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Abstract
This research is mainly aimed at investigating the numerical modeling of 
thermal- hydraulic and exergy efficiencies of parabolic trough solar collectors  
(P- SCs) filled with magnetic hybrid nanofluid. The k- epsilon turbulence, S2S, 
and mixture models were used to simulate the turbulence equations, radiation, 
and two- phase nanofluid, respectively. The experiments were run using mag-
netic nanofluid in Reynolds numbers of 5000- 20  000, the volume fractions of 
1%- 3%, and the ratios of pitch (ROPs) of 1, 2, and 3 of the combined turbula-
tor. According to the results, there is a significant increase in average Nusselt 
number (Nu) and pressure drop (ΔP) with increasing Reynolds number, nano- 
additive concentration, and ROP. Moreover, the use of the hybrid magnetic tur-
bulator and hybrid nanofluid increased the thermal performance of the P- SC. It 
was also found that the Reynolds number of 20 000 and volume fraction of 3% of 
nanoparticles resulted in the optimal exergy efficiency mode in using a hybrid 
turbulator.

K E Y W O R D S

compound turbulator, exergy efficiency, magnetic hybrid nanofluid, parabolic trough solar 
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1 |  INTRODUCTION

Given the importance of energy in everyday human life, 
many researchers have focused on this issue.1– 5 It has been 
found that renewable energy can properly meet the needs 
of countries. In this regard, solar energy is among the 
energy resources available to humans that have received 
considerable attention.6– 10 Therefore, many studies have 
been conducted in this field whose results strongly recom-
mend using renewable energy.11– 14

Recently, increasing the heat transfer rate (HTR) in re-
newable systems has been of interest to researchers.15– 19 
One of these methods is to use nanofluids as an alterna-
tive to conventional liquids.20– 28 Nanofluids are widely 
used in micromixers,29 heat exchangers,30 and solar sys-
tems.31 As the experimental tests are costly,32, a very effec-
tive solution to reduce the costs and examine the effects of 
different parameters is to adopt numerical methods.33– 40 
Recently, the use of turbulators in solar collectors (SCs) 
to create turbulent flow and increase the resulting heat 
exchange has become very popular among scientists.41– 43 
Ahmed et al.44 examined the influence of using a com-
bined generator on HTR and nanofluid flow specification 
within a symmetrical duct. Their work was both numeri-
cal and experimental, using two nanoparticles (Al2O3 and 
SiO2). According to the results, using a vortex generator 
and nanofluid increased the HTR and ΔP. Moreover, the 
experimental results agreed with the numerical ones with 
high accuracy. Aliakbari et al.45 investigated the impact of 
horizontal fibers on the flow field and HTR of alumina- 
water nanofluid in a microchannel utilizing the finite 
volume method (FVM). Their data indicated that growing 
the height of the ribs horizontally caused a noteworthy 
augmentation in HTR and ΔP. Amirahmadi et al.46 ex-
amined the effect of a turbulator on exergy efficiency and 
entropy production within a trapezoidal channel using 
mathematical methods. Their research was conducted for 
Reynolds numbers of 400- 1600. They found that adding 
the turbulator to the trapezoidal channel reduced entropy 
production and exergy efficiency. Sheikholeslami and 
Ganji47 experimentally studied the influence of turbula-
tors on hydrothermal efficiency of two- pipe heat exchang-
ers for Reynolds numbers of 6000- 12 000 and torsion ratios 
of 0.72 to 1.29. The maximum hydrothermal increase was 
19.15%, which occurred at a Reynolds number of 6000 
and torsion ratio of 0.72. Sheikholeslami and Ganji48 also 
performed experimental and numerical studies on the 
effect of simple and hollow turbulators on the hydraulic 
performance of two- pipe converters. They used air and 
water fluids in the outer and inner tubes of the heat ex-
changer, respectively. Their findings showed that the use 
of hollow turbulators increased the HTR by 26.45% com-
pared to simple turbulators. Rashidi et al.49 numerically 

