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Abstract

We analyze the predictive power of time-varying risk aversion for the real-
ized volatility of crude oil returns based on high-frequency data. While the
popular linear heterogeneous autoregressive realized volatility (HAR-RV)
model fails to recognize the predictive power of risk aversion over crude oil
volatility, we find that risk aversion indeed improves forecast accuracy at all
forecast horizons when we compute forecasts by means of random forests.
The predictive power of risk aversion is robust to various covariates includ-
ing realized skewness and realized kurtosis, various measures of jump inten-
sity and leverage. The findings highlight the importance of accounting for
nonlinearity in the data-generating process for forecast accuracy as well as
the predictive power of non-cashflow factors over commodity-market uncer-
tainty with significant implications for the pricing and forecasting in these
markets.
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1 Introduction

The recent financialization of the commodity market has resulted in increased

participation of hedge funds, pension funds, and insurance companies in oil-based

financial products (e.g., Hamilton and Wu 2015). While several studies in the

literature argue that supply and demand fundamentals serve as the main driver

of commodity prices (e.g., Irwin and Sanders 2011), others suggest otherwise,

arguing that speculative activities have played a significant role in risk premiums

and volatility in the commodity market (e.g., Hong and Yogo 2012, Singleton

2014). Indeed, recent evidence suggests that investors’ risk preferences towards

the oil price contain a business-cycle component (Christoffersen and Pan 2017)

and that risk premiums embedded in crude oil prices are determined by the risk

aversion of market participants (Li 2018). Further, motivated by the evidence in

Robe and Wallen (2016) that implied volatilities extracted from crude oil options

are driven partly by the VIX, considered as a proxy for risk aversion and macro

uncertainty, this paper provides novel insight to the predictive value captured by

changes in risk preferences over crude oil-returns volatility within an innovative

forecasting setting by utilizing the measure of time-varying risk aversion recently

developed by Bekaert et al. (2017). By doing so, this study contributes to the

literature on the predictive power of behavioral factors over commodity-market

dynamics from a novel context.

Considering that crude oil is arguably the world’s most strategic commodity, ac-

curate forecasts of oil-return volatility are of paramount importance to not only

oil traders and corporate decision makers, but also to policymakers as oil mar-

ket uncertainty can negatively impact economic activity and contribute to ag-

gregate macroeconomic uncertainty (Elder and Serletis 2010, Aye et al. 2014,

van Eyden 2019). Naturally, a large literature exists on the forecastability of oil-

returns volatility using various types of univariate and multivariate Generalized
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Autoregressive Conditional Heteroskedasticity (GARCH) models (see, for exam-

ple, Sadorsky 2006, Sadorsky and McKenzie 2008, Agnolucci 2009, Kang et al.

2009, Wei et al. 2010, Nomikos and Pouliasis 2011, Arouri et al. 2012, Hou and

Suardi 2012, Kang and Yoon 2013, Chkili et al. 2014, Efimova and Serletis 2014).

In general, these studies find that univariate GARCH-type models are able to pro-

duce more accurate forecasts than its competitors. More recently, comparing the

Markov-switching multifractal (MSM) model with a battery of GARCH models,

Lux et al. (2016) show that the MSM model is the preferable framework in most

cases across various forecasting horizons and sub-samples analyzed.

A common feature of the aforementioned studies, however, is that they examine

oil returns at daily frequency without taking advantage of the predictive informa-

tion contained in intraday dynamics. In fact, numerous works including Andersen

et al. (2001, 2003, 2010), Oomen (2001), Hansen and Lunde (2005), Engle and

Sun (2007), McAleer and Medeiros (2008) and Tay et al. (2009) suggest that

the rich information contained in intraday data can be utilized to produce more

accurate estimates and forecasts of daily return volatility. In light of this, Hau-

gom et al. (2014), Sévi (2014), Prokopczuk et al. (2015), Degiannakis and Filis

(2017), Liu et al. (2017), Chen et al. (2019) and Gkillas et al. (forthcoming) use

variants of the Heterogeneous Autoregressive (HAR) model developed by Corsi

(2009) to forecast the realized volatility (RV) of crude oil returns (i.e., the sum

of non-overlapping squared high-frequency oil returns observed within a day, see

Andersen and Bollerslev 1998).1 The popularity of the HAR-RV model stems

from its ability to capture important stylized facts of financial-market volatility

such as long memory and multi-scaling behaviour. In fact, barring the recent

1Chatrath et al. (2015) and Phan et al. (2016) also forecast realized volatility of oil returns
as derived from intraday data via regression and GARCH-based models instead of the HAR-RV
framework. In addition, two other related papers are that of Asai et al. (2019, forthcoming) which
looks at the role of jumps, leverage, spillovers and geopolitical risks in forecasting the co-volatility
of the oil and gold markets based on intraday data.
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studies of Degiannakis and Filis (2017), Liu et al. (2017), Chen et al. (2019)

and Gkillas et al. (forthcoming), earlier works based on intraday data generally

conclude that none of the alternative models is able to outperform the forecasting

accuracy of a simple HAR-RV model, which uses only the information embed-

ded in the realized volatility to produce forecasts. In contrast, Degiannakis and

Filis (2017) show that it is possible to beat the HAR-RV model by incorporating

information on the exogenous volatilities of four different asset classes (stocks,

currencies, commodities and macroeconomic policy), while Gkillas et al. (forth-

coming) show that extending the baseline linear HAR-RV model to incorporate

an index of financial stress improves forecast accuracy once they account for the

potential asymmetry of a forecaster’s loss function. At the same time, Liu et

al. (2017) and Chen et al. (2019) show that allowing for time-variation and ac-

counting for asymmetric volatility jumps and co-jumps with the equity (S&P 500)

market, respectively can outperform the benchmark HAR-RV model.

Against this backdrop, this paper extends the limited literature on forecasting re-

alized oil-returns volatility (derived from intraday data) by incorporating the re-

cently developed measure of time-varying risk aversion by Bekaert et al. (2017)

into the popularly employed HAR-RV framework. This measure of risk-aversion

distinguishes the time variation in economic uncertainty (the amount of risk) from

time variation in risk aversion (the price of risk), and provides an unbiased repre-

sentation of time-varying risk aversion in financial markets. It can be argued that

the predictive value of risk aversion over crude oil-returns volatility stems from at

least two distinct channels. Considering the evidence that investor sentiment has

forecasting power over future macroeconomic conditions (e.g., Ludvigson 2004,

Souleles 2004, Lemmon and Portniaguina 2006) and that real economic activity

drives oil prices (e.g., Kilian and Hicks 2013), real economic activity is one pos-
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sible channel that links risk aversion to oil-returns volatility.2 A second channel

that links risk aversion to oil-returns volatility can operate through the speculative

activities in the marketplace. Li (2018) notes that crude oil-risk premiums are

low when the level of speculation is high (which corresponds to periods when ag-

gregate risk aversion of market participants is low). Therefore, it is possible that

changes in risk aversion serve as a determinant of speculative behavior in the oil

market and, thereby, capture predictive information over volatility in this market.

