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Disease outbreaks are a consequence of interactions among the
three components of a host–parasite system: the infectious agent,
the host and the environment. While virulence and transmission
are widely investigated, most studies of parasite life-history
trade-offs are conducted with theoretical models or tractable
experimental systems where transmission is standardized
and the environment controlled. Yet, biotic and abiotic
environmental factors can strongly affect disease dynamics, and
ultimately, host–parasite coevolution. Here, we review research
on how environmental context alters virulence–transmission
relationships, focusing on the off-host portion of the parasite life
cycle, and how variation in parasite survival affects the evolution
of virulence and transmission. We review three inter-related
‘approaches’ that have dominated the study of the evolution of
virulence and transmission for different host–parasite systems:
(i) evolutionary trade-off theory, (ii) parasite local adaptation and
(iii) parasite phylodynamics. These approaches consider the role
of the environment in virulence and transmission evolution
from different angles, which entail different advantages and
potential biases. We suggest improvements to how to investigate
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virulence–transmission relationships, through conceptual and methodological developments and
taking environmental context into consideration. By combining developments in life-history
evolution, phylogenetics, adaptive dynamics and comparative genomics, we can improve our
understanding of virulence–transmission relationships across a diversity of host–parasite systems
that have eluded experimental study of parasite life history.
lishing.org/journal/rsos
R.Soc.Open

Sci.8:210088
1. Introduction: parasites, hosts and their environment
The ‘epidemiological triangle’ recognizes that disease outbreaks depend on all three components of a host–
parasite system: the infectious agent, the host and the environment. As a result, effective diseasemanagement
hinges on our ability to estimate key disease parameters (e.g. transmission rate,R0, infectionduration, force of
infection (see box 1 for definitions)), and to understand the mechanisms creating variation in these
parameters [2]. To quote Ovaskainen & Laine [3]: ‘one of the principal challenges in epidemiological
analysis is to understand the causes of the variability that occurs between different epidemics of the same
disease’. This review, therefore, has two main goals. The first is to draw attention to the importance of the
off-host portions of parasite life cycles in causing variation in host–parasite relationships and disease
outbreaks. To achieve this, we broadly review how environmental context alters host–parasite dynamics,
and hone in on under-studied parasite off-host survival traits and their ecological and evolutionary
implications for virulence–transmission relationships. The second goal is to suggest improvements for
how we investigate virulence–transmission relationships, by taking the environmental context of parasite
transmission into consideration and including a greater diversity of host–parasite taxa.

Evolutionary biologists have long been interested in life-history trade-offs in host–parasite systems
and their implications for coevolution and outbreak dynamics (throughout this review, we use the
term ‘parasite’ in the general sense, to include microparasites and macroparasites). The trait most
commonly investigated is virulence—generally seen as the parasite-induced host mortality or
morbidity (see box 2 for variable definitions and their implications)—due to the public health and
veterinary implications of host health. However, transmission is a similarly complex process (see
box 3), subject to heterogeneities in host, parasite and the external environment, which can create
nonlinearities in the transmission process [11]. Recent insights into parasite evolution emphasize the
importance of considering both within-host infection dynamics and between-host transmission
dynamics for predicting virulence evolution and epidemiology [9,17–19]. In other words, we may
only recently have understood the complexity of the challenges inherent in detecting and predicting
life-history trade-offs for a diversity of host–parasite systems.

We know from emerging infectious diseases that host–parasite interactions can evolve rapidly,
leading to unforeseen changes in disease severity [20–24]. As an example, Bacillus cereus, a close
relative of B. anthracis, has repeatedly acquired plasmids that allow the expression of an anthrax-like
phenotype [25], showing how highly pathogenic disease agents can develop where the environment is
conducive to such life-history strategies [26–29]. This is not only evident for recently emerged
infections in naive host populations, but can be detected in coevolutionary systems with a long
history, such as the plague bacterium, Yersinia pestis [30–34]. New research suggests Y. pestis
repeatedly evolved novel traits to enhance its transmission from arthropod vector to mammalian host
under cold and dry climate conditions when vector populations were depressed [35]—highlighting
how environmental conditions can lead to evolution in transmissibility traits.

There aremany sources of variation that can affect infection parameters, including heterogeneities among
individual hosts [36,37], parasite strains [38,39] and environments [40]. Environmental factors, including both
abiotic and biotic factors, can lead to context-dependent parasitism and virulence [41–43]. Abiotic factors
clearly affect both host and parasite life cycles, and thus outbreak epidemiology [44–48], so climate
variables are often used to predict parasite distributions [49,50] and forecast disease outbreaks [51,52].
Biotic factors also affect host–parasite interactions, including host variation and a variety of species
interactions occurring inside and outside of hosts (e.g. [53–57]). It is important to remember that the
environment contributes to phenotype, and that phenotypic plasticity is modulated through epigenetic
variation [58–60] meaning that the effects of environmental variation are not necessarily static.

In the first half of this review, we highlight three main research ‘approaches’ that have dominated the
study of the evolution of virulence and transmission for different host–parasite systems. These
approaches treat the environment very differently when considering evolutionary interactions between
hosts and parasites, ranging from ignoring or controlling for the environment, to using the



Box 1. Glossary.

Environmental transmission: transmission where hosts are infected via contact with infectious
propagules in an environmental reservoir, rather than from contact with another host or vector.

Facultative, or opportunistic, parasites: These organisms do not require host exploitation in order to
reproduce, but can parasitize organisms as opportunity presents (see Brown et al. [1]). Examples
include environmental opportunists such as Flavobacterium columnare, Listeria monocytogenes and
Clostridium spp. and commensal opportunists such as Staphylococcus aureus, Enterococcus faecalis
and Mycoplasma ovipneumoniae.

