many other species
exhibit distinct daily peaks of activity, including root rats
(Tachyoryctes: Jarvis, 1973), African mole-rats (Heterocephalus:
Jarvis, 1973; Heliophobius: Šklíba et al., 2007; Fukomys: Šklíba
et al., 2014, 2016a), blind mole rats (Spalax: Rado et al., 1993;
Šklíba et al., 2016b), coruros (Spalacopus: Rezende et al., 2003),
and tuco-tucos (Ctenomys: Jannetti et al., 2019; Flôres et al.,
2021). These activity patterns suggest entrainment of a circadian
clock, which has led some authors to conclude that temperature
may be an essential zeitgeber for the entrainment of activity
rhythms in subterranean mammals (Benedix, 1994; Šklíba
et al., 2014; Hart et al., 2021). Homeothermic regulation of
body temperature suggests that homeothermic animals are less
sensitive to environmental changes (Rensing and Ruoff, 2002),
but some African mole-rats exhibit heterothermy (Buffenstein
and Yahav, 1991; Bennett et al., 1993a; Oosthuizen et al., 2021)
and therefore, fluctuations in ambient temperature are more
likely to affect their activity patterns.

African mole-rats are a unique clade of subterranean rodents,
with some species being strictly solitary and others occurring
in large family groups (Bennett and Faulkes, 2000). Living
underground offers thermal buffering to extreme temperature
fluctuations with burrow depth varying with species (Bennett
et al., 1988). Soil properties and food availability likely explain
why tunnels are constructed at specific depths (Broekman et al.,
2006; Lövy et al., 2015). The depth of tunnels and the nests are
greatest for mole-rats inhabiting arid regions with sandy soils,
where foraging tunnels are between 30 and 40 cm below ground,
and nests may exceed 2 m in depth (Lovegrove and Painting,
1987; Bennett et al., 1988). In other soil types foraging tunnels are
at more shallow depths of around 10–20 cm with nests between
30 and 60 cm (Hickman, 1979; Spinks et al., 1999; Šklíba et al.,
2012; Šumbera et al., 2012). Deep dead-end tunnels may help
regulate burrow temperatures or humidity, and these features
vary between 78 cm in loamy soil types of the Natal region in
South Africa (Hickman, 1979) to over 3 m in the sand of the
Kalahari (Lovegrove and Painting, 1987). The deeper tunnels
of the Damaraland mole-rat (Fukomys damarensis) provide a
greater thermal buffer against the extreme daily and seasonal
temperatures of the Kalahari compared to the shallow tunnels
of common mole-rats (Cryptomys hottentotus), which generally
occur in more mesic habitats, such as the Natal region in
South Africa (Bennett et al., 1988). Even with deep tunnels, the
foraging burrows of mole-rats experience seasonal temperature
fluctuations, and it has been suggested that temperature may act
as a zeitgeber for daily activity patterns in mole-rats (Goldman
et al., 1997; Šklíba et al., 2007; Hart et al., 2021). The activity
patterns and circadian rhythms of mole-rats have been well
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studied in laboratory settings (Hickman, 1980; Bennett, 1992;
Riccio and Goldman, 2000; Oosthuizen et al., 2003; van Jaarsveld
et al., 2019; Hart et al., 2021). In two recent studies under
laboratory conditions, homeothermic mole-rat species showed
decreased activity during periods of higher temperature and the
authors suggested that temperature may drive nocturnal behavior
(van Jaarsveld et al., 2019; Hart et al., 2021). The observed
activity entrainment by ambient temperature may be due to a
thermoregulatory response to avoid over-heating while digging
during periods of increased burrow temperatures (Hart et al.,
2021). Few studies have been conducted on wild mole-rats (Šklíba
et al., 2007, 2014, 2015) and even fewer still on seasonal variation
in activity (Šklíba et al., 2007).

This study set out to determine if daily activity patterns
fluctuated with seasonal temperature changes in the Natal mole-
rat (Cryptomys hottentotus natalensis), a social species inhabiting
mesic grasslands of southeastern South Africa and Lesotho
at altitudes from sea level to the Drakensberg escarpment
(ca. 3,000 m). The montane regions they inhabit experience
hot summer days and cold winter nights, with snow often
accumulating at the highest elevations during winter. Unlike
most other bathyergids, Natal mole-rats exhibit heterothermy
(Oosthuizen et al., 2021), and they would be expected to
respond to changes in burrow temperature to a greater
degree in comparison to their homeothermic counterparts
(Šumbera, 2019; Wallace et al., 2021). The link between ambient
temperature and activity patterns in African mole-rats has
not been thoroughly investigated in a field-based study, and
never in a heterothermic mole-rat species. Previous laboratory
experiments on entrainment of circadian rhythms in Natal
mole-rats indicate the entrainment in both melatonin and
activity cycles under a light-dark cycle and free-running cycles
under constant conditions (Hart et al., 2004). In this study,
we used a radio-frequency identification (RFID) reader array
to monitor individual activity in free-ranging Natal mole-rats.
This non-invasive method allows for automated continuous
monitoring of activity patterns in a natural habitat without
disturbing the subjects (Korslund, 2006; Francioli et al., 2020).
Activity rhythms may show plasticity, where individuals or
populations adjust to seasonal changes in the environment (Halle,
1995; Rezende et al., 2003; Halle, 2006; Beale et al., 2016).
Therefore, it was predicted that Natal mole-rats would alter
their activity patterns seasonally to cope with the fluctuating
burrow temperatures due to their shallow tunnels (Hickman,
1979). Additionally, trapping efforts indicated that mole-rats
appeared to exhibit reduced activity during periods of rain
when compared to clear days. It is possible that mole-rats
may be able to respond to the change in air pressure or
temperature caused by the rain or cold fronts as seen in
other animals (Garthe et al., 2009; Boyer and MacDougall-
Shackleton, 2020). Lastly, because Natal mole-rats exhibit
only behavioral reproductive suppression compared to that
of the Damaraland mole-rats, which exhibit behavioral and
physiological suppression (Bennett et al., 1996; Molteno and
Bennett, 2000; Oosthuizen et al., 2008), we predicted that
locomotor activity differences between the breeders and non-
reproductive individuals would be less distinct than in species