To the best of our knowledge, ours is the first study to utilize the unbiased measure

of risk aversion developed by Bekaert et al. (2017) in the context of forecasting

crude oil-returns volatility.

On the technical side, our research adds to the large literature on HAR-RV mod-

eling in empirical finance in that we use a machine-learning technique known

as random forests to model the realized volatility of crude oil returns. In our

context, the random forest technique offers two key advantages relative to the

standard HAR-RV model as it captures possible nonlinear links between realized

volatility and risk aversion in a data-driven way and allows, in a unified modeling

framework, the incremental predictive value of risk aversion to be studied in the

presence of several other covariates of realized volatility studied in the empirical-

finance literature. Indeed, our findings show that the standard HAR-RV model

misses the nonlinearity in the data and fails to recognize the predictive value of

risk aversion in out-of-sample tests. In sharp contrast, using various variants of

random forests (including quantile random forests and so called extreme random

forests), we document strong evidence that risk aversion helps to improve out-of-

sample accuracy of forecasts for realized oil volatility, even in the presence of the

additional covariates including measures of good and bad realized volatility, real-

2Indeed, Qadan and Nama (2018) document evidence of a significant link between volatility in
sentiment indices to volatility in oil prices, particularly after oil-based financial products started to
attract greater attention from financial investors.
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ized skewness and kurtosis, and various types of realized volatility jumps that are

employed in the literature (see, e.g., Lyócsa and Molnár 2016, Mei et. al. 2017).

To that end, this paper presents a technical contribution to the strand of the liter-

ature on volatility forecasting in the commodity market in addition to providing

novel insight into the predictive role of risk aversion over volatility in the crude

oil market.

The remainder of the paper is organized as follows. We describe our empirical

methods in Section 2 and our data in Section 3. We summarize our empirical

results in Section 4 and offer some concluding remarks in Section 5.

2 Methods

2.1 The HAR-RV Model

Following Andersen et al. (2012), daily realized volatility (RV ) is measured by the

median realized variance (MRV ) as a jump-robust estimator of integrated variance,

computed from intraday data as

MRVt=
π

6−4
√

3+π

T
T −2

T−1

∑
i=2

med(|rt,i−1|, |rt,i|, |rt,i+1|)2, (1)

where rt,i is the intraday return i within day t and i = 1, ..,T denotes the num-

ber of intraday observations within a day. As an estimator for realized volatility,

MRV is considered to be robust to jumps and less biased in the presence market-

microstructure noise.3 The baseline model to forecast realized volatility follows

the widely-studied HAR-RV model (Corsi, 2009) for h-days-ahead, described as

RVt+h=β0 +βd RVt +βw RVw,t +βm RVm,t + εt+h, (2)

3Researchers often use the term volatility to denote the standard deviation of asset-price re-
turns. To avoid any risk of confusion, we use the term realized volatility to denote the realized
variance of oil-price returns, and explicitly denote the square root of the realized volatility as the
realized standard deviation of oil-price returns.
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where h = forecast horizon, RVw,t = average RV from day t−5 to day t−1, and

RVm,t = average RV from day t − 22 to day t − 1. In this specification, we de-

fine RVt+h = mean{RVt +1, ...,RVt +h}. Three forecast horizons are analyzed:

a short daily forecasting horizon (h = 1), a medium weekly forecasting horizon

(h = 5), and a long monthly forecasting horizon (h = 22). The main idea moti-

vating the HAR-RV model is to use volatilities from different time resolutions to

forecast realized volatility and, thereby, to capture the key element of the hetero-

geneous market hypothesis (Müller et al. 1997). In our context, this translates

into a setting in which the market for oil is populated by various groups of market

participants, with short- and long-term traders responding to information flows at

different time horizons. To that end, the HAR-RV framework renders it possible

to account for different groups of agents including managed money traders who

are subject to funding constraints (Acharya et al. 2013) as well as commodity in-

dex traders (e.g., Hamilton and Wu 2014), who may be less focused on short-term

interactions.

We use the standard HAR-RV model as a nucleus for building more complex

models and first extend the baseline model to the HAR-RV-RA model by including

risk aversion, RAt , as

RVt+h=β0 +βd RVt +βw RVw,t +βm RVm,t +θ RAt + εt+h. (3)

Note that the HAR-RV-RA model given in Equation (3) retains the linear struc-

ture of the baseline HAR-RV model. A drawback of this specification is that the

HAR-RV-RA model may fail to recognize the contribution of risk aversion to the

predictive value of the model if the relationship between risk aversion and future

realized volatility is nonlinear.
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2.2 The HAR-RV-RF Model

As noted earlier, one of the technical novelties of this study is that we use a

machine-learning technique known as random forests to model the realized volatil-

ity of crude oil returns. Compared to the widely-employed HAR-RV model, which

is based on the OLS methodology, the random forest technique adopts a data-

driven approach to capture possible non-linearities in the relationship between

the variable of interest and its predictors. Furthermore, this technique makes it

possible to study the incremental predictive value of a given predictor (risk aver-

sion in our case) in the presence of several other predictors, where the potential

interactions of the predictors are automatically accounted for by the data-driven

modeling philosophy that forms the foundation of random forests.

Following the notation also used by Hastie et al. (2009, Chapter 9), a regression

tree, T , that features J terminal nodes recursively partitions the space of covariate

variables, x = (x1,x2, ...), into l non-overlapping regions, Rl . The list of covari-

ate variables comprises the standard HAR-RV predictors (that is, RVt ,RVw,t , and

RVm,t), risk aversion (RAt) and, in addition, the other variables that have been uti-

lized in the strand of the literature on modeling and forecasting realized volatility

(see Section 2.3). In addition to the advantages listed earlier, an important fea-

ture of regression trees is that they render it possible to study an arbitrarily large

number of covariate variables via a simple greedy algorithm that determines the

partitions in a top-down and binary way. At the top level of a regression tree,

the algorithm chooses the first partition in such a way that the partitioning co-

variate variable, s, and the selected partitioning point, p, define the half-planes

R1(s, p) = {xs|xs ≤ p} and R2(s, p) = {xs|xs > p} that minimize the loss function:

min
s,p

{
min
R̄V 1

∑
xs∈R1(s,p)

(RVi− R̄V 1)
2 +min

R̄V 2
∑

xs∈R2(s,p)
(RVi− R̄V 2)

2

}
, (4)
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where i denotes the t +h data on realized volatility that belong to the half-planes,

R̄V k = mean{RVi |xs ∈ Rk(s, p)},k = 1,2 denotes the half-plane-specific mean of

realized volatility, and the inner minimization is done by choosing the half-plane-

specific means to minimize the region-specific squared error loss.4 The outer

minimization, in turn, requires a simple search over all possible combinations

of s and p that results in the selection of the first optimal partitioning predictor,

the first optimal partitioning point, and the two region-specific means of realized

volatility. This search produces a slightly more complex new regression tree with

two terminal nodes.