Force of infection: the rate at which susceptible individuals acquire an infection.
Genotype by environment interactions: When different genotypes react to changes in the

environment in different ways. For example, one genotype may have higher fitness than another
genotype under one environmental condition, but those relationships may be reversed under
different conditions.

Indirect transmission: host infection via contact with an environmental reservoir, an arthropod
vector or an intermediate host.

Infectivity: a parasite’s ability to establish an infection. In plant pathology, this is the proportion
of host genotypes a parasite is capable of infecting, often termed virulence (see box 4).

Life-history traits: Phenotypes that contribute to the fitness (evolutionary success) of an organism.
These include traits that characterize the timing of growth, reproduction, survival. For parasites, the
key traits examined are reproduction in the host (in many studies conflated with, or used as a proxy
for, virulence) and transmission from one host to the next (see boxes 2 and 3).

Obligate killer parasites: These obligate parasites must kill the host to transmit. Examples of this
burst transmission include insect viruses such as baculovirus or nucleopolyhedrovirus, bacteria
such as Pasteuria ramosa and Bacillus anthracis, protists such as Paranosema whitei, and fungi such
as Metarhizium anisopliae.

Obligate shedding parasites: a parasitic organism that cannot complete its life cycle without
exploiting a suitable host that sheds reproductive or infectious stages during the course of the
infection. Examples include many respiratory infections spread through coughing and sneezing,
as well as gastrointestinal macroparasites and coccidia that require a developmental period in the
environment before becoming infectious.

Parasite: here broadly defined to include both microparasites (e.g. viruses, bacteria, fungi and
protists) and macroparasites (e.g. helminths, arthropods).

Pathogenicity: the harm a parasite causes to the host, a term often used interchangeably with
virulence (see box 2).

Phylodynamics: the study of how interactions between parasite epidemiological and evolutionary
processes shape parasite phylogenies, which is often applied as a framework for examining
transmission dynamics.

Phylogeography: a field combining phylogenetics with biogeography, to investigate relationships
in the distribution of genetic lineages on spatial scales.

R0: the basic reproduction number of an infection; an estimate of the average number of
secondary cases caused by a single case in a wholly naive population. This gives an estimate of
how quickly a disease will spread if a time frame per infection is implied (see box 3).

Transmission potential: A term with mixed and somewhat imprecise definitions, representing the
likelihood of future transmission events. This is applied both for interactions between different
species in vector-borne and zoonotic diseases (encompassing traits such as vector competence
and host susceptibility), and as an assessment of parasite fecundity (i.e. the number of
propagules produced during an infection, with the arguably simplistic assumption that more
propagules produced equates to more future cases, see box 3).

Virulence: an emergent property of the host–parasite interaction; the negative effect of the
parasite on host fitness (see box 2 for additional discussion).
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environment as an experimental treatment for host–parasite coevolution. The approaches include
(i) theoretical development and experimental testing of evolutionary trade-off theory for virulence and
transmission traits, (ii) empirical studies of parasite local adaptation across space, and (iii) genetic
studies of parasite phylodynamics, contrasting transmission dynamics through time. We categorize



Box 2. Challenges of defining and measuring virulence.

One of the great challenges for generalizing virulence–transmission relationships across a range of
host–parasite taxa is the variable definitions used to define and measure traits for virulence (and
transmission, see box 3), and the scales at which these are applied (populations versus individuals).

Virulence is an emergent property of the host–parasite–environment interaction [4], with broad
and often conflicting definitions. In general, parasite virulence encompasses the processes of
infectivity, replication within the host, and damage caused to the host, and at evolutionary
scales, the fitness of the parasite and its host [5]. Virulence is often treated as a parasite property,
yet indirectly measured through its effects on host fitness, i.e. parasite pathogenicity or damage
to the host [6–8].

Different fields and approaches vary in which part of this virulence process is emphasized and
measured. In theoretical studies, virulence usually refers to the fitness cost a pathogen imposes on a
host population and is described as an increase in host mortality rate [7,9]. However, this
definition—the most commonly used concept of virulence—combines and conflates the effects of
host tolerance/resistance and parasite phenotype [10], arguably with detrimental effects to our
understanding of parasite evolution, such as the potential trade-offs in virulence and
transmission. For empirical systems, we are limited by what can be readily measured. In
experimental systems, virulence is often measured as the parasite-induced host mortality rate.
Outside of controlled laboratory systems, proxies for virulence that are commonly measured
include parasite growth rate, time to host death, number of parasite propagules produced from
an infection, host morbidity (a parasite-induced reduction in host fitness) and intra-infection
dynamics (competition or cooperation depending on parasite relatedness).
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these overlapping viewpoints into ‘approaches’, not to define methodologies, but as a useful lens through
which to compare these perspectives. They draw upon the same body of theory, but diverge based on the
taxa most commonly studied, as well as conventions, vocabularies and methodologies. The focus on
different study systems and tool kits has shaped the lenses through which these problems have been
viewed, resulting in somewhat different approaches to fundamentally the same questions. We describe
how these approaches consider the role of the environment in virulence and transmission evolution
from different angles, which entail different advantages and potential biases.