with higher reproductive skew. We emphasize that in the current
study we did not investigate entrainment of circadian rhythms
by environmental zeitgebers, but rather investigated the potential
role of environmental variables on the diel activity rhythms of
colonies of a subterranean mammal during the summer and
winter months of the Southern Hemisphere.

MATERIALS AND METHODS

Animal Capture
Natal mole-rats were captured using Hickman live traps during
the wet summer (February to March) and dry winter (July to
October) seasons from August 2019 to July 2021 at Glengarry
Holiday Farm in KwaZulu-Natal, South Africa (–29.322530◦,
29.712982◦, 1,600 m a. s. l.; Supplementary Figure 1). Natal
mole-rats are a social species of mole-rat that live in family groups
(referred to as colonies) with one reproductive female, a couple
of reproductive males, and the remaining non-reproductive
group members include the overlapping generations of offspring
from the reproductive individuals (Oosthuizen et al., 2021).
A total of 13 distinct colonies (including 118 unique animals)
were used for the study, with a mean colony size of 8.8 ±

3.2 (range 4–13); 10 of the 13 groups were complete colonies
(i.e., included reproductive individuals and all non-reproductive
subordinates). Traps were placed in exposed tunnels at each
colony, baited with sweet potato, and checked at 2-h intervals
from 07 h00 to 22 h00, depending on air temperature. Colonies
were recaptured at 6-month intervals. Colony membership
of individuals was initially determined by capture location, a
lack of aggression between individuals, and later confirmed by
recapture of individuals in the same colony (as opposed to
capture in neighboring colonies) during subsequent captures.
Capture methods have been standardized in many field studies
of bathyergids (Jarvis and Bennett, 1993; Šklíba et al., 2007, 2012,
2016a; Lövy et al., 2013; Finn et al., 2018). Captured mole-rats
were housed with family members at ambient temperature (15–
25◦C), provided with wood shavings as bedding and fed sweet
potato ad libitum. All animals were sexed, weighed to the nearest
gram (Pelouze SP5, Rubbermaid, United States), and assigned
a reproductive status at capture. Reproductive females were
identified by a perforate vagina and prominent teats (Bennett
and Faulkes, 2000). Male reproductive status was determined by
body mass, presence of testes, and prolonged presence in the
colony (Finn et al., 2018). All individuals greater > 20 g were
implanted with a subcutaneous passive integrated transponder
tag (Trovan Unique, DorsetID, Netherlands) to uniquely identify
them. After 48 h without any signs of individuals present in
the burrow system (i.e., no blocked tunnels, fresh mounds,
triggered traps, or bait eaten), the colony was assumed to
be completely captured and the colony was released back
into their burrow.

Hourly Climate Data
Hourly air pressure, air temperature, soil temperature, and
rainfall during winter 2020 and summer 2021 were obtained
for the study site from the global atmospheric reanalysis dataset
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TABLE 1 | Variables from ERA5-Land dataset used for analysis.

Variable Description Units

2 m temperature (Tair) Temperature of the air 2 m above the soil surface K

Total precipitation (rainfall) Accumulated liquid and frozen water that falls to the Earth’s surface; a mean of daily values m

Air pressure (P) Force per unit area of the atmosphere on the surface of the land. Pa

Soil temperature level 1 (TS1) Temperature of the soil in layer 1 (depth 0–7 cm), taken from the middle of each layer K

Soil temperature level 2 (TS2) Temperature of the soil in layer 2 (7–28 cm) K

Soil temperature level 3 (TS3) Temperature of the soil in layer 3 (28–100 cm) K

The data are freely available from the Copernicus Climate Change Service which holds the intellectual property rights of the raw data.

TABLE 2 | Hourly climate during the study period at Glengarry (mean ± SD).