In the next step, the minimization setup described in Equation (4) is carried on to

the new regression tree with two-terminal-nodes, this time separately for the two

optimal top-level half-planes, R1(s, p) and R2(s, p). This minimization yields up

to two second-level optimal partitioning covariates, two second-level optimal par-

titioning points, and four second-level region-specific means of realized volatility.

This minimize-and-partition search process is repeated until the regression tree

has a preset maximum number of terminal nodes or every terminal node has a

minimum number of observations.5 The final regression tree sends the covari-

ates into the Rl optimal regions of the regression tree and then predicts the i−th

observation of t +h realized volatility by its region-specific mean

T
(
xi,{Rl}L

1
)
=

L

∑
l=1

R̄V l1(xi ∈ Rl), (5)

where 1 is the indicator function.

In this procedure, finer predictions for realized volatility can be computed via

Equation (5) by growing a large enough regression tree. However, because a large

4For ease of notation, we do not use in Equation (4) an index for the forecast horizon, h and
the time index, t.

5This procedure requires a preset maximum number of terminal nodes and a preset minimum
number of observations per terminal node.
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individual regression tree is data-sensitive due to its hierarchical structure, a more

efficient way to compute granular predictions of realized volatility is to combine

a large number of simple regression trees. One approach used in this regard is

bootstrap aggregation (bagging, Breiman 1996) which proceeds in three steps. In

the first step, a large number of bootstrap samples is obtained from the data. In

the second step, a regression tree is estimated on every sample. In the third step,

realized volatility is predicted by averaging over the bootstrapped regression trees.

An alternative approach, the one that is adopted in this paper, is to grow random

forests (Breiman 2001). As compared to bootstrap aggregation, random forests

have the advantages that they mitigate the influence of individual covariates and

that they decorrelate the predictions from individual trees and, thereby, stabilize

the predictions of realized volatility. Growing a random forest resembles bootstrap

aggregation in that it requires drawing a large number of samples from the data.

In the next step, however, a random regression tree is estimated on every sample.

A random regression tree differs from a standard regression tree in that for every

partitioning step, only a random subset of the covariates is selected.

2.3 Other Covariates of Realized Volatility

As mentioned earlier, an advantage of random forests is that we can use an arbi-

trary number of covariates for tree-building, where the trees account in a natural

way for potential interactions between the covariates. This feature of random

forests is advantageous because earlier studies have used several covariates of re-

alized volatility to extend the standard HAR-RV model. In our case, rather than

considering various models in isolation, we use random forests as an integrated

modeling platform that permits the data to decide which covariate to use for tree-

building. This procedure also allows us to estimate HAR-RV-RF models with and

without risk aversion in the list of covariates and study the incremental out-of-

sample predictive value of risk aversion after controlling for the effects of other
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covariates employed in earlier studies. In our application, we analyze a large num-

ber of covariates for tree-building including (i) various types of jumps (i.e., total

jumps, downside (bad) jumps, upside (good) jumps, asymmetric jumps, truncated

large jumps, truncated small jumps) and (ii) realized skewness and kurtosis. Our

methodology for the detection of jumps is based on a benchmark scheme devel-

oped by Huang and Tauchen (2005) and Barndorff-Nielsen and Shephard (2006).

2.3.1 Detecting jumps in the volatility process

The procedure to detect jumps in the volatility process is based on the decomposi-

tion of volatility into a jump and a continuous component. This procedure requires

an estimator that excludes jumps. In one of the pioneering works in this regard,

Barndorff-Nielsen and Shephard (2006) propose an accurate estimate of the inte-

grated variance excluding jumps, named bipower variation (BPV ), formulated as

BPVt=ξ
−2
1

T

∑
i=2
|rt,i||rt,i−1|, (6)

where ξ1 =
√

(2/π) = E(|Z|) denotes the absolute value of mean of a standard

normally distributed random variable Z. As in Andersen et al. (2007), total jumps

are detected by the ratio-statistic (ZJ(BPV )
t ) (also called jump-ratio test), which is

given by

ZJ(BPV )
t =

(RVt−BPVt)RV−1
t((

ξ
−4
1 +2ξ

−2
1 −5

)
max

{
1,T QtBPV−2

t
})1/2 → N(0,1), (7)

where RVt = ∑
T
i=1 r2

t,i is the realized variance defined as a consistent estimator of

the integrated variance plus the jump contribution, and the the realized tripower

quarticity is given by T Qt = T ξ
−3
4/3 ∑

T
i=3 |rt,i|4/3|rt,i−1|4/3|rt,i−2|4/3. T Qt is an

asymptotically unbiased estimator of integrated quarticity in the absence of mi-

crostructure noise and converges in probability to integrated quarticity. The ZJ(BPV )
t
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is useful as a pre-test, prior to detecting jumps under the null hypothesis of no

jumps. Finally, total jumps are detected by applying the jump-detection scheme

which follows from

RJt=I
[ZJ(BPV )

t >Φa]
|RVt−BPVt |, (8)

where I{.} denotes the indicator function for ZJ(BPV )
t exceeding a given critical

value. Therefore, a jump occurs when the ZJ(BPV )
t exceeds the corresponding

critical value of the normal distribution, denoted by Φa, at a a level of significance.

2.3.2 Upside, downside and asymmetric jumps

A growing number of studies suggest that accounting for possible asymmetries

in the volatility and/or jump processes governing returns can improve forecast-

ing models for future excess stock market returns (e.g., Guo et al. 2019, among

others). In a realized estimation framework, Bollerslev et al. (forthcoming) use

the realized up (good) and down (bad) semi-variances for this distinction. Good

and bad realized volatility (semi-variance) can serve as measures of downside and

upside risk and capture the sign asymmetry in the volatility process. Sévi (2014)

and Chen et al. (2019) uses HAR-type models along with realized semivariances

and signed jumps as in Patton and Sheppard (2011) to forecast crude oil volatil-

ity. In this paper, following Barndorff-Nielsen et al. (2010), downside and upside

realized semi-variance (RV B and RV G) are computed as

RV B
t =

T

∑
i=1

r2
t,i I[(rt,i)<0], (9)

RV G
t =

T

∑
i=1

r2
t,i I[(rt,i)>0], (10)

where I{.} is the indicator function. We consider daily RV B as “bad” realized

volatility and daily RV G as “good” realized volatility in order to capture the sign

asymmetry of the volatility process. Understandably, RV S = RV B +RV G.
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Further, following Duong and Swanson (2011, 2015), we estimate downside (bad),

upside (good) jumps formulated by power transformation instead of decomposi-

tion using truncation levels (see sub-section 2.3.3) as

RJ−t =I
[ZJ(BPV )

t >Φa]

T

∑
i=1
|rt,i|q I[(rt,i)<0], (11)

RJ+t =I
[ZJ(BPV )

t >Φa]

T

∑
i=1
|rt,i|q I[(rt,i)>0], (12)

where q is the asymmetry parameter which affects the limiting behavior of the

estimator. We are interested in the case where q ≥ 2 , since large values of q,

are dominated by large jumps. For q < 2, the jump variations are not always

guaranteed to be finite. The q is selected to be 2.5 per Duong and Swanson (2011)

who found more significant HAR coefficients from a range of q from 2 to 6.