In the second half of this review, we offer some perspectives on how to integrate these approaches to
investigate virulence–transmission relationships across the range of biodiversity in host–parasite systems.
This section focuses broadly on the pivotal role of the environmental context in disease processes, and
specifically on parasite dynamics in the off-host environment. We note the continued need for more
interdisciplinary research, as well as conceptual and methodological developments in combination
with advances in life-history evolution, phylogenetics, adaptive dynamics and comparative genomics,
to improve our understanding of virulence–transmission relationships.
2. Approach I: theories linking parasite virulence and transmission (and
their mixed empirical support)

The first approach to the study of the evolution of virulence and transmission in host–parasite systems
combines the theoretical foundation of life-history relationships between virulence and transmission traits
in host–parasite systems, with empirical tests of these theories. Virulence and transmission traits are
important to consider when managing infectious diseases, especially given the risk for unintended
consequences of interventions on disease outcomes [61–63]. As evidence of the collective interest in
virulence and transmission relationships, a recent meta-analysis reviewed over 6000 publications on
virulence life-history trade-offs [64]. Under the prevailing theory, parasites are expected to evolve
intermediate levels of virulence due to a trade-off between the parasite’s virulence and its transmissibility
[65,66]. Causing too much harm to the host runs the risk of killing one host before being transmitted to the
next, or ultimately driving the host to extinction. Conversely, causing too benign an infection is expected to
decrease the transmission rate, creating a competitive disadvantage in comparisonwithmore virulent strains.

These expectations, although framed generally, are focused on directly transmitted parasites, where
infectious stages are shed during the infection, and thus virulence and transmission are directly



Box 3. Challenges of defining and measuring transmission (and its relationship to virulence).

Like virulence, transmission is a combination of host and parasite traits, including host
susceptibility, parasite infectivity, transmission routes, contact rates and exposure doses [11,12],
all of which may be under selection. This includes everything from the number of propagules
produced during the infection, to the mode and timing of their release into the environment,
their persistence in the off-host environment, contact with a susceptible host, dose encountered,
parasite infectiousness and heterogeneity in host resistance. Given the challenges of measuring
transmission and its heterogeneities, this process is often subject to simplifying assumptions,
several of which we discuss here.

Estimates of R0 are often used as a proxy measure of parasite fitness, yet care must be taken
as this is not the same as R0 in the epidemiological sense. R0 is fundamentally unsuitable as a
fitness measure as long as it ignores the time axis between infections: parasite strain a may start
fewer new infections on average than parasite strain b, but may still outcompete b if hosts are
infected over a shorter time period, T. This is because if the number of hosts, H, infected by
a strain in time T is Ha ¼ RT=Ta

0,a , and Hb ¼ RT=Tb
0,b , then a produces more infections as long as

ln (R0,a) . ðTa=TbÞ ln (R0,b) when R0 does not include time explicitly.
A second assumption is that the number of propagules released during an infection linearly

correlates with transmission success, an assumption that is problematic in several ways:

— A higher quantity of propagules does not necessarily enhance transmission success if there is a
trade-off between propagule quality and quantity. For example, environmental survival of
Escherichia coli bacteriophages decreases with the number of virions produced [13].

— Propagules are not released into a well-mixed pool with equal opportunity to infect a
susceptible host. Transmission will be affected by the spatial properties of propagule release
from infected hosts. Propagules shed during infections will release relatively smaller
numbers of infectious propagules over a larger area, while obligate killer infections release
relatively larger concentrations of propagules in a small area.

— Environmental heterogeneity will affect propagule survival in the off-host environment, where
a multitude of abiotic and biotic factors can alter parasite development and survival, and hence
transmission. Environmental conditions affect transmission processes at a variety of spatial
scales, including the micro-scale effect on propagule persistence, the landscape-scale effect on
host density and behaviour, and broad-scale biogeographic patterns in host and parasite
range. Many studies have highlighted heterogeneity in parasite risk among individual hosts
(e.g. [14–16]), but few, in turn, examine where propagules are shed, and how their
distribution affects parasite survival and development, host contact and parasite selection.

In the literature review conducted for this study (summarized in table 1), 25% of the studies on
virulence/transmission evolution considered for inclusion used the number of propagules
produced during an infection as both a virulence trait and, implicitly, a transmission trait (i.e. the
‘transmission potential’). Using the same measure to represent virulence and transmission is
potentially problematic when determining evolutionary relationships between the two processes.

Assuming that more propagules released equals higher rates of transmission is a simplistic
representation of a complex process, especially for environmentally transmitted parasites (ETPs)
that can persist for extended periods in the environment and whose success depends on the
spatio-temporal distributions of parasites, hosts and contact rates.

royalsocietypublishing.org/journal/rsos
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coupled through host morbidity and mortality. Yet, transmission mode has been repeatedly linked with
virulence, where parasites with indirect transmission, in general, are more virulent than directly
transmitted parasites [67–71]. Throughout this review, we use the term environmental transmission to
describe host infection from an environmental reservoir (others would call this indirect transmission,
but this term has a broader definition, e.g. [72]). Parasites with mixed transmission modes also show
heightened virulence when maintaining an environmental transmission pathway (e.g. Vibrio cholerae
[73], avian influenza viruses [74], Flavobacterium columnare [75]).

Environmentally transmitted parasites (ETPs), on the other hand, have been assumed to exhibit
different life-history relationships between virulence and transmission. For these parasites, the
transmission component most often considered is parasite survival in the environment, as a distinctive



Box 4. Challenges across the host taxonomic gulf.