Mean Min Max

Winter 2020 (August–October, n = 65 days)

Tair 11.1 ± 3.66◦C 5.3 ± 3.15◦C 17.7 ± 5.08◦C

TS1 11.9 ± 2.93◦C 7.0 ± 2.78◦C 17.7 ± 3.93◦C

TS2 11.6 ± 2.38◦C 10.3 ± 2.30◦C 12.7 ± 2.51◦C

TS3 10.9 ± 1.50◦C 10.8 ± 1.49◦C 11.0 ± 1.50◦C

1P 37.1 ± 6.84 kPa 3.2 ± 3.08 kPa 95.0. ± 23.25 kPa

Rain 1.0 ± 1.99 mm 0.0 ± 0.19 mm 3.3 ± 4.52 mm

Summer 2021 (February–April, n = 57 days)

Tair 15.9 ± 2.33◦C 11.6 ± 1.91◦C 20.8 ± 3.60◦C

TS1 17.5 ± 1.88◦C 13.8 ± 1.66◦C 22.0 ± 2.97◦C

TS2 17.5 ±1.37◦C 16.6 ± 1.33◦C 18.4 ± 1.45◦C

TS3 17.4 ± 0.62◦C 17.4 ± 0.62◦C 17.5 ± 0.62◦C

1P 28.9 ± 3.60 kPa 2.0 ± 3.31 kPa 76.1 ± 17.82 kPa

Rain 2.5 ±4.41 mm 0.1 ± 0.40 mm 9.1 ± 12.34 mm

Tair is the air temperature at 2 m above the soil; soil temperatures were measured
at depths of 0–7 cm (TS1), 7–28 cm (TS2), and 28–100 cm (TS3); and 1P is the
change in air pressure from 1 h to the next. Rain is hourly precipitation.

ERA5-Land (Table 1; Muñoz-Sabater, 2019). The ERA5-Land
dataset is a global climate analysis model based on satellite
and weather station climate observations allowing for accurate
estimates of climate variables at specific locations with a 9 km
accuracy (0.1◦

× 0.1◦; Muñoz-Sabater et al., 2021). Users can
specify the boundary GPS points of less than 9 km to query data
from the database, and we selected a 1 km radius to encompass
the study site. The dataset is freely available from the Copernicus
Climate Change Service, and holds the intellectual property rights
of the raw data. The results contain modified Copernicus Climate
Change Service information. We used soil temperature measured
at depths of 0–7 cm (TS1), 7–28 cm (TS2), and 28–100 cm
(TS3), which correspond to the depths of foraging tunnels (TS1
and TS2) and the nest (TS3). A temperature logger (DS1922L
iButton, Maxim Integrated Products, Dallas, TX, United States)
was buried at the study site at 15 cm below the soil surface in an
area of direct sunlight and set to record hourly temperatures from
August to October 2020. We compared the soil temperatures
from the data logger and TS2 from the ERA5-Land dataset.
We found that soil temperatures from the data logger were on
average 3.67 ± 1.32◦C higher than TS2, yet the daily fluctuation
in temperature was similar between temperature loggers and
ERA5-Land values (Supplementary Figure 2). Therefore, we

assumed that soil temperatures from ERA5-Land were a modest
representation of actual variability of soil temperatures. It is
important to note that the soil temperatures in this study may
not accurately represent burrow temperatures, and furthermore,
that ambient temperature in tunnels may be higher than the
surrounding soil (sensu Holtze et al., 2018). The change in
hourly air pressure (1P) from 1 to 2 h was calculated to
determine whether changes in air pressure predicted activity. To
determine if climate varied between hour and season the climatic
variables were compared by conducting a linear regression
with the climate variable as response and season, hour and
interaction between season and hour as predictors. Hourly
climate variables were then combined with the activity data
to determine the environmental effects of daily and seasonal
activity patterns.

Radio-Frequency Identification Array
Placement
We utilized an RFID reader array (LID650/608, DorsetID,
Netherlands; Supplementary Figure 2) and the methods of
Francioli et al. (2020) to monitor mole-rat activity during winter
(August–October 2020) and summer (February–April 2021). The
array consisted of a scanning panel (Trovan ANT 612) measuring
47.5 × 40 × 4 cm and a decoder box (Supplementary Figure 3).
The array was powered by a 12 v battery and could be attached
to a solar panel to prolong battery life (Supplementary Figure 4).
The array was programmed to scan continuously for transponder
tags within the range with a read delay of 3 s. When an animal
with a transponder tag passed within range, the numeric code of
the tag was recorded with a time stamp on a USB drive attached
to the decoder. Thus, if an animal remained in the range of
the panel for longer than 3 s, it would have multiple entries
at 3-s intervals.

The array was placed at a mole-rat group and left stationary
during each reading session. Mole-rat mounds were probed
until the tunnel was located and the reader panel was placed
directly over the tunnel. The panel had a detection range of
20–30 cm, which is greater than the depth of mole-rat tunnels
at the study site, and therefore the chance of animals passing
undetected under the panel is minimal. Reading sessions had a
mean duration 3.5 ± 1.59 days (range 2–7). We attempted to
repeat reading sessions for each group in both seasons; however,
some groups went missing and additional groups were selected
to maintain an even sample size. Therefore, the mean number of
reading sessions per group was 1.3 ± 0.46.
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TABLE 3 | Linear regression results comparing climate variables between seasons
and time of day.

Predictor Estimate S.E. p-value

Tair

Intercept 20.41 0.28 <0.001*

Season −5.48 0.17 <0.001*

Hour 0.03 0.02 0.12

Season * hour 0.03 0.01 0.006*

TS1

Intercept 22.55 0.23 <0.001*

Season −6.30 0.14 <0.001*

Hour 0.05 0.02 0.002*

Season * hour 0.04 0.01 <0.001*

TS2

Intercept 22.75 0.12 <0.001*

Season −6.18 0.07 <0.001*

Hour 0.05 0.01 <0.001*

Season * hour 0.01 0.01 0.10

TS3

Intercept 24.20 0.06 <0.001*

Season −6.91 0.04 <0.001*

Hour −0.01 0.00 0.23

Season * hour 0.00 0.00 0.10

1 P

Intercept 13.25 1.36 <0.001*

Season 12.40 0.82 <0.001*

Hour 0.52 0.10 <0.001*

Season * hour −0.27 0.06 <0.001*

Rain

Intercept 0.01 0.18 0.95

Season 0.12 0.11 0.29

Hour 0.19 0.01 <0.001*

Season * hour −0.06 0.01 <0.001*

* denotes significance.