Finally, the asymmetric-jump component is computed as

RJAt=I
[ZJ(BPV )

t >Φa]
RJ+t −RJ−t . (13)

The RJAt is a so-called signed jump too. A negative (positive) sign implies that

the jump occurred in day t is associated with kind of events that primarily affected

the bad (good) volatility, hence economic conclusions can be drawn.

2.3.3 Truncated large and small jumps

Following Duong and Swanson (2011), we also estimate the realized measure of

truncated large (RV LJt) and small jumps (RV SJt) using a decomposition based

on a fixed truncation level (γ) (a threshold method to select the appropriate value

of γ , that can separate the (RV LJt) from RV SJt). Noting the limited literature on

forecasting oil volatility, particularly taking into account the forecasting ability of

RV LJt and RV SJt , Liu et al. (2018) show that HAR-type models including both

RV LJt and RV SJt can provide significantly superior forecasting performance on

12



oil futures data. In particular, including RV SJt in a HAR model is found to sig-

nificantly improve the forecast accuracy at the 1-day forecasting horizon, while

including both RV LJt and RV SJt can achieve significantly higher forecast accu-

racy at longer forecasting horizons (e.g., weekly or monthly). In our application,

RV LJt and RV SJt are computed as

RV LJt=min{RJt , I[ZJ(BPV )
t >Φa]

(
T

∑
i=1

r2
t,i I|rt,i|≥γ)}, (14)

RV SJt=RJt−RV LJt , (15)

where the selection of γ is data driven. Following Duong and Swanson (2011),

we set γ = 2 in order to capture large size jumps. Note that RJt is already defined

in Equation (8).

2.3.4 Realized skewness and kurtosis

As the final set of covariates, we compute realized skewness (RSK) and realized

kurtosis (RKU) as measures of the higher-moments of the distribution of daily

returns, computed from intra-day returns. Following Amaya et al. (2015), we

consider RSK as a measure of the asymmetry of the daily return distribution and

RKU as a measure that accounts for extreme occurrences. Following earlier stud-

ies, RSKt , standardized by RVt , and RKUt are computed as

RSKt=

√
T ∑

T
i=1 r3

t,i

(∑T
i=1 r2

t,i)
3/2

, (16)

RKUt=
T ∑

T
i=1 r4

t,i

(∑T
i=1 r2

t,i)
2
. (17)

The scaling of RSKt and RKUt by
√

T and T , respectively, ensures that their mag-

nitudes correspond to daily skewness and kurtosis.
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3 Data

We use intraday data on West Texas Intermediate (WTI) oil futures that are traded

on NYMEX over a 24 hour trading day (pit and electronic) to construct daily mea-

sures of standard realized volatility, and the corresponding good and bad variants,

as well as the other intraday oil-based covariates described in Section 2.3. The fu-

tures price data, in continuous format, are obtained from www.disktrading.com

and www.kibot.com. Close to expiration of a contract, the position is rolled

over to the next available contract, provided that activity has increased. Daily

returns are computed as the end of day (New York time) price difference (close to

close). In the case of intraday returns, 1-minute prices are obtained via last-tick

interpolation (if the price is not available at the 1-minute stamp, the previously

available price is imputed), and 5-minute returns are then computed by taking the

log-differences of these prices. Liu et al. (2015) note that 5-minute is a sampling

frequency adequate for liquid assets like WTI futures. Thus, the sampling fre-

quency used in our analysis is not too low to lead to poor data analysis and it is

not too high to induce spurious jumps due to market frictions.

As far as the measure of risk aversion is concerned, we utilize the risk aversion

index of Bekaert et al. (2017), which is available for download from: https://

www.nancyxu.net/risk-aversion-index. This new measure of time-varying

risk aversion can be calculated from observable financial information at high

(daily) frequencies and relies on a set of six financial instruments, namely, the

term spread, credit spread, a de-trended dividend yield, realized and risk-neutral

equity return variance and realized corporate bond return variance. As discussed

earlier, an important feature of this measure is that it distinguishes time variation

in economic uncertainty (the amount of risk) from time variation in risk aversion

(the price of risk) and, thus, provides an unbiased representation for time-varying

risk aversion based on a utility function in the hyperbolic absolute risk aversion
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(HARA) class. Based on the availability of the risk aversion data, the sample

period is February 1997 to December 2016.

4 Empirical Findings

4.1 Results for the Standard HAR-RV Model

Table 1 presents the full-sample estimation results for the baseline HAR-RV model

estimated by the ordinary-least-squares technique.6 The findings show that the

baseline HAR-RV model generally fits the data well with statistically significant

estimated coefficients at all three forecasting horizons and the adjusted coefficient

of determination taking on values in the range of 0.74−0.79. Interestingly, the

estimated coefficient for risk aversion is significant with a positive value, indicat-

ing that higher level of risk aversion predicts a subsequent increase in realized

volatility. Christoffersen and Pan (2017) note that an increase in economic ac-

tivity lowers investors’ relative risk aversion towards oil-price changes and large

oil-price fluctuations are associated with deteriorating economic conditions. To

that end, the observed positive predictive value of risk aversion over volatility

may be driven by the real economic activity channel and possible comovement of

risk aversion with changes in economic conditions. We also observe that the ad-

justed coefficient of determination increases only slightly for short forecast hori-

zons when we add risk aversion to the model, while risk aversion makes a some-

what larger contribution to the overall fit of the model in the case of the medium

and long forecast horizons.