Among host–parasite interactions, a variable coevolutionary landscape altering species interactions
across spatial scales has been best recognized for plant pathogens [108,109] and macroparasites,
especially of invertebrate hosts [110–112]. Like the trade-off literature described under Approach
I, the plant pathology literature also tends to measure parasite fitness traits during the within-
host phase (host infection), and not the between-host stage (transmission). In plant pathology, the
specific parasite fitness traits measured include infectivity and aggressiveness [113]. Infectivity is
the proportion of host genotypes a parasite is capable of infecting, and is often termed virulence.
Aggressiveness is further parasite growth and development that determine its ‘transmission
potential’ (i.e. number of propagules produced). Under these definitions, infectivity is considered
a virulence trait, although it can also be considered part of the transmission process, and
aggressiveness is more similar to measures of virulence for animal microparasites. These
differences in definitions are one of several barriers between plant and vertebrate disease
researchers. Although basic principles of parasite–host interactions should apply to any host
system, there are important differences between vertebrates and plants that have led to a
divergence in disease ecology research depending on host taxa, such as the differences in host
mobility, response to infection and host trophic level (producers versus consumers) [114],
differences which alter research methods and basic predictions about transmission dynamics,
coevolution and community-wide effects of parasitism.

Work on mammal diseases, especially microparasitic diseases, have on the other hand been slow
to embrace an evolutionary approach to disease transmission dynamics [115], such as those
examined under Approach II. There have been few parasite local adaptation studies done on
vertebrate hosts (e.g. [116]), in part due to their longer generation times and greater mobility,
exposing hosts to a greater range of environmental conditions than experienced by shorter-lived,
less mobile hosts. This increased complexity would make detecting genotype by environment
interactions increasingly difficult in these organisms, without studies covering larger temporal
and spatial scales. The experimental methodology used to test local adaptation comprises
reciprocal transplant or common garden experiments, but these are generally impossible to
conduct on large, mobile wildlife. Exploring how the environment shapes virulence–transmission
relationships for real systems with large mobile hosts is made even more difficult by these hosts
being further subject to environmental variation shaping their grouping and movement
behaviour [117,118]—both relevant to disease transmission. A variable environment will also
alter host immune response to infection [119–121].
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trait of these parasites and one that is relatively easy to quantify in experimental studies. Hypotheses for
ETP virulence–transmission relationships include the ‘sit-and-wait’ [76,77] and the ‘Curse of the Pharaoh’
hypotheses [78], which state that extended persistence in the off-host environment releases parasites from
the constraint of host survival, allowing the evolution of high virulence. Many theoretical studies have
explored evolutionary relationships between virulence and parasite longevity [70,74,78–82] where
virulence is more likely to increase when its evolution is independent of free-living survival or other
transmission traits.

Most empirical tests of theory using ETPs control for the external environment and standardize the
transmission phase, to focus on coevolutionary dynamics between host and parasite. However, contrasting
results of these experimental tests highlight how seemingly small methodological differences in
experimental design may alter selection on transmission, causing significantly different virulence trajectories,
even within the same experimental system (e.g. [83,84]). As a result, Rafaluk et al. [85] suggest avoiding
artificial manipulation of transmission in experiments, allowing it to proceed in a manner equivalent to how
it would in a natural system. While this is an important consideration, it follows that experimental studies
for highly persistent environmental parasites become challenging to conduct in laboratory settings.

A recent meta-analysis of the relationship between virulence and environmental persistence found
only eight datasets that met the search criteria [86]—that measured environmental longevity and
virulence traits from multiple parasite strains. From those datasets, Rafaluk-Mohr concluded that
virulence and persistence may be positively linked for bacterial and fungal parasites, while there may
be a trade-off for viral parasites. We compiled a list of 22 studies on ETPs that explicitly considered
both virulence and transmission traits (i.e. in-host and in-environment traits) when looking for
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relationships between the two (table 1) These studies show no common relationships between virulence
and transmission, neither in general, nor within transmission types (obligate killers, shedders or
opportunists), and represent a wide variety of parasite and host taxa, with both experimental and
theoretical studies. Our list differs from Rafaluk-Mohr’s [86] meta-analysis in the studies included, but
similarly notes how few studies have tested this relationship for ETPs, and how mixed the results are.

Despite considerable interest in how parasite persistence and virulence relate to each other, the
strongest empirical evidence testing these hypotheses for ETPs comes from comparisons among, not
within, parasite species. Human respiratory viral and bacterial infections show a strong positive
correlation between case fatality and persistence, among those whose environmental persistence varies
from less than a day (e.g. Haemophilus influenzae) to years (e.g. variola virus) [76]. By contrast, among
bacteriophages that infect Escherichia coli, virion survival in the environment is negatively correlated
with multiplication rate in host cells [13]. This trade-off in virulence and survival traits was
mechanistically linked with the physical properties of the virion, including capsid thickness and
density of the packaged genome, where those that had the highest replication rates in cells (i.e. largest
burst size) had the least persistence. While trends across broad taxonomic groups in parasite life-
history strategies are certainly of interest, they do not address the more pressing management
questions of what drives virulence transmission dynamics in a particular host–parasite system, or how
we can manage an infection to lessen its impact on a host population.