Activity Analysis
Radio telemetry studies have indicated that activity bouts of
mole-rats can last for up to 1 h (Lovegrove, 1988), and therefore
we assumed that activity bouts lasted for 1 h (see Supplementary
Material for validation). Due to the nature of the study design, we
do not know the exact duration of activity bouts, and the results
rather include the times and frequency of individual animal
activity. Animals were given an active score of 1 if at least one
reading was detected on the array during a 60-min interval, and
a score of 0 if not detected during this interval. An animal would
not gain a further activity point until detected beyond the activity
period. Visual inspection of the raw data indicated that animals
rarely remained motionless under the reader array. Individuals
captured in the colony but not recorded by the RFID reader
array were assigned activity scores of zero. All potential variables
affecting daily activity were analyzed by fitting a generalized
linear mixed model with negative binomial distribution using the
glmmTMB package (Brooks et al., 2017) in R 4.0.5 (R Core Team,
2021). The negative binomial distribution (values of 0 or 1 in
the response) prevents overdispersion in parameters. Predictors

for the full model included life history variables such as sex,
body mass, reproductive status (reproductive/non-reproductive),
group size; abiotic factors such as Tair , TS1, TS2, TS3, 1P, rainfall,
season (wet/dry), time (as sine and cosine wave expressed in
radians—where 0 is 00:01, π is 12:00, and 2π is midnight), and
the daily cumulative hours of sunlight from sunrise each hour
until sunset (with hours of darkness equal to 0). Non-significant
predictor variables were dropped until a model with the lowest
AIC was generated (Supplementary Material). Predictors for the
final model included: interactions between sex and reproductive
status; sex and body mass; season and time; season, time, and
Tair ; season, time, and TS1; and season, time, and TS2. Individual
identity and reading session were specified as nested random
intercepts to control for non-independence among observations.
All continuous predictors were scaled, and body mass was
scaled within sex because males were heavier than females. The
proportion of explained variance was estimated using marginal
and conditional R2. An excess mass test for unimodality using
the package multimode (Ameijeiras-Alonso et al., 2019, 2021)
was used to determine if the peaks of activity were unimodal or
bimodal by comparing the hours of activity within each season.
This package allows for testing the kernel density of data against
the null hypothesis that the number of modes is equal to a set
number, and can calculate the exact number of modes in a density
plot. The calibrated excess mass test by Ameijeiras-Alonso et al.
(2019) is more accurate than previous modality tests, such as
Silverman’s and Hartigan’s methods among others, by allowing
the user to set the number of modes to test against the null.

RESULTS

All hourly climate variables except rainfall varied significantly
between seasons, and all variables except TS3 varied significantly
with time of day within each season (Tables 2, 3 and
Supplementary Figures 6, 7). The greatest daily difference in soil
temperatures occurred during winter. The maximum day length
was 13.28 h during summer and 12.75 h during winter, with a
minimum day length of 11.68 and 11.00 h, respectively.

The dataset included 9,972 raw activity points at 3-s intervals
from 77 wild mole-rats (41 individuals were captured before
array placement, but not recorded) over 16 reader sessions at
independent groups (winter n = 8, summer n = 8). Assuming
an activity period of 1 h, the dataset was reduced to 365 total
activity points of detected mole-rats (summer n = 153, winter
n = 212) with individuals being detected a mean of 0.89 ±

1.27 times per day during winter (range 0–7) and 0.88 + 1.02
times per day during summer (range 0–4). The results from
the model revealed that body mass, Tair , TS1 and interactions
between those temperatures with time of day and season had
the greatest effect on predicting periods of activity (Table 4).
Hours of daylight, rainfall, TS2, Ts3, and 1P as well as life-
history traits (sex, reproductive status, and group size) did not
affect the likelihood of activity. Mole-rats were most active when
soil temperatures were between 12 and 16◦C. Locomotor activity
patterns were similar for reproductive and non-reproductive
individuals in the colony suggesting no specific specialization
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FIGURE 1 | Histogram of daily activity patterns of mole-rats during winter (August–October). Gray bars indicate the total activity points per hour of all animals across
the sampled groups during winter. Mean daily air temperature (red) and soil temperature at 0–7 cm (blue) during winter is plotted on the right axis. The median time
mole-rats were active is highlighted in purple. Hours of darkness are indicated by the shaded blocks. Climate data were obtained from the Copernicus Climate
Change Service, which holds the intellectual property rights of the raw data.

FIGURE 2 | Histogram of daily activity patterns of mole-rats during summer (February–April). Gray bars indicate the total activity points per hour of all animals across
the sampled groups during summer. Mean daily air temperature (red) and soil temperatures at 0–7 cm (blue) during summer is plotted on the right axis. The median
time mole-rats were active is highlighted in purple. Hours of darkness are indicated by the shaded blocks. Climate data were obtained from the Copernicus Climate
Change Service, which holds the intellectual property rights of the raw data.
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TABLE 4 | Predictors of daily activity of Natal mole-rat.