investigated twisted turbulators for fluid flow perfor-
mance and nanofluid entropy production within a square 
chamber. The study was performed at nanoparticle con-
centrations of 0 to 0.05, with the step ratio of the twisted 
turbulators varying from 180° to 540°. They found that 
the addition of twisted turbulators to the square chamber 
reduced the output of entropy. Moreover, the rise in the 
nanoparticles' concentration had a decreasing impact on 
the entropy production. Eiamsa- ard and Wongcharee50 
experimentally evaluated the impact of nonuniformly 
twisted tape on the thermal hydraulic output of water- Ag 
nanofluid in a tube. Their findings revealed that the HTR 
increased with the Reynolds number and nanoparticle 
concentration. Moreover, the placement of nonuniformly 
twisted tape increased the HTR by 36.21% compared to 
case in which the plain tube was higher. Applying numer-
ical methods, Akbarzadeh et al.51 assessed the impact of 
dissimilar rib shapes on the alumina- water nanofluid be-
havior in a solar heater. They used triangular and semi-
circular ribs with Reynolds numbers of 5000- 15 000 and 
volume fraction of two- phase nanofluids ranging from 
0% to 4%. According to the results, the index of thermal- 
hydraulic output in the solar heater with semicircular 
ribs was much higher compared to those with triangu-
lar ribs. Sharafeldin and Gróf52 experimentally and nu-
merically studied the impact of water- CeO2 nanofluid 
on the thermal efficiency of SCs. In the experimental 
part of the study, they fabricated water- CeO2 nanofluids 
using a two- step method. Their findings indicated that 
the temperature discrepancy between the inlet and out-
let flow significantly increased by adding the nanofluid 
to the system. Furthermore, the use of water- CeO2 nano-
fluid augmented the HTR by 34% in comparison with 
the base fluid. Bahrami et al.53 employed Al2O3 to affect 
thermal behavior. With the rise in the volume fraction of 
the nanofluid by 4%, there was a significant improvement 
in the forced convection heat transfer. Applying experi-
mental methods, Subramani et al.54 examined the effect 
of water- TiO2 nanofluid to improve efficiency and HTR 
in the turbulent flow regime inside the SC. The study was 
performed for volume fractions of 0.05%- 0.5% of nanopar-
ticles and Reynolds numbers of 2950- 8142, which led to 
a turbulent flow regime. They reported that the thermal 
efficiency inside the SC increased with the Reynolds 
number and nanoparticle concentration. Bazdidi- Tehrani 
et al.55 studied the effect of ribbed fibers on the flow field 
and HTR of titan- water nanofluid inside a flat plate SC. 
It was found that the use of ribs intensified the HTR by 
10% compared to other cases. Furthermore, increasing the 
concentration of nanoparticles resulted in an increment 
in the thermal efficacy of the flat panel SC. Nguyen et al.56 
applied a triangular rib to make turbulence by exerting 
magnetic particles. They reported that the simultaneous 
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effect of triangular rib and magnetic nanoparticle could 
boost the heat transfer by 25%. Obaid et al.57 checked the 
influence of a new turbulator on the thermal- economic 
performance of SCs. It was found that by creating a vortex 
and disrupting the thermal layers, using new turbulators 
brought about a remarkable increment in the thermal 
performance of the SC. The new turbulators were also 
economically viable. Singh et al.58 examined the impres-
sion of different ribs on the outputs of a solar heater 
applying a kinematic method. They claimed that when 
using circular and trapezoidal ribs, the thermal output 
of the solar heater grew by 17% and 16%, respectively. 
Employing numerical methods, Ekiciler et al.59 evaluated 
the influence of hybrid nanofluids on the thermal perfor-
mance in a P- SC. Their study was performed on Syltherm 
800- based hybrid nanofluids at nanoparticle concentra-
tions of 1%- 4%. It was found that the thermal output of 
the P- SC increased with the nanoparticles' concentration. 
Sheikholeslami and Farshad60 numerically investigated 
the impact of innovative turbulators on the thermal per-
formance within a SC. Their findings revealed that the 
addition of light turbulators enhanced the SC thermal 
performance by 56.04% in comparison with the case when 
the SC had no turbulator.

The following is the innovations of the present work:

1. The use of a magnetic hybrid nanofluid
2. The use of innovative hybrid turbulators
3. Exergy study in parabolic solar collectors

A review of the literature reveals that the thermal- 
hydraulic performance and exergy efficacy of the para-
bolic trough solar collectors (P- SC) equipped with new 
hybrid turbulators filled with a water- Fe3O4- MWCNT 

hybrid nanofluid have not been studied so far, considering 
the two- phase model in a turbulent flow. Accordingly, the 
present study has investigated the effect of a hybrid tur-
bulator for the pitch ratios (PRs) of 1, 2, and 3 at Reynolds 
numbers of 5000- 20 000 and volume fractions of 1%- 3% of 
two- phase hybrid nanofluid using mathematical methods.