One confounding aspect of parasite life-history theory is that different hypotheses have been
developed for parasites with direct versus environmental transmission when arguably the only
difference between direct and environmental transmission lies in the time scale of the off-host period
[102]. These hypotheses describe either end of this time spectrum, and may in part explain why there
is such mixed support for parasite life-history theories based on empirical tests [9,64,86,103].
Additional research on a range of direct and environmentally transmitted disease systems that vary in
persistence, and where transmission is allowed to proceed naturally, would clarify whether specific
evolutionary life-history strategies cluster by broad taxonomic parasite groups, and what effect the
selection for increased or decreased environmental persistence has on virulence evolution.
3. Approach II: patterns across space: parasite adaptation in
heterogeneous environments

The second approach to the study of virulence and transmission relationships leverages heterogeneity in
the environment to investigate host–parasite dynamics across populations. This approach recognizes that
the abiotic and biotic environment can have a strong effect on host–parasite interactions, resulting in
context-dependent virulence and transmission [41–43]. In considering host–parasite interactions,
parasite local adaptation tends to occur if parasite gene flow is higher than host gene flow among
populations [104,105]. While this may seem counterintuitive, gene flow increases the genetic diversity
available for selection, increasing the efficiency of parasite local adaptation. Divergent selection
pressure across space can lead to local adaptation [106,107], which can be used to infer the effect of
the environment on species interactions. Many of the parasites examined under this approach are also
ETPs, mostly of plant or invertebrate hosts (see box 4). This approach leverages the variation observed
among natural populations, by sampling across metapopulations, or using host and parasite
genotypes collected from different environments and grown under different controlled conditions.

One prominent theory linking coevolutionary dynamics of interacting species across metapopulations is
the geographical mosaic theory of coevolution (GMTC) [122,123]. For host–parasite interactions, the GMTC
emphasizes that selection pressure on host–parasite interactions will vary based on heterogeneous
environmental conditions affecting both host and parasite populations [43]. Together, these effects create
a mosaic pattern of coevolutionary hot spots and cold spots across the joint range of the species [124].
Selection mosaics, hot-spot dynamics and trait remixing together lead to parasite (and host) diversity
across a heterogeneous landscape that can be strongly affected by the environment.

Parasite genotype by environment interactions are important for maintaining genetic variation in
parasites, and highlight how environmental heterogeneity leads to different evolutionary outcomes for
the parasite. For example, strains of the fungal parasite Podosphaera plantaginis vary in their
performance (i.e. infectivity, growth and propagule production) at different temperatures [125], a
result of coevolution with its plant host (Plantago lanceolata) at different temperatures across the plant–
parasite metapopulation [126]. Further work in this host–parasite system finds that infection
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prevalence and severity vary over small spatial scales, driven by local infection density, humidity and
other environmental factors [127].

Two critical environmental factors supportinggenotypebyenvironment interactions are temperature and
resource availability [43]. Temperature can affect host andparasite performance anda rangeof infection traits,
as documented in systems such as Daphnia magna–Pasteuria ramosa [128,129], Plantago lanceolata–Podosphaera
plantaginis [125,126], Cryphonectria parasitica–Cryphonectria hypovirus-1 [130], Pseudomonas fluorescens-
bacteriophage [131] and numerous insect–parasite systems [132]. Resource availability affects host
condition and immune response, and hence infection dynamics (e.g. Aedes sierrensis–Lambornella clarki
[133], Daphnia dentifera–Metschnikowia bicuspidata [134], Serinus canaria–Plasmodium relictum [135], Osteopilus
septentrionalis–Aplectana sp. [136]). Changes in resource availability can also affect parasite virulence
[95,135]. Less work has been done on how temperature or resource availability relate to parasite survival
in the off-host environment. However, the temperature can also affect parasite survival, as documented for
larvae of the monogenean Discocotyle sagittate in fresh water [137] and cercariae of the marine trematode
Maritrema subdolum after emergence from snail hosts [138].

The findings of studies we have clustered under Approach II raise the question of how an
environmentally mediated change in infection traits would, in turn, affect the persistence of parasites
in the off-host environment. These study systems are poised to provide answers to the theoretical
questions presented under Approach I, using systems that subvert some of the limitations of
transmission experiments also noted under Approach I. It is important to remember that many of the
studies detailed under Approach II examine host–parasite interactions in the context of environmental
variation, and not specifically (i) how environmental variation affects parasite survival traits in the
off-host environment nor (ii) how those survival traits are related to infection or virulence traits.
However, this focus could easily be examined within such studies by also both examining traits for
survival in the off-host environment, and variation in survival as it relates to infection traits across
populations. Combining Approaches I and II would fill some of the holes in empirical tests of theory
for a diversity of host–parasite systems, as detailed under Approach I.
4. Approach III: patterns through time, parasite evolutionary history and
phylodynamics

A phylogenetic framework involving the reconstruction of a parasite’s evolutionary history from
contemporaneous genetic data provides a historical lens through which to examine relationships between
host–parasite evolution, the environment and disease traits. While temporal variation in disease phenotypes
can be studied through detailed longitudinal field studies, these are financially and logistically challenging
to carry out and tend to exclude the role of the environment. The most well-known example of this is the
European rabbit (Oryctolagus cuniculus)–myxoma virus system, where viral strain evolution over half a
century has been associated with changes in host resistance and parasite virulence [24].

Parasite phylogenies are valuable for examining the transmission dynamics of microparasites,
particularly for rapidly evolving viruses (but see [139]), where closely related lineages may reflect
epidemiological links. They have been widely used for identifying infection sources, quantifying
cross-species transmission and estimating rates of parasite spatial spread (e.g. [140]). In the ongoing
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, for example, phylogenetic
approaches have been used to examine the evolution and transmission of the virus at both local [141]
and global [142] scales. The phylodynamic framework, which is based on the concept that ecological
and evolutionary processes interact to shape parasite phylogenies [143], has also enabled the
estimation of key disease parameters, such as parasite growth rates and R0 [142,144–146]. In addition,
phylogenies of known virulence factors can provide insights into the evolution of parasite virulence,
which can inform the development of therapeutic or vaccine targets (e.g. [147]). Because these
approaches explicitly consider the evolutionary history of a parasite, they provide a powerful means
for evaluating disease dynamics and evolutionary trade-offs.