Predictor Estimate S. E. P-value

Intercept −5.38 2.01 0.007*

Body mass −0.06 0.26 0.02*

Reproductive status 1.14 0.62 0.06

Sex 0.29 0.33 0.38

Body mass * sex 0.46 0.35 0.18

Reproductive status * sex −0.55 0.78 0.48

Group size −0.05 0.17 0.76

Sin (time in radians) 1.16 0.26 0.04*

Cos (time in radians) −0.19 0.30 0.53

Season 0.13 1.03 0.90

Season * sin (time in radians) −0.95 0.78 0.22

Daylight −0.89 0.80 0.27

Daylight * season 0.57 0.43 0.19

Daylight * sin (time in radians) −0.79 0.81 0.33

1P 0.00 0.22 0.99

1P * season 0.03 0.13 0.83

1P * sin (time in radians) 0.42 0.32 0.20

Tair 4.49 1.15 <0.001*

Tair * season −2.35 0.67 <0.001*

Tair * sin (time in radians) −4.13 1.34 0.002*

TS1 −4.68 1.68 0.005*

TS1 * season 2.71 0.98 0.006*

TS1 * sin (time in radians) 6.50 1.86 <0.001*

TS2 −1.98 1.19 0.10

TS2 * season 0.78 0.70 0.27

TS2 * sin (time in radians) −0.63 1.12 0.57

TS3 4.09 2.38 0.09

TS3 * season −2.13 1.38 0.12

TS3 * sin (time in radians) −1.40 1.79 0.44

Season * sin (time in radians) * daylight 0.51 0.45 0.25

Season * sin (time in radians) * 1P −0.17 0.19 0.36

Season * sin (time in radians) * Tair 1.39 0.81 0.09

Season * sin (time in radians) * TS1 −2.67 1.09 0.01*

Season * sin (time in radians) * TS2 0.45 0.65 0.49

Season * sin (time in radians) * TS3 0.27 1.00 0.78

Values are from a general linear mixed model with a negative binomial distribution.
AIC = 2859.9, Condition R2 = 0.02, Marginal R2 = 0.06. All continuous predictors
were scaled to the mean and unit variance for model fitting.
* denotes significance.

of activity based on reproductive status. The total amount of
activity did not differ between seasons (i.e., season variable),
but the time of day during which individuals were active
was significantly different between seasons (i.e., season ∗ time
variable). During winter, animals exhibited a single peak in
activity during midday when burrow temperatures were highest
(E = 0.02, p-value = 0.92; Figure 1). While during summer, daily
activity exhibited a bimodal distribution where animals were
more active during the cooler morning and evening temperatures
(E = 0.10, p-value < 0.001; Figure 2). Further linear regression
analysis of the relationship between activity and Tair as well
as TS1 indicated a significant relationship in both seasons for
TS1 (winter: df = 7,455, SE 0.0014, p-value < 0.01; summer:
df = 4,616, SE = 0.0024, p-value < 0.001), while the relationship

between activity and Tair was only significant in summer (winter:
df = 7,455, SE = 0.0012, p-value = 0.17; summer: df = 4,616,
SE = 0.0021, p-value < 0.001).

DISCUSSION

In this study, soil temperatures at < 7 cm and time of day were
the best predictors of activity patterns in the heterothermic Natal
mole-rat, with soil temperature varying significantly over the
course of a day and between seasons. During summer individuals
avoided activity during the hottest part of the day (becoming
more crepuscular), while in winter they were more active during
this time (becoming diurnal). These patterns are similar to
responses observed in other rodents (both heterothermic and
homeothermic) living in high altitudes or latitudes (Hinze and
Pillay, 2006; Williams et al., 2012; Vlasatá et al., 2017; Flôres
et al., 2021). This result also confirms recent work on activity
patterns in mole-rats observed in a captive setting (Hart et al.,
2021). Oosthuizen et al. (2021) observed that wild Natal mole-
rats at the same study site exhibited unimodal body temperature
fluctuations in winter and bimodal fluctuations in summer and
proposed that increased body temperature coincided with time
of activity. Our results may validate this prediction because in
summer, Natal mole-rats showed bimodal peaks in activity during
the cooler soil temperatures and a unimodal peak in activity
during winter when soil temperatures were highest. Oosthuizen
et al. (2021) found that mean body temperature was higher
during winter than during summer, and this result may have
indicated increased activity during winter. In contrast to that
suggestion and previous studies on a related mole-rat species
(Šklíba et al., 2007), we did not find a significant difference in the
frequency of daily activity between seasons.