− Please include Table 1 about here. −

6All estimation results documented in this research were computed using the R programming
environment (R Core Team 2019). The Newey-West robust standard errors reported in Table 1
were computed using the R packages “sandwich” (Zeileis 2004).
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Clearly, in-sample fit does not guarantee forecasting benefits in terms of out-of-

sample performance. For this reason, we report in Table 2 the results of Diebold

and Mariano (1995) tests to examine whether risk aversion helps to improve out-

of-sample forecast accuracy. To this end, we first compute out-of-sample forecast

errors for the three forecast horizons by means of a rolling-estimation window

of length 2,350 observations, which corresponds to half of the sample size. We

then derive the test results using the well-known modified Diebold-Mariano test

proposed by Harvey et al. (1997).7 We report p-values of the tests for (i) standard

forecast errors, defined as actuals minus forecasts, and (ii) scaled forecast errors,

computed by dividing the forecast error by actual realized volatility, in order to

take into account heteroskedasticity (for such a heteroskedasticity adjustment, see

e.g. Bollerslev and Ghysels 1996). Irrespective of whether we use scaled or un-

scaled forecast errors, the test results strongly suggest that risk aversion does not

help to improve out-of-sample forecast accuracy within the linear HAR-RV frame-

work. We find that the forecasts extracted from the standard HAR-RV model are

significantly more accurate than the forecasts extracted from the HAR-RV-RA

model, consistently across alternative loss functions based on the quadratic fore-

cast errors and the absolute forecast errors as arguments. In short, our prelimi-

nary out-of-sample tests suggest that risk aversion does not provide any predictive

value within the linear HAR-RV model.

− Please include Table 2 about here. −

4.2 Results for the HAR-RV-RF Model

Despite its popularity in the forecasting literature, as noted earlier, one of the

shortcomings of the standard HAR-RV model is that it is based on a linear spec-

7We report p-values computed using the R package “forecast” (Hyndman 2017, Hyndman and
Khandakar 2008).
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ification which may lead to biased results, especially if nonlinearities are present

in the links across the variables of interest. To that end, the findings reported in

Table 2 may not fully reflect the potential impact of risk aversion on the accuracy

of forecasts of realized volatility as changes in the level of risk aversion may have

a differential impact on forecast accuracy.8 For example, a visual examination of

the daily risk aversion series reveals a sudden, large increase in the level of risk

aversion during the financial crisis of 2007/2008, suggesting that risk aversion

may be state dependent. Considering that the level of speculation is negatively

correlated with the aggregate risk aversion of market participants (Li 2018) and

that speculators require commodity positions in their portfolios for diversification

purposes, particularly during periods of uncertainty (Hamilton and Wu 2014), one

can argue that the informational content of high levels of risk aversion during

times of crisis for subsequent realized volatility may differ from the informational

content of low levels of risk aversion observed during normal times. To that end,

the random forest technique offers an appropriate approach to account for such a

possible nonlinearity in the predictive relationship between realized volatility and

risk aversion.

As mentioned earlier, the HAR-RV-RF framework based on random forests does

not only account for possible nonlinearity in the data-generating process, but also

offers a natural modeling platform to capture the impact of several additional

covariates of realized volatility other than risk aversion.9 Following the previ-

ous works on realized volatility in different contexts, we use the following co-

8As a robustness check, we also estimate a HAR-RV-RA model using the natural logarithm of
risk aversion. This model yields results (not reported, but available from the authors upon request)
similar to those we report in Table 2.

9We use the R package “randomForest” to estimate random forests (see Liaw and Wiener,
2002). We set the number of trees at 500 and use #floor(total number of covariates/3) random
covariates for splitting. The same values are also used to estimate the models described in Section
4.3.
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variates in our forecasting model in addition to risk aversion (and the standard

weekly and monthly realized volatility): measures of good and bad volatility,

realized skewness and realized kurtosis, oil returns, a leverage effect variable

defined as max(returnst ,0), and various jump measures including asymmetric

jumps, good/bad jumps and small/large jumps.

− Please include Figure 1 about here. −

Figure 1 depicts the marginal effect of risk aversion on realized volatility as mea-

sured by the so-called partial dependence function. The partial dependence func-

tion informs how the prediction of realized volatility changes when we vary risk

aversion and hold all other predictors constant.10 We obtain the marginal effect

by combining 500 trees to estimate the HAR-RV-RF model over the whole sam-

ple where each tree has a maximum number of five terminal nodes. The marginal

effect shows that higher values of risk aversion are associated with higher values

of realized volatility, a pattern one would expect given that both realized volatility

and risk aversion tend to be higher in times of financial stress than during tranquil

times. Importantly, the estimated marginal effect exhibits a moderate slope for

several lower decentiles of risk aversion, while the slope substantially rises for the

largest decentiles. Clearly, the HAR-RV-RF model is able to successfully capture

the nonlinearity resulting from this pattern in the data, whereas the linear HAR-

RV-RA model overlooks this pattern and, therefore, draws an incomplete picture

of the impact of risk aversion on forecast accuracy.

In the case of out-of-sample forecasts of realized volatility, we estimate the HAR-

RV-RF model using the full list of covariates, with and without risk aversion, again

using a rolling-estimation window length of 2,350 observations. This procedure

10For brevity, we only plot the marginal effect obtained for the short forecast horizon. The
effects for the medium and long forecast horizons are similar (available upon request).
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yields two time series of forecasts that we compare by means of the modified

Diebold-Mariano test. Table 3 reports the test results for three different specifica-

tions of the hyperparameters of the HAR-RV-RF model by setting the maximum

number of terminal tree nodes to 5 and 10, while the third specification fixes the

minimum nodesize to 10 observations. As a standard procedure in the literature

on random forests, we choose randomly one third of the covariates for tree build-

ing (that is, for splitting). The results reported in Table 3 are rather similar across

the three specifications of the HAR-RV-RF model and lend strong support to the

hypothesis that time varying risk aversion contains significant predictive value for

subsequent realized volatility of crude oil returns. The tests yield significant re-

sults in case of the short and medium forecast horizon, with generally somewhat

weaker significance levels observed in the case of unscaled forecast errors, and L2

loss. For the long forecast horizon, the test results are significant in two out of the

three specifications (especially under L1 loss).

− Please include Table 4 about here. −

In order to further elaborate the predictive value of risk aversion, we report in

Table 4 a ranking of the covariates according to their relative importance. Relative

importance is measured by inspecting the increase in node purity (as measured by

the residual sum of squares across all trees) that results from the inclusion of a

variable to the list of predictors. The ranking of the covariates reported in Table

4 is based on the out-of-sample estimation results, that is, we report the mean

rank of a covariate across all rolling-estimation windows. As one would have

expected, daily realized volatility and its weekly and monthly counterparts (that

is, the standard predictors used for estimating a HAR-RV model) are among the

top-ranked predictors, followed by realized skewness and realized kurtosis (on

the role of realized skewness and realized kurtosis for modeling and forecasting

realized stock-market volatility, see Mei et al. 2017). We see that risk aversion has
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an average rank of about six, indicating its superior predictive ability compared to

returns and leverage and, importantly, the various jump covariates.

At the same time, the low ranks observed for the jump covariates is not unexpected

as we use a jump-robust estimator of realized volatility in our tests, following An-

dersen et al. (2012). Because the realized-volatility estimator employed is sub-

stantially less biased than other measures of realized volatility in the presence of

jumps and/or market-microstructure noise, it is decoupled from the discontinuous

and jump part of volatility (Giot et al. 2010). To that end, the low ranks obtained

for the jump-based covariates indicate that random forests reliably identify the

important covariates of realized volatility in our tests.