2 |  NUMERICAL INSTRUCTION

2.1 | Physical model

Figure 1 demonstrates a schematic of the investigated P- 
SC. As can be seen, the SC was equipped with a compound 
turbulator. The length of the solar culture was 700 mm, 
the length of the hybrid turbulator was 200 mm, and the 
diameter of the absorber tube was 50 mm. According to 
the figure, three different torsion ratios of 1, 2, and 3 for 
the combined turbulator were studied. The inputs of the 
study were Reynolds numbers of 5000- 20  000, with the 
volume fractions of the two- phase hybrid nanofluid rang-
ing from 1% to 3%.

2.2 | Governing equations

In order to simulate the MWCNT- Fe3O4/water magnetic 
hybrid nanofluid flow through the P- SC, a mixed two- 
phase liquid model was applied, which is more accurate 
compared with other methods.61 In all models simulated 
during the present investigation, the fluid flow inside the 
P- SC was turbulent because the Reynolds number was 
over 2300. Due to the simulation of the turbulent flow 
inside the absorber tube, the equations of the k-  ε model 

F I G U R E  1  A schematic of the 
studied P- SC with the compound 
turbulator
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were used, as well as the equations of continuity, motion, 
and energy, in the commercial software ANSYS- Fluent. 
The following provides the equations used 62,63:

Continuity equation:

Momentum equations:

where r, 𝜃, and z are the coordinates, and u, v, and w are the 
velocity components.

Energy equation:

As noted previously, the Reynolds number is defined as 62:

The average Nu is expressed as 62:

The following equation gives the pressure drop:

Further, the friction factor coefficient is computed as 63:

The thermal and hydraulic performance evaluation 
criterion (PEC) can be defined as the following equation 
to make a comparison between the hydrothermal perfor-
mance of simple P- SC and compound turbulator 62:

The exergy efficiency for parabolic collectors is ex-
pressed as the net useful exergy divided by the exergy of 
direct solar radiation entering the collector and is calcu-
lated using the following equation:

in which, 𝜂P is the pump power, which was considered equal 
to 85%.

2.3 | Nanofluid

The Newtonian nanofluid, called magnetic hybrid nano-
fluid, was used in the current study. It was comprised of 
water, Fe3O4, and MWCNT, and applied in the two- phase 
mixture method for simulation. The volume fraction var-
ied from 0.01 to 0.03. Table 1 lists the properties of the 
thermophysical nanofluid.

As the hybrid nanofluid included various materials, 
the density of water- Fe3O4- MWCNT nanofluid (𝜌nf) could 
be obtained as follows: 64,65

and the specific heat, cP,nf , of this hybrid nanofluid is ob-
tained from the following equation:

Furthermore, the thermal conductivity and dynamic 
viscosity of the aforementioned nanofluid can be de-
scribed as conformity relations 64,65.
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It should be mentioned that 𝜙 is a parameter to 
change the volume concentration of Fe3O4- MWCNT 
nanoparticles.

2.4 | Validation

2.4.1 | Grid independency testing

In order to obtain a proper grid, the mean Nu was evaluated 
for various grids in a P- SC with ROP = 3 at Re = 20 000 
and ϕ = 3% (see Table 2). According to the values of the 
mean Nu, it was observed that the grids with a number 
of 1  391  674 were suitable for simulating the P- SC with 
ROP = 3

2.4.2 | Numerical procedure validation

The numerical results were validated with the results of a 
study by He et al.66 Based on the outputs of Figure 2, the 
discrepancy of the mean Nu values obtained in the simu-
lations was small compared to that obtained by He et al.,66 
and the maximum error rate was 4.78%. As an outcome, 
the precision of the modeling results was ensured.

3 |  RESULTS AND DISCUSSION

This section provides the outcomes of the numerical sim-
ulation. First, the pressure, speed, and temperature of the 

(14)knf=kf

((
knp1+knp2

)
+2kf −2𝜑np1(kf +knp1)−2𝜑np2(kf +knp2)(

knp1+knp2
)
+2kf −𝜑np1(kf +knp1)−𝜑np2(kf +knp2)

)
,

(15)𝜇nf = 𝜇f (1−𝜙1−𝜙2)
−2.5.