Most studies on parasite virulence have focused on theoretical or experimental systems; while these
studies are informative for identifying mutations associated with the virulence phenotype (e.g. [148]),
they often ignore the natural selective pressures shaping the virulence genotype [4]. However, the
fields of phylogeography, phylodynamics and landscape genetics have recently been extended to
investigate how the environment shapes parasite evolution and transmission [149]. These approaches
provide a useful means for evaluating host–parasite disease outcomes, while explicitly accounting for
both evolutionary history and environmental variation [150]. For example, phylogeographic models
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enable mapping ancestral states of relevant traits onto parasite genealogies to reveal how parasite
transmission varies across the landscape and among multiple host species, respectively [140,151,152].
Coupled with data on host mortality, these approaches can provide insight into how virulence evolves
in variable environments and host backgrounds. Furthermore, the integration of spatially explicit
genetic and environmental datasets in a statistical framework has enabled rigorous testing of
hypotheses regarding the underlying environmental predictors of parasite spatial spread [153,154].

Linking data on parasite infection phenotypes and phylogeny can provide insight into relationships
between virulence factors (i.e. mutations associated with disease outcomes) and parasite fitness. For
example, repeated evolution of mutations conferring virulence (or increased virulence) across
divergent outbreaks (i.e. convergent or parallel evolution) may suggest that a mutation has a selective
advantage (e.g. [155]). By contrast, those virulence-determining mutations that reduce onward parasite
transmission (due to a trade-off between virulence and transmission) could result in dead-end
lineages and, thus, only occur at the tips of lineages that then disappear from a phylogeny [4]. It is
important to note, however, that phylogenetic patterns offer only a qualitative evaluation of fitness
and may be misleading for emerging parasites.

A phylogeny reflects the entire evolutionary history of the parasite sample under investigation. For
ETPs, this makes disentangling evolutionary changes occurring in- versus off-host a challenge often
requiring experimentation. Therefore, like the other approaches, this is not a silver bullet for elucidating
generalities about virulence–transmission relationships, and a multi-faceted framework is necessary.
:210088
5. Some perspectives on transmission and virulence in natural populations
In the previous sections, we reviewed three research approaches used to study the evolution of virulence
and transmission, highlighting how the environment can have important effects on virulence–transmission
relationships. Within this environmental context, we focused specifically on parasite survival during the
off-host life stage. Perhaps counterintuitively, an off-host perspective allows us to conceptually merge
direct and environmental transmission. These two transmission types are not separate processes but
occur along a time continuum in the off-host environment [102], and should ideally be described by the
same unified theory. This is especially true given that many classic examples of directly transmitted
parasites are found to have the capability of persisting in the environment for longer than thought (e.g.
the Mycobacterium tuberculosis complex [156]), have diversity in environmental niches among strains that
can affect their infectiousness or virulence (avian influenza [157]), or may show the potential for an
environmental reservoir long thought not possible (e.g. Y. pestis [158,159]). In addition, even directly
transmitted respiratory infections, considered short lived in the environment, have fascinating
mechanisms to increase their survival and dispersal in the off-host stage [160,161].

The urgent need to improve our understanding of parasite virulence evolution has been highlighted
by the recent emergence of SARS-CoV-2 coronavirus and its relatives SARS (severe acute respiratory
syndrome) and MERS (Middle East respiratory syndrome) [162]. The relationships between virulence,
transmission and environment in these viruses and their variants need to be understood [163,164], but
the rapidly evolving relationship between transmission and virulence is of great concern in emerging
diseases in general. Yet, virulence evolution remains a field in which theoretical and empirical studies
are often poorly integrated [4,9,103,165–167]. Reviews of this literature tend to recommend more
collaboration across disciplinary boundaries to better link theoretical and empirical studies, and
adding more real-world complexity of the infection and transmission processes to theoretical models.

Here, we offer some practical and specific ways to achieve these goals and to facilitate our progress as
a research community, through interdisciplinary research, conceptual developments and methodological
developments. As a companion to these recommendations, we offer a theoretical framework for how to
address virulence–transmission relationships in complex natural systems (figure 1) building off the
approaches reviewed above. We then use anthrax in wildlife systems as a case study employing
several aspects of this framework (box 5), since B. anthracis is an ETP commonly invoked for the
evolution of high virulence and high environmental survival.

5.1. Interdisciplinary research
Interdisciplinary work depends on people of different specialties and backgrounds understanding each
other. For this to happen, the ideal is to communicate complex ideas in the simplest language possible,
and clearly define the terms used, especially those, like virulence, that can vary greatly in their definitions
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Figure 1. A framework for detecting variation in virulence–transmission relationships in natural host–parasite systems. (a) From
variation detected in observational studies, develop hypotheses of how parasite phenotypes may vary across environmental
gradients. Map these traits relative to environmental data to assess putative environmental traits affecting outcomes. (b) Use
genetic or genomic techniques to link parasite variation of interest to alleles or genes of interest. Use whole genome
sequencing to describe the diversity of the parasite across large spatio-temporal scales. Evaluate areas of the genome under
selection, and identify putative virulence- and transmission-relevant genes. Link these putative virulence/transmission traits and
clades under selection to geography and environmental/spatial variation in (a). (c) With variable phenotypes identified in (b),
do controlled experiments to evaluate the strength of genotype–phenotype relationships and the plasticity seen in these traits
under different environmental conditions. For systems where experimentation is possible, do reciprocal transplant or common
garden experiments to confirm the experimental results from (c) in real environments. (d ) Finally, once genotype–phenotype
relationships, and how these vary with environmental variables, are described for the disease system, use that understanding
to build statistical and theoretical models of virulence–transmission relationships. These models can test for trade-offs in
parasite life-history traits, and determine if there are common environmental factors shaping the outcome of these relationships
across space.
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across fields. Interdisciplinary work also depends on using data for multiple purposes. A critical aspect
here is that the rapidly developing fields of genetics and genomics reconnect with ecology, including
ecological data such as time, location, and, when possible, age, sex, condition and phenotype with
any gene sequence originating outside a laboratory. This would improve our ability to use data for
multiple purposes and draw inference across scales from ecology to genetics and back.