− Please include Table 5 about here. −

In Table 5, we summarize the pseudo R-squared of the HAR-RV-RF models av-

eraged across all rolling-estimation windows. The pseudo R-squared uses the so

called out-of-bag data (that is, the quasi-out-of-sample data not used for tree build-

ing when bootstrapping a random forest) to assess model performance (for details,

see Liaw and Wiener 2002). We observe that the out-of-bag pseudo R-squared

statistic of the HAR-RV-RF models is larger for the medium and long forecast

horizons than for the short forecast horizon and when we increase the number of

terminal nodes and fix the minimum terminal node size at 10 observations. In all

cases, the out-of-bagpseudo R-squared values exceed the in-sample/full-sample

adjusted R-squared values we report for the linear HAR-RV-RA models in Table

1.

− Please include Table 6 about here. −

In order to check the robustness of our findings with regard to the length of the

rolling-estimation window, we summarize in Table 6 the results for alternative
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rolling-estimation windows. Specifically, we vary the length of the rolling esti-

mation window in increments of 100 observations, starting with 1800 up to 2800,

and estimate the models for every alternative window length. We see that the find-

ings are robust to the size of the rolling-estimation window, suggesting that risk

aversion carries significant predictive information over future realized volatility in

the crude oil market, contributing to improved forecast accuracy.

− Please include Table 7 about here. −

Finally, we present as an alternative to the Diebold-Mariano test in Table 7 re-

sults for the test proposed by Clark and West (2007). We present results for three

different specifications of the number of terminal nodes and the size of the termi-

nal nodes, and for a rolling-estimation window of length 2350 observations. The

key result is that all tests yield significant results, corroborating the results of the

Diebold-Mariano tests.

4.3 Several Extensions

Having obtained strong results in favor of time-varying risk aversion as a predictor

of crude oil-returns volatility, we next extend our analysis to study the quantiles

of the conditional distribution of realized volatility in order to explore whether

the predictive relationship observed is driven by the state of the market which can

be represented via quantiles. To this end, we use quantile random forests and

estimate HAR-RV-QRF models. A quantile random forest, proposed by Mein-

shausen (2006) as an important extension of the random-forest technique, does

not only store the information on the mean of realized volatility at the leaves (as

a conventional regression tree does), but rather keeps all observations of realized

volatility in order to subsequently compute an estimate of its conditional distri-

bution function. This distribution function is then used to inspect the incremental
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predictive value of risk aversion for realized volatility at the quantile level.11 In a

recent application of quantile random forests to stock-returns volatility forecast-

ing, Gupta et al. (2019) provide a compact description of the technical details of

quantile random forests.

− Please include Table 8 about here. −

Table 8 summarizes the results of Diebold-Mariano tests for the HAR-RV-QRF

model, where we present results for two different specifications (maximum of five

terminal nodes, Panel A; minimum ternominal node size fixed at ten observations,

Panel B). Once again, we use the modified version of the Diebold-Mariano test

along with scaled forecast errors to study the incremental value of risk aversion

for forecast accuracy. In addition, we use the standard check function underlying

analyses of quantile regressions in order to evaluate the forecast errors. In other

words, we explicitly take into account the asymmetry of a forecaster’s loss func-

tion based on the assumption that a forecaster targets quantiles of the conditional

distribution of realized volatility rather than the median (on the role of asymme-

try of a forecaster’s loss function for forecasts of crude oil-returns volatiltiy; see

Gkillas et al. (forthcoming)). The findings reported in Table 8 are generally in

line with those obtained from the standard HAR-RV-RF model in that risk aver-

sion helps to improve forecast accuracy at all three forecast horizons provided

the quantile of the conditional distribution of realized volatility is not too small

(especially in Panel B).

− Please include Table 9 about here. −

11We use the R package “quantregForest ” (Meinshausen, 2016) to estimate the HAR-RV-QRF
model.
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As a second exension, we consider extreme random forests as developed by Geurts

et al. (2006).12 Extreme random forests further expand the advantages of standard

random forecasts over bootstrap aggregation as described in Section 2.2 in that,

given the list of randomly selected covariates that can be used for splitting at a

node, a (uniform) random split is sampled for every covariate in this list (using

the full sample rather than a bootstrap sample), and then the best split/covariate

combination is selected among these randomly sampled splits. The results for

the HAR-RV-ERF model, reported in Table 9, yield significant Diebold-Mariano

test values for the short and medium forecast horizon and, thus, provide further

support to the predictive power captured by risk aversion over realized volatility.

− Please include Table 10 about here. −

As a third extension, we repeat our analysis using an alternative measure of re-

alized volatility rather than the MRV estimator used in previous tests in order to

examine whether the results will hold when we a use volatility estimator that is

less robust to jumps. For this purpose, we use RV = RV B
t +RV G

t as an estimator of

reailized volatility. Table 10 summarizes the results of Diebold-Mariano tests for

this extension of the model. As can be seen in the table, all but one (for h = 22)

test results are found to be significant, further supporting our earlier findings on

risk aversion as a robust predictor of volatility.

Although not reported in the paper due to space considerations, we perform sev-

eral other extensions for further robustness checks. In one extension, we study the

predictive value of risk aversion for realized volatility at a monthly frequency and

find that risk aversion does not help to improve forecast accuracy for monthly data,

highlighting the benefits of using intraday data to study the predictive role of risk

12We use the R package “extraTrees” to estimate random forests (see Simm et al. 2014).
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aversion for volatility forecasting. As an alternative model, we study a model that

features a monthly variance risk premium as another covariate and, once again ob-

serve insignificant results for this variable. As yet another extension, we consider

a model that features the first difference of risk aversion and obtain significant test

results. Finally, using the speculative ratio of Chan et al. (2015), we compare the

model that features risk aversion with a model that features a measure of specula-

tive activity in the oil market.13 The results show that adding risk aversion to the

vector of predictors delivers significantly more accurate forecasts than adding the

speculative ratio to the model. The results for these additional tests are available

upon request.

5 Concluding Remarks

This paper introduces time-varying risk aversion as a predictor of realized volatil-

ity in the crude oil market. Using high-frequency data on WTI crude oil futures,

we examine the predictive power of risk aversion in the presence of various covari-

ates including realized skewness and realized kurtosis, various measures of jump

intensity, and leverage that have often been employed in volatility-forecasting

models. We show that nonlinearity in the predictive relationship between risk

aversion and realized volatility plays an important role for the accuracy of fore-

casts of realized volatility. While the popular linear heterogeneous autoregressive

realized volatility (HAR-RV) model fails to recognize the predictive power of

risk aversion over crude oil-returns volatility, we find that risk aversion indeed

improves forecast accuracy at all forecast horizons when we compute forecasts

by means of random forests. While this finding for time-varying risk aversion

13The speculative ratio is computed as the trading volume divided by open interest for crude oil
futures (data obtained from Commodity Systems Inc.).
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is robust to a battery of extensions and variations in the model specification, we

argue that the predictive value of time-varying risk aversion over realized crude

oil-returns volatility is driven by the real economic activity channel and possible

comovement of risk aversion with changes in economic conditions.