T A B L E  1  The properties of the thermophysical nanofluid at 
T = 300 K64,65

Material 𝝆(kg/m3)
cp (J/
kg K)

k 
(W/m K) µ(N·s/m2)

Water 998.2 4182 0.6 0.001003

Fe3O4 5200 670 6 - 

MWCNT 2100 519 3000 - 

T A B L E  2  Average Nu for water- Fe3O4- MWCNT magnetic 
hybrid nanofluid inside P- SC with ROP = 3, for Re = 20 000, and 
φ = 0.03

Grid Eodes Nuave

Relative 
error (%)

1 534 945 410.91 - 

2 874 581 489.67 19.17

3 1 019 892 516.31 5.44

4 1 391 674 517.80 0.29

5 1 649 371 517.97 0.03

F I G U R E  2  Outcomes of the numerical validation with He et al.66

F I G U R E  3  Pressure contours for Re = 20 000 and in P- SC for 
(A) ROP = 1, (B) ROP = 2, and (C) ROP = 3
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P- SC are given. Then, the diagrams of changes in mean 
Nu, ΔP, PEC index, and exergy efficiency changes are 
presented.

Figure 3 shows the pressure- related contours for 
Re = 20 000 and in the P- SC for different ROPs. Based on 
the pressure meters, it is clear that the density of flow lines 
for a P- SC with ROP = 3 (c) was much higher compared to 
ROP = 1 (a) and ROP = 2 (b). This can be attributed to the 
change in torsion ratio, the flow between the blades, and 
the twists of the compound turbulator, causing the accu-
mulation of lines. The pressure also decreased with the in-
creasing length of the P- SC. In all P- SCs, the pressure was 
maximum at the inlet of the channel. The inactive flow 
caused a lot of pressure at the inlet due to the collision 
with the compound turbulator; and as a result, the whole 
speed changes to pressure.

Figure 4 shows the velocity contours for Re = 20 000 
and the P- SC for different ROPs. As can be seen, in the 
P- SC close to the walls, since there was no slip, it stuck to 
the collector walls, and its speed was equal to the speed 
on the wall. Therefore, near the P- SC wall, the velocity 
had its lowest value. However, by approaching the cen-
ter of the P- SC, the speed increased over time. Separation 

occurred when the current struck the hybrid turbulators, 
which formed the vortices and made them swirl. As can 
be seen, the size of these vortices in the parabolic collec-
tor with ROP = 3 was much larger and more elongated 
compared to the combined turbulator with ROP = 1 and 
ROP = 2.

Figure 5 shows the pressure contours for Re = 20 000 
in the P- SC for different ROPs. The figure for the thermal 
boundary layer increased with the ROP. The existence of 
vortices was the reason behind this phenomenon.

Figure 6 shows the changes in flow lines for 
Re = 20 000 = in the P- SC for different ROPs. As can be 
seen, the density of flow lines increased with the ROP. 
However, the highest density of flow lines belonged to the 
P- SC with a hybrid turbulator of ROP = 3.

Figure 7 depicts the average Nu changes against the 
Reynolds number in the P- SC with turbulator in different 
ROPs and volume fractions. As can be seen, the average 
Nu grew with the Reynolds number. It can be said that 
the velocity and density of the flow lines increased with 
the Reynolds number, resulting in a higher heat transfer 
coefficient. Furthermore, the rise in the ROP in the P- SC 

F I G U R E  4  Speed contours for Re = 20 000 in the P- SC for (A) 
ROP = 1, (B) ROP = 2, and (C) ROP = 3

F I G U R E  5  Temperature contours for Re = 20 000 in P- SC for 
(A) ROP = 1, (B) ROP = 2, and (C) ROP = 3
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increases the thermal performance, significantly. This can 
be attributed to the increased mixing and turbulence. For 
this reason, the average Nu would increase as a represen-
tative of this HTR. The rise in the average Nu in SC with 
ROP = 3 was more than the other two cases, which can 
be attributed to the presence of more vortices. These vor-
tices, as shown in the contours in the previous section, 
were longer and longer when the combined turbulator 
was longer. Therefore, their accumulation between the 
blades and the twists of the combined turbulator would 
increase the HTR. The maximum increase in thermal per-
formance belonged to ROP = 3 and a volume fraction of 
3% of nanoparticles. At Reynolds numbers of 5000, 10 000, 
15 000, and 20 000, it increased by 70.93%, 81.16%, 70.63%, 
and 56.10%, respectively.