If we rely on tractable laboratory experimental systems to test virulence–transmission theory, we will
continue to exclude much of the diversity of taxa involved in host–parasite–environment interactions.
Approaches that control for the environment and standardize transmission also limit the evolutionary
potential of the system. When possible, evolutionary biologists and microbiologists/parasitologists
could team up with field biologists to seek appropriate natural systems and scales in which to test the
theory. Useful hypotheses will be reflected in natural systems. For comparative insights over large



Box 5. Anthrax as a case study.

Anthrax, caused by the bacterium Bacillus anthracis, is often invoked as a textbook example for the
evolution of high virulence and high environmental survival [70,78,81,168,169]. Anthrax is an acute
and lethal infection [139], with spores that can persist for years in soils [170,171]. Yet, we do not
know the variation in these traits, and whether they are truly independent or coupled life-history
traits. In part, this is due to anthrax being a reportable and feared disease, making it difficult to
study in natural systems. There is also uncertainty in applying a molecular clock to an ETP that
spends long periods in a dormant phase, which has inhibited evolutionary studies.

Across its range, anthrax varies in the frequency and severity of outbreaks, and the host species
affected [172–174]. Outbreaks vary from sporadic annual cases as observed in Namibian savannahs
[175], to explosive outbreaks as observed in the Siberian tundra [176], northern Canada [177] and
the Zimbabwean eastern lowveld [174]. In describing its epidemiology, scientists tend to focus on
environmental conditions and host ecology, with considerably less work done to explore
pathogen ecological or evolutionary interactions (but see [178–181]). Bacillus anthracis strains have
high genetic similarity globally [182,183], leading to the assumption that strains are also
phenotypically monomorphic, and that epidemiological differences must relate to environmental
conditions and/or host behaviour, density and susceptibility.

There are, however, intriguing phenotypic differences among strains that could alter their
ecological and evolutionary trajectories. The major clades differ in their fitness [182] and
B. anthracis exhibits local adaptation, or differentiation, of strains in different parts of its range
[184–186]. One of the variable-number tandem repeats (VNTRs) used to genotype B. anthracis
(Ceb-Bams13), located in the bclA gene, has been linked to spore phenotype, where repeat length
directly correlates with filament length on the exosporium surface [187,188]. The BclA
glycoprotein plays a major structural role in the spore coat, and is the site of host recognition by
the complement system, initiating phagocytosis and carriage of spores across the epithelium
[189]. Laboratory experiments show host species differ in resistance to B. anthracis, and that
resistance trades off with tolerance to the lethal toxin [190]. These differences among hosts could
have adaptive significance to virulence–transmission relationships. However, researchers have yet
to test for local adaptation or variation in fitness among B. anthracis strains, either in the ability
to invade and proliferate in particular hosts, or to persist in the environment.

Ultimately, spatial patterns in strain diversity, distributed across regions varying in soils,
climates and host species opens the door for natural selection to act, adapting this pathogen to
local conditions. How then can we test for virulence–transmission relationships in such a
pathogen? Building off the potential genotype–phenotype variation described above, the next
step could compare multiple locations and the ecological and evolutionary interactions between
environment, hosts and B. anthracis strains. Pathogen genome-wide association studies can link
phenotypic variation to putative genetic variation. Once critical traits and genes are identified,
small-scale controlled laboratory experiments can test the strength or plasticity in these traits,
and their relationship to environmental factors associated with the pathogen’s niche (e.g. in vitro
growth or competition experiments under variable conditions, or spore survival in different soil
conditions). Then, we can test mathematical models of transmission and interactions between
life-history traits, that may lead to the outcomes observed in different disease systems. Ideally,
for anthrax or other host–parasite systems, detecting common drivers of the variation in host–
parasite relationships across environmental gradients will allow us to infer properties of these
systems that scale beyond the specifics of any particular environment, host species or parasite
species.
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spatial scales, we can consider the example of other globally distributed experimental research efforts,
such as the Nutrient Network [191].

Even the first step of an evolutionary analysis may involve interdisciplinary collaboration for critical
examination of each step in the transmission process, including the habitats in which propagules are
released, their survival and development in different habitats, and how their spatial distribution
affects host contact, transmission pathways and thus selection. Pulling open the lid on the
transmission black box allows critical examination of steps in the transmission process, and how these
influence disease dynamics and parasite evolution (e.g. [192]).
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5.2. Conceptual developments
Disease transmission via persistent propagules in the environment is a transmission strategy used by a
diversity of parasitic life and the mechanisms for environmental survival are varied, even within
taxonomic groups (e.g. pathogenic bacteria [193]). Yet, we lack a general term to describe transmission
from an environmental reservoir to a host. Instead, this type of transmission tends to be described by the
specific reservoir (e.g. water-borne, soil-borne, food-borne). The difficulty in defining, let alone measuring,
appropriate traits for virulence and transmission inhibits our understanding of these relationships (boxes
2 and 3), and developing a common terminology should be a simple and useful early step. For instance,
ETPs can be divided into three general types relevant to virulence–transmission relationships: (i) obligate
parasites that shed reproductive stages during host infection (shedders), (ii) obligate parasites that release
reproductive stages all at once upon host death (obligate killers), and (iii) facultative or opportunistic
organisms that can parasitize hosts under certain conditions (opportunists). These categories highlight
where replication occurs (inside or outside of hosts) and the degree of reliance on host health and
mobility for transmission (continuous shedding through host morbidity versus release upon host death).