Overall, our study highlights the importance of nonlinearity in the detection of

predictors to improve the accuracy of forecasting models as well as the predictive

power of non-cashflow factors over commodity-market uncertainty. For future

research, it will be interesting to use random forests and other machine-learning

techniques in order to further explore the channels through which risk aversion

serves as a predictor of realized volatility of crude oil returns and other commodi-

ties. Various alternative measures of speculative activity could also be used to

further rule out the speculation channel in the risk aversion-volatility relationship.
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Table 1: Full-Sample Estimates (OLS)

h = 1
Model Intercept MRV MRVw MRVm RA Adj. R2
HAR-RV 3.2286 10.0487 5.2102 4.8466 – 0.7364
p-value 0.0012 0.0000 0.0001◦ 0.0001◦ – –
HAR-RV-RA -1.9150 9.3804 5.3565 4.7750 2.9494 0.7389
p-value 0.0555 0.0001◦ 0.0001◦ 0.0001◦ 0.0032 –

h = 5
Model Intercept MRV MRV_w MRVm RA Adj. R2
HAR-RV 2.4619 10.9463 3.7549 5.0119 – 0.7876
p-value 0.0138 0.0001◦ 0.0002 0.0001◦ – –
HAR-RV-RA -1.7560 10.4366 3.7681 4.8818 2.6756 0.7919
p-value 0.0791 0.0001◦ 0.0002 0.0001◦ 0.0075 –

h = 22
Model Intercept MRV MRVw MRVm RA Adj. R2
HAR-RV 3.1752 9.3592 2.2664 2.9516 – 0.7386
p-value 0.0015 0.0001◦ 0.0234 0.0032 – –
HAR-RV-RA -1.8773 8.9473 2.8770 3.1814 5.2033 0.7547
p-value 0.0605 0.0001◦ 0.0040 0.0015 0.0001◦ –

Note: Estimated coefficients are scaled by their estimated standard error. RA = Risj aversion. p-values are based on
Newey-West standard errors. ◦ denotes a value smaller than 0.0001. Adj. R2 = adjusted coefficient of determination.

Table 2: Out-of-Sample Results (HAR-RV Model)

Loss function h = 1 h = 5 h = 22
Unscaled forecast error

L1 0.8096 0.6409 0.9626
L2 0.6228 0.6437 0.7545

Scaled forecast error
L1 1.0000 0.9999 0.9999
L2 1.0000 0.9999 0.9999

Note: p-values of Diebold-Mariano tests (HAR-RV vs. HAR-RV-RA forecasts) for three different forecast horizons.
The scaled forecast error accounts for heteroscedasticity in the data and is computed as (actual - forecast)/actual. Null
hypothesis: the series of forecasts are equally accurate. Alternative hypothesis: the forecasts from the HAR-RV model that
features the risk aversion are more accurate. L1: absolute loss. L2: quadratic loss. The models were estimated using a
rolling-estimation window (2350 observations).
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Table 3: Out-of-Sample Results (HAR-RV-RF Model)

Panel A: Maximum number of terminal nodes is 5

Loss function h = 1 h = 5 h = 22
Unscaled forecast error

L1 0.0000 0.0000 0.0115
L2 0.0002 0.0144 0.1230

Scaled forecast error
L1 0.0000 0.0000 0.0001
L2 0.0000 0.0000 0.0011

Panel B: Maximum number of terminal nodes is 10

Loss function h = 1 h = 5 h = 22
Unscaled forecast error

L1 0.0000 0.0000 0.0475
L2 0.0116 0.0253 0.0936

Scaled forecast error
L1 0.0000 0.0000 0.0003
L2 0.0000 0.0000 0.0009

Panel C: Minimum node size is 10

Loss function h = 1 h = 5 h = 22
Unscaled forecast error

L1 0.0010 0.0367 0.3717
L2 0.0040 0.0480 0.1417

Scaled forecast error
L1 0.0000 0.0000 0.4011
L2 0.0002 0.0000 0.2316

Note: p-values of Diebold-Mariano tests (HAR-RV-RF vs. HAR-RV-RF-RA forecasts) for three different forecast horizons.
The scaled forecast error accounts for heteroscedasticity in the data and is computed as (actual - forecast)/actual. Null
hypothesis: the series of forecasts are equally accurate. Alternative hypothesis: the forecasts from the HAR-RV-RF model
that features the risk aversion are more accurate. L1: absolute loss. L2: quadratic loss. The models were estimated using
random forests and a rolling-estimation window (2350 observations).
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Table 4: Ranking of Covariates (HAR-RV-RF Model)

Covariate h = 1 h = 5 h = 22
MRV 1.83 2.20 3.13
MRVw 2.65 1.82 1.19
MRVm 4.94 3.88 3.09
Asymmetric jumps 13.33 13.85 13.50
Bad jumps 9.71 10.12 10.20
Good jumps 9.92 9.13 9.06
Large jumps 7.08 6.95 7.18
Small jumps 8.63 8.61 9.14
Returns 9.05 9.73 9.97
Bad realized volatility 2.00 2.91 2.98
Good realized volatility 3.81 4.19 4.73
Realized skewness 12.99 13.32 13.40
Realized kurtosis 12.84 12.28 11.96
Leverage 14.62 14.33 14.56
Risk aversion 6.61 6.67 5.90

Note: The mean rank of a covariate across all rolling-estimation windows (2350 observations) is computed based on its
effect on node purity as measured by the residual sum of squares. The number of trees per random forest is 500, and the
maximum number of terminal nodes is five.