Figure 8 demonstrates the variations in ΔP against 
Reynolds number in a P- SC with turbulator in differ-
ent ROP ratios and volume fractions. As can be seen, 
the ΔP was greater when the P- SC with ROP  =  3 was 
larger than the two ROP channels. Therefore, the pres-
sure increased with an increase in the ROP in the hybrid 
turbulator. The maximum increase in ΔP was associated 
with ROP = 3 and a volume fraction of 3% of nanoparti-
cles. At Reynolds numbers of 5000, 10 000, 15 000, and 
20  000, it increased by 19.53%, 110.28%, 100.22%, and 
80.23%, respectively.

Figure 9 presents the changes of PEC index to Reynolds 
number in volume fraction of 1%- 3% of nanoparticles in 
P- SC with combined turbulator for ROP = 1 (a), ROP = 2 
(b), and ROP = 3 (c), respectively. As can be seen, the PEC 
index in the P- SC with hybrid turbulator was higher than 
1 for all volume fractions and ROPs. Therefore, these re-
sults showed that the use of hybrid state turbulators had 
an effective role in improving HTR, and its use in a P- SC 
was appropriate in terms of the PEC index.

Exergy performance discrepancy against Reynolds 
number in a P- SC with a combined turbulator for 
ROP = 1, 2, and 3 at various volume fractions is depicted 
in Figure 10. As it is demonstrated, in all cases, the exergy 
performance grew with the volume fraction. However, in 
all cases, exergy efficiency increased with rising Reynolds 
number until reaching 10  000, and then decreased. 
Therefore, it can be concluded that the optimal state of ex-
ergy occurred in Reynolds number of 10 000 and volume 
fraction of 0.03% of nanoparticles.

4 |  CONCLUSION

In this study, the effect of a hybrid turbulator with the 
pitch ratios of 1, 2, and 3, Reynolds numbers of 5000- 
20  000, and volume fractions of 1%- 3% of two- phase 
hybrid nanofluid was evaluated through mathematical 
methods. Based on numerical methods, the impact of 
compound turbulator on thermal- hydraulic performance 
and exergy efficiency of P- SC filled with magnetic hybrid 
nanofluid and modeled in two phases was examined. 
The use of compound turbulators and magnetic hybrid 
nanofluids boosted the thermal performance of the P- 
SC. The maximum increase in ΔP belonged to ROP = 3 
and volume fraction of 3% of nanoparticles. At Reynolds 
numbers of 5000, 10 000, 15 000, and 20 000, it increased 
by 19.53%, 110.28%, 100.22%, and 80.23%, respectively. 
The use of hybrid turbulators in terms of the PEC index 
in P- SC was desirable. The optimal mode of using a hy-
brid turbulator in terms of exergy efficiency belonged to 
Reynolds number of 20 000 and volume fraction of 3% of 
nanoparticles.

F I G U R E  6  Streamline changes for Re = 20 000 in P- SC for (A) 
ROP = 1, (B) ROP = 2, and (C) ROP = 3

(A)

(B)

(C)
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F I G U R E  7  Variation of average Nu against Re number in P- SC with combined turbulator in different ROPs for (A) φ = 0.01, (B) 
φ = 0.02, and (C) φ = 0.03

(A) (B)

(C)

   4311KHETIB et al.



   | 9KHETIB et al.

F I G U R E  8  ΔP variations against Reynolds number in a P- SC with turbulator at different ROPs for (A) φ = 0.01, (B) φ = 0.02, and (C) 
φ = 0.03

(A) (B)

(C)
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F I G U R E  9  Changes of PEC index against Reynolds number in volume fractions of 1%- 3% of nanoparticles in P- SC with combined 
turbulator for (A) ROP = 1, (B) ROP = 2, and (C) ROP = 3
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NOMENCLATURE
ρ density (kg/m3)
cp specific heat capacity (J/kg.K)
f friction coefficient (- )
k thermal conductivity (W/m.K)
Nu Nusselt number (- )

P pressure (Pa)
Re Reynolds number (- )
C velocity (m/s)
HTR heat transfer rate
ROP ratio of pitch
PEC performance evaluation coefficient
μ viscosity (N·s/m2)
φ volume fraction
η pump efficiency
nf nanofluid
np nanoparticle

F I G U R E  1 0  Exergy performance discrepancy against Re number in P- SC with compound turbulator for ROP = 1, 2, and 3 in volume 
fractions of (A) 0.01, (B) 0.02, and (C) 0.03
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