Previous work on bathyergids, including the Natal mole-
rat, has shown that circadian rhythms free-run under constant
conditions and both light and temperature may entrain circadian
rhythms (Hart et al., 2004, 2021; van Jaarsveld et al., 2019).
In laboratory studies, mole rats preferred temperatures between
18 and 22◦C while in complete darkness (Hart et al., 2021).
Interestingly, we found that even though TS1 was consistently
below this range during winter (5–17◦C, Supplementary
Figure 4) and rarely greater than 20◦C during summer (12–
21◦C, Supplementary Figure 5), mole-rats did not show an
even distribution of activity periods over a 24-h period during
either of the two seasons. However, we must note that soil
temperatures from the ERA5-Land dataset were (1) 3◦C lower
than temperatures recorded via temperature loggers at the study
site, and (2) may not reflect actual burrow temperatures. Minute
temperature changes may be enough to elicit a change in activity
rhythms in subterranean rodents (Goldman et al., 1997; Šklíba
et al., 2007, this study). Temperature changes in foraging tunnels
may well be a primary driving force in the entrainment of
circadian rhythms since bimodal and unimodal activity patterns
were found in various subterranean mammals (this study,
Benedix, 1994; Rezende et al., 2003; Šklíba et al., 2007). Mole-
rats spend over 70% of their time in the nest (Bennett, 1990),
which may be at the deepest part of their burrow system where
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the microclimate is stable (Bennett et al., 1988). Animals resting
inside a nest at a stable temperature may be unable to detect
temperature changes to trigger an activity bout (Oster et al., 2002;
Šklíba et al., 2014). Temperatures in the nest may be higher than
the surrounding burrow system due to increased heat generated
through huddling and body heat of animals confined in a small
space (Buffenstein and Yahav, 1991; Kotze et al., 2008). Hazlerigg
and Tyler (2019) suggested that the better a retreat insulates
an animal against environmental extremes, the less information
the animal may obtain about external conditions and when
to emerge. However, the relatively shallow nests of the Natal
mole-rat may experience greater temperature fluctuations despite
the thermal benefits of huddling (Marhold and Nagel, 1995).
Exact thermal conditions inside mole-rat nests are still unknown
and would be of interest to understand thermoregulation and
activity patterns.

Seasonal changes in environmental characteristics may also
affect locomotor activity such as the availability of food, and
specifically in the subterranean ecotope, changes in humidity and
gas composition in the microhabitat of the burrows. Decreased
food availability during the warmer late dry season caused a
related decrease in outside the nest forays in the Ethiopian
giant root rat (Tachyoryctes macrocephalus) which feeds on
aboveground grasses and forbs (Vlasatá et al., 2017). Vlasatá et al.
(2017) concluded that food caching and availability may be of
minimal importance compared to thermoregulatory demands.
The seasonal differences in activity observed in this study
are unlikely to be affected by seasonal food availability since
mole-rats rely upon the underground storage organs of plants
(tubers and corms, collectively referred to as geophytes) for their
nutritional needs (Bennett and Faulkes, 2000). These geophytes
are available year-round, and bathyergids famously cache food,
which root rats tend not to do, and caching is presumed to
provide the group with resources through droughts and periods
of decreased availability (Bennett and Faulkes, 2000). Seasonal
changes in carbon dioxide and oxygen concentrations could
potentially affect locomotor activity. The seasonal fluctuation of
burrow gasses of bathyergids is understudied and completely
unknown at the study site. Levels of carbon dioxide may increase
during periods of rain due to increased soil moisture and
decreased gas permeability, which may in turn trigger increased
digging activity (Burda et al., 2007). While our study did not find
an effect of rainfall on locomotor activity, our methods prevented
an assessment of digging behavior. A study on seasonal changes
in gas composition in the burrows of the giant root rat that lives
at a similar elevation, climate, and annual rainfall to our study
site found minimal fluctuations in carbon dioxide and oxygen
levels between the seasons (Šumbera et al., 2020). Furthermore,
humidity was not found to change between seasons in the
burrows of the silvery mole-rat (Heliophobius argenteocinereus)
in Malawi (Šumbera et al., 2004).

Natal mole-rats are among the few heterothermic mammals,
exhibiting the lowest body temperatures of bathyergids, the
narrowest thermal neutral zone, and one of the highest
resting metabolic rates in bathyergids (Bennett et al., 1993b;
Šumbera, 2019; Oosthuizen et al., 2021). However, the thermal
neutral zone of bathyergids may increase at higher altitudes,

and a lower body temperature has been suggested to be an
adaptation to colder environments, enabling animals to expend
less energy maintaining their body temperature at lower ambient
temperatures (Broekman et al., 2006). We found that soil
temperatures in foraging tunnels vary between 5 and 30◦C
below their thermal neutral zone during summer and winter,
respectively, and these physiological adaptations may be an
evolutionary response to shallow tunnels and the resultant
seasonal climate fluctuations they experience. Body temperature
was found to fluctuate with activity periods in laboratory studies,
but the authors could not determine if activity caused an increase
in body temperature (Haupt et al., 2017; van Jaarsveld et al.,
2019). Digging and other burrow maintenance behaviors may
increase body temperature in mole-rats (Zelová et al., 2010;
Okrouhlík et al., 2015). Mole-rats living in shallow tunnels
which experience greater temperature variation may need to
be selective in their activity periods to prevent overheating
due to their poor heat dissipating abilities (Luna et al., 2020;
Wallace et al., 2021). However, increased soil moisture during
summer may provide a cooling effect via conduction to decrease
body temperature during or after activity bouts by pressing
their ventral surface against a cooler surface (Okrouhlík et al.,
2015; Vejmělka et al., 2021). Seasonal changes in daily activity
would be an effective thermoregulatory adaptation to reduce
the risk of overheating while digging (Goldman et al., 1997;
McGowan et al., 2020). Locomotor activity was concentrated
during periods of lower temperatures in laboratory studies (van
Jaarsveld et al., 2019; Hart et al., 2021) and in periods of moderate
temperature in wild studies (this study, Šklíba et al., 2014,
2016b). It cannot be determined if body temperature fluctuated
due to fluctuations in burrow temperature or as a response to
activity, or a combination of the two. Therefore, we cannot
discern if a drop in body temperature stimulated animal activity
to increase core body temperature via thermogenesis (Block,
1994) or if body temperature increased due to rising burrow
temperatures as seen in naked mole-rats (Buffenstein and Yahav,
1991). While increased body temperature may be associated with
higher activity levels in other rodents, circadian rhythms of body
temperature may not result from daily activity rhythms (Refinetti,
1999; Refinetti and Kenagy, 2018). Future studies should
attempt to determine the correlates of body temperature, tunnel
temperature and activity patterns utilizing temperature loggers,
RFID technology, or accelerometers (Williams et al., 2020).