Table 5: Pseudo R-Squared (HAR-RV-RF Model)

Specification h = 1 h = 5 h = 22
Max. no. of terminal nodes = 5 0.7468 0.7953 0.7636
Max. no. of terminal nodes = 10 0.7663 0.8183 0.7902
Min. terminal node size = 10 0.7737 0.8356 0.8302

Note: The pseudo R-squared is defined as 1−MSEoob/Var, where MSEoob denotes the mean-squared error that obtains
when the estimated model is used to compute the out-of-bag data (that is, the data not used for tree building when boot-
strapping a random forest) and Var is an estimate of the variance of the dependent variable. The number of trees was set to
500.
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Table 6: Out-of-Sample Results (Alternative Rolling-Window Lengths)

Window h = 1 h = 5 h = 22
Unscaled forecast error

1800 0.0000 0.0176 0.1120
1900 0.0049 0.0155 0.0883
2000 0.0014 0.0054 0.0911
2100 0.0000 0.0086 0.0878
2200 0.0001 0.0058 0.0965
2300 0.0000 0.0136 0.1155
2400 0.0005 0.0158 0.1198
2500 0.0001 0.0077 0.1227
2600 0.0001 0.0125 0.1044
2700 0.0277 0.1717 0.3586
2800 0.3130 0.2305 0.0167

Scaled forecast error
1800 0.0000 0.0000 0.0020
1900 0.0000 0.0000 0.0015
2000 0.0000 0.0000 0.0021
2100 0.0000 0.0000 0.0015
2200 0.0000 0.0000 0.0014
2300 0.0000 0.0000 0.0012
2400 0.0000 0.0000 0.0014
2500 0.0000 0.0000 0.0010
2600 0.0000 0.0000 0.0009
2700 0.0000 0.0000 0.0009
2800 0.0000 0.0000 0.0009

Note: p-values of Diebold-Mariano tests (HAR-RV-RF vs. HAR-RV-RF-RA forecasts) for three different forecast horizons.
Null hypothesis: the series of forecasts are equally accurate. Alternative hypothesis: the forecasts from the HAR-RV-RF
model that features the risk aversion are more accurate. Loss function: L2. The models were estimated using random
forests consisting of 500 trees and a maximum of five terminal nodes. Window = length of the rolling-estimation window.

Table 7: Clark-West-Tests (HAR-RV-RF Model)

Specification h = 1 h = 5 h = 22
Max. no. of terminal nodes = 5 2.6076 1.9376 1.6034
Max. no. of terminal nodes = 10 1.8527 1.7524 1.7491
Min. terminal node size = 10 2.6019 2.1078 1.8252

Note: t-statistics of the Clark-West tests are based on Newey-West standard errros. The number of trees was set to 500.
Critical values (one-sided test) are: 1.282 (10%) and 1.645 (5%).
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Table 8: Out-of-Sample Results (HAR-RV-QRF Model)

Panel A: Max. no. of terminal nodes = 5

Loss function L1 L2
Quantile h = 1 h = 5 h = 22 h = 1 h = 5 h = 22
0.02 0.017 0.0324 0.0348 0.0346 0.0364 0.0673
0.1 0.000 0.0000 0.0000 0.0001 0.0003 0.0002
0.2 0.000 0.0000 0.0000 0.0000 0.0000 0.0002
0.3 0.000 0.0000 0.0000 0.0000 0.0000 0.0004
0.4 0.000 0.0000 0.0000 0.0000 0.0000 0.0010
0.5 0.000 0.0000 0.0000 0.0000 0.0000 0.0012
0.6 0.000 0.0000 0.0000 0.0000 0.0000 0.0021
0.7 0.000 0.0000 0.0000 0.0000 0.0000 0.0022
0.8 0.000 0.0000 0.0000 0.0000 0.0000 0.0013
0.9 0.000 0.0000 0.0000 0.0000 0.0000 0.0006
0.98 0.000 0.0000 0.0000 0.0000 0.0000 0.0010

Panel B: Min. terminal node size = 10

Loss function L1 L2
Quantile h = 1 h = 5 h = 22 h = 1 h = 5 h = 22
0.02 0.2399 0.2636 0.2950 0.5462 0.5430 0.5382
0.10 0.2618 0.2650 0.2772 0.0895 0.0945 0.1153
0.20 0.0003 0.0002 0.0010 0.0070 0.0067 0.0134
0.30 0.0001 0.0000 0.0000 0.0010 0.0006 0.0013
0.40 0.0197 0.0260 0.0219 0.0212 0.0373 0.0338
0.50 0.0003 0.0005 0.0024 0.0001 0.0001 0.0002
0.60 0.0001 0.0001 0.0003 0.0099 0.0078 0.0072
0.70 0.0000 0.0000 0.0000 0.0190 0.0121 0.0104
0.80 0.0010 0.0011 0.0009 0.0032 0.0048 0.0061
0.90 0.1785 0.1761 0.1962 0.3848 0.3857 0.3671
0.98 0.2933 0.3221 0.3020 0.2224 0.2748 0.2764

Note: p-values of Diebold-Mariano tests (HAR-RV-QRF vs. HAR-RV-QRF-RA forecasts) for three different forecast
horizons. The HAR-RV-QRF model features 500 trees and a maximum of five terminal nodes. The scaled forecast error
accounts for heteroscedasticity in the data and is computed as (actual - forecast)/actual. Null hypothesis: the series of
forecasts are equally accurate. Alternative hypothesis: the forecasts from the HAR-RV-QRF model that features the risk
aversion are more accurate. Loss function: check function of the L1 (absolute error loss) or the L2 (squared error loss)
type. The models were estimated using a rolling-estimation window (2350 observations).

Table 9: Out-of-Sample Results (HAR-RV-ERF Model)

Loss function h = 1 h = 5 h = 22
Unscaled forecast error

L1 0.0000 0.0330 0.2536
L2 0.0123 0.0302 0.0958

Scaled forecast error
L1 0.0000 0.0000 0.4463
L2 0.0000 0.0000 0.3143

Note: p-values of Diebold-Mariano tests (HAR-RV-ERF vs. HAR-RV-ERF-RA forecasts) for three different forecast
horizons. The scaled forecast error accounts for heteroscedasticity in the data and is computed as (actual - forecast)/actual.
Null hypothesis: the series of forecasts are equally accurate. Alternative hypothesis: the forecasts from the HAR-RV-
ERF model that features the risk aversion are more accurate. L1: absolute loss. L2: quadratic loss. The models were
estimated using extreme random forests (500 trees, minimum nodesize was set to ten) and a rolling-estimation window
(2350 observations).
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Table 10: Out-of-Sample Results (HAR-RV-RF Model, Alternative Measure of
RV )

Specification h = 1 h = 5 h = 22
Max. no. of terminal nodess = 5 0.0000 0.0000 0.0018
Max. no. of terminal nodess = 10 0.0000 0.0000 0.0010
Min. terminal node size = 10 0.0007 0.0001 0.2154

Note: p-values of Diebold-Mariano tests (HAR-RV-RF vs. HAR-RV-RF-RA forecasts) for three different forecast horizons.
The scaled forecast error accounts for heteroscedasticity in the data and is computed as (actual - forecast)/actual. Null
hypothesis: the series of forecasts are equally accurate. Alternative hypothesis: the forecasts from the HAR-RV-RF model
that features the risk aversion are more accurate. Loss function: L2. The models were estimated using random forests
consisting of 500 trees and a maximum of five terminal nodes.

Figure 1: Marginal Effect (HAR-RV-RF Model)
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Note: The full-sample estimated marginal effect of risk aversion on one-day-ahead realized volatility implied by a random-
forest model consisting of 500 trees. The maximum number of terminal nodes is five. The rugs on the horizontal axis show
the decentiles of risk aversion.
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