It is important to remember that selection acts on thewhole life cycle of a parasite [194] and all of its traits,
not just on the handful of traits and life stages most easily measured. Hence, within-host infection dynamics
and between-host transmission processes must be seen in combination to say anything useful about the
selection pressures towards any particular virulence/transmission trade-off or strategy. This is true not
just for ETPs, but across the spectrum of direct to environmental transmission, as well as across
transmission modes. Recent insights into parasite evolution emphasize the importance of considering
both within-host infection dynamics and between-host transmission processes for predicting virulence
evolution and epidemiological dynamics [9,17–19]. Thus, research building off the studies highlighted
under Approach II could be a fruitful avenue for future work into virulence–transmission relationships.

Any study of virulence should also acknowledge that virulence is an emergent trait of specific host–
parasite interactions, and not something that can be viewed as a trait of only one species or even a pair of
interacting species. Instead, it may also be dependent on environmental factors or third-species
interactions, such as for opportunistic parasites. Parasites often have alternative strategies along a
gradient from mutualism and commensalism to environmental opportunists [1] and specialized and
obligate parasites. Virulence and transmission are both context-dependent [195], and virulence should
be clearly defined as either excess morbidity or mortality in the host incurred by the parasite in a
given environmental context.

When virulence is seen as a strategy and not a maladaptive by-product, it must be remembered that
parasites have social interactions: they are not homogeneous or automatically cooperating altruistically
with each other. Instead, cooperation in shared costs such as virulence factor production depends on social
interactions and evolutionary game theory as in macroscopic organisms, and social interactions will affect
virulence [196]. The misleading mode of thinking where the infection is treated as the unit of selection is,
fortunately, becoming rare in the literature. As many microparasites have rapid population growth and
huge populations, they have a lot of opportunity for variation and selection, and should always be treated
as such. Ways to approach this could include simplifying the model to ‘multiple infections’, or by treating
microbes more like we treat evolution and population genetics in macroscopic organisms, just sped up.
The rapid increase in computational power is making the latter more and more often feasible.

5.3. Methodological developments
Weneed to reconsider howwe prioritize the importance of parasite interactionswithmacroscopic organisms
over microscopic organisms, and how we group parasites for evolutionary analysis based a transmission
mode (e.g. environmental, direct, arthropod vector-borne) given that often alternative pathways are
possible. In this review, we have noted that direct and environmental represent the same mode of
transmission in that both require passage through the environment. As opposed to a host, the
environment has no active response and does not evolve due to the presence of a parasite. Many parasites
with ‘environmental’ transmission may be vectored by other microorganisms with which they interact
during an environmental phase. Examples include the relationships between copepods and V. cholerae
[197], or amoebae and bacteria such as Francisella tularensis [198], Legionella pneumophila [199], Y. pestis
[200] and B. anthracis [178]. Thus, we may be biased by instinctively considering macroscopic secondary
hosts, vectors and interactions in a different evolutionary light than non-mammalian ‘secondary hosts’
and non-arthropod ‘vectors’ where the mutualists/antagonists are chiefly other microorganisms.
Metagenomics and other high-throughput methods for determining microbial community composition
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may be crucial in addressing an often overlooked aspect of host–parasite interactions—that many parasites
have relationships with other microorganisms during their environmental phase.

Comparative studies with data collected across large spatial scales may be needed to detect traits
relevant to virulence–transmission relationships among locations, or sources of variation driving
virulence–transmission relationships that can then be isolated and tested in controlled laboratory
settings (figure 1). Large-scale studies have become more feasible with the integration of nested
models and more advanced statistical analysis combined with remotely sensed environmental data on
multiple scales over large areas. Research at multiple natural scales will promote an understanding of
in-host versus between-host processes in natural systems, a connection that is widely acknowledged as
under-studied in the field and laboratory. Further, observational studies of natural host–parasite
systems reflect the outcome of evolution unconstrained by what is practically feasible due to time
constraints, spatial scales, multispecies interactions or for parasites that are not amenable to laboratory
study for various reasons [85].

Much work has been done in recent years to describe and predict the distribution of diseases using
ecological niche models [49]. These aim to detect strong effects of environmental variables on the
occurrence of diseases, where the environment often is the limiting factor for whether biotic interactions
occur, and risk maps can be created with purely environmental variables [49]. However, these models
can suffer from a foreshortened time perspective, confounding effects of management, data gaps and
confusing the environmental variables that are available (such as temperature or remotely sensed data)
with those that are necessary (such as the distribution of hosts, vectors or commensal microbiota).
Common examples are climate envelope type models where the ‘climate niche’ of a disease is inferred
from its current distribution. In some cases, this may be valid, but in many instances, they can be
wrong due to reporting biases or historical control efforts affecting the recorded distribution. For
instance, because anthrax has been strictly managed and controlled in Siberia, with annual large-scale
livestock vaccination programmes over decades, there are very few reported modern cases of anthrax
[201]. A recent paper using modern cases to infer a ‘climate niche’ for anthrax thus finds Siberia to be of
‘low suitability and low probability of occurrence’