Laboratory studies found differences in activity patterns
between the sexes (Haupt et al., 2017; van Jaarsveld et al.,
2019), yet we did not find sex-biased differences in activity
patterns in colonies of free-ranging Natal mole-rats. Our study
did identify an effect of body size on activity similar to radio-
telemetry studies on wild mole-rats of the genus Fukomys
which found that larger individuals were less active than smaller
ones (Lovegrove, 1988; Lövy et al., 2013; Šklíba et al., 2016a).
However, Francioli et al. (2020) found that body mass did not
predict activity even though reproductive individuals were overall
heavier than non-reproductive individuals. Relatedly, we did not
find a difference in activity patterns between reproductive and
non-reproductive individuals contrary to studies on the social
mole-rats of the genus Fukomys which found that reproductive

Frontiers in Ecology and Evolution | www.frontiersin.org 8 February 2022 | Volume 10 | Article 819393

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-819393 February 10, 2022 Time: 11:39 # 9

Finn et al. Field Locomotor Activity Patterns of Mole-Rats

individuals were less active than non-reproductive individuals
(Lovegrove, 1988; Oosthuizen and Bennett, 2015; Šklíba et al.,
2016a; Van Daele et al., 2019; Francioli et al., 2020; Houslay et al.,
2020). These results may indicate that reproductive individuals
of Fukomys mole-rats must regulate energy expenditure between
reproductive and burrow defense tasks. In Damaraland mole-
rats reproductive suppression is controlled by physiological
and behavioral mechanisms. Ovulation is blocked in non-
reproductive females, but incest avoidance prevents breeding
in males (Bennett et al., 1996; Molteno and Bennett, 2000).
This suppression remains until the individual disperses from the
group or an unrelated individual joins the group. In contrast,
Natal mole-rats lack physiological reproductive suppression, and
incest avoidance or aggressive interactions appear enough to
prevent inbreeding (Oosthuizen et al., 2008). The similarities
in activity patterns in Natal mole-rats may indicate more equal
contributions to burrow maintenance and other cooperative
behaviors between dominant and subordinate group members.
It may also indicate that food resources are not as limited
or scattered at the study site compared to the Kalahari where
Damaraland mole-rats occur. Therefore, reproductive Natal
mole-rats may not be required to conserve energy by reducing
activity or relying on other group members to collect food. It
may also indicate that reproductive individuals may need to
be constantly on guard to prevent the intrusion of non-group
members since groups are much closer together at this study site
(Finn, unpublished data).

Activity patterns in social species may be affected by social
cues, and social mole-rats observed singly may exhibit up
to double the activity period of those in a complete colony
(Hickman, 1980; Riccio and Goldman, 2000; Lövy et al., 2013).
The findings of Lövy et al. (2013) particularly highlight the
importance of maintaining social groups during observations.
The authors found that a solitary female giant mole-rat (Fukomys
mechowii) in natural conditions was more active during midday
when temperatures were highest, compared to complete family
groups which were more active at night (Lövy et al., 2013).
Social mole-rats conserve heat via huddling and are more
prone to heat loss during periods of lower burrow temperatures
(Šumbera, 2019). Lövy et al. (2013) proposed that being active
during the hottest part of the day minimized heat loss because
solitary individuals cannot conserve heat via huddling. Mole-rats
can shed excess heat from their feet, ventral surface, and via
behavioral adjustments, such as rolling on their back or pressing
their belly to the cooler soil of the tunnel (Vejmělka et al.,
2021). This dissipation stays relatively constant regardless of
ambient temperature. When ambient temperature drops, heat
can be conserved through the vascular constriction in their
feet, changes in body posture, or huddling with conspecifics
(Kotze et al., 2008; Vejmělka et al., 2021). The fur of common
mole-rats (Cryptomys hottentotus) was found to have better
insulating properties compared to related species that live in
tropical environments, and this may be an adaptation to greater
fluctuations in burrow temperatures (Vejmělka et al., 2021).
Behavioral thermoregulation (huddling, changes in body posture,
or moving to warmer or colder areas of the burrow) may help
mole-rats to maintain body temperature within their thermal
neutral zone. It can be assumed that a decrease in body

temperature may trigger locomotor activity, forcing an animal
to become active to increase its body temperature (Block, 1994).
However, mole-rats huddle with other group members in a nest
during rest periods to conserve heat (Kotze et al., 2008). Thus,
it would be unlikely that body temperature would significantly
decrease while huddling. Therefore, mole-rats may time their
periods of wakefulness and rest to coincide with daily burrow
temperatures. Future studies investigating activity patterns in
social mole-rats should maintain group cohesion to account for
the effects of social cues on activity patterns. RFID technology
can easily be applied in a laboratory setting to track individual
activity patterns of group-living animals with the implementation
of new open-source and 3D printing technology to decrease costs
(Schielke et al., 2012; Habedank et al., 2021).

Predation avoidance has been suggested to affect activity
patterns in other small mammals such as voles (Microtus
ochrogaster, Getz, 2009). Activity periods for black-backed
jackals (Canis mesomelas) and serval (Leptailurus serval), both
known predators of Natal mole-rats, were primarily nocturnal
during winter and crepuscular during summer (Ramesh and
Downs, 2013; Humphries et al., 2015). Our results indicated
that mole-rats reduced activity during these periods in winter,
but during summer were more active during predator activity
periods. In both serval and jackal, mole-rats make up < 5%
of their diet and may be a seasonally available prey item
(Humphries et al., 2015; Ramesh and Downs, 2015). Therefore,
it is more likely that the low instances of predation on
mole-rats by serval and jackal are due to a low encounter
rate or greater effort required for capture, instead of mole-
rats altering their daily activity patterns in response to
predation pressure.

van Jaarsveld et al. (2019) argued that tunnel breaches did not
occur frequently enough to allow circadian rhythm entrainment
via photoperiod. However, exposure to light pulses at infrequent
intervals was enough to entrain the circadian rhythm in other
subterranean rodents (Decoursey and Menon, 1991; Rado et al.,
1993). Recent work in South American tuco-tucos (Ctenomys
aff. knighti) has shown that individuals may entrain their
circadian rhythms by infrequent exposure to light during surface
excursions (Jannetti et al., 2019; Flôres et al., 2021). At the study
site, many groups of mole-rats occupied areas covered with
a thick carpet of grass which would require chewing through
before soil could be extruded from the burrow. Most mounds
encountered at this site had a neat circular hole leading into the
tunnel, indicating that mole-rats may spend considerable effort
to “clean” the tunnel exit (K. Finn, A. Janse van Vuuren, pers.
obs). Eloff (1951) noted that Cryptomys would “open a hole to
the surface [and] put its nose out” during mound construction.
At the study site, mole-rats continued to make mounds through
the dry season, likely due to increased soil moisture of mesic
grasslands in the Natal region compared to more arid regions
of South Africa (K. Finn, A. Janse van Vuuren, pers. obs.).
Thus, mole-rats may be exposed to light throughout the year
during mound construction. A family group of mole-rats may
produce between 6 and 7 mounds per day during the rainy season
(Genelly, 1965; Jarvis et al., 1998). During mound construction,
one individual may lead digging while other group members
assist with sweeping excess soil away and most individuals in
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a group contribute to digging (Zelová et al., 2010). Since light
may penetrate along the tunnel for less than a meter when
the surface is breached (Kott et al., 2014), other individuals in
the digging chain may be exposed to light instead of just the
lead digging animal. Therefore, whether light or temperature
is the dominant entrainer of circadian rhythms in mole-rats
remains unclear.

This study used RFID technology as a non-invasive method
to monitor activity patterns in a wild subterranean mammal.
This method can be easily adapted to monitor activity in
small mammals in areas that may involve safety risks to
researchers, such as African reserves occupied by large predators.
Hickman (1980) recommended studies to understand the effects
of temperature and other non-photic cues on activity patterns
in subterranean mammals. Surprisingly, in the 40 years since
this suggestion, few laboratory studies have explored the effects
of varying ambient temperatures on activity and only recently
started gaining attention (Goldman et al., 1997; Haupt et al.,
2017; van Jaarsveld et al., 2019; Flôres et al., 2021; Hart
et al., 2021). There have been many field studies in various
subterranean species where burrow or soil temperatures and
activity patterns were measured (Gettinger, 1984; Cameron
et al., 1988; Lovegrove, 1988; Šklíba et al., 2007, 2014, 2015,
2016b; Lövy et al., 2013; Vlasatá et al., 2017; Jannetti et al.,
2019), with only a handful combining both laboratory and field
observations (Rezende et al., 2003; Flôres et al., 2021). Results
from studies on activity may differ significantly between wild
and laboratory subjects of the same species due to artificial
laboratory conditions (Rezende et al., 2003; Šklíba et al., 2014
and references therein). To date, only two studies have employed
daily temperature fluctuations during observation while keeping
animals under constant darkness (van Jaarsveld et al., 2019;
Hart et al., 2021); however, these studies were on isolated
individuals of a social species. One study has mimicked the
periodic light pulses from mound construction (Rado et al.,
1993), but they maintained a constant temperature during the
experiment. Laboratory studies would benefit from maintaining
social species in a tunnel-like atmosphere (sensu Zöttl et al., 2016)
kept under constant darkness with and without infrequent light
pulses and exposed to daily temperature fluctuations to simulate
natural variations they experience in foraging tunnels during
both winter and summer. The ingenious addition of photo-
sensors and accelerometers on wild subterranean mammals
(Flôres et al., 2021) would provide valuable data on individual
daily activity bouts, quantify exposure to light, and shed light
on the effects of photoperiod on the entrainment of circadian
rhythms in bathyergids.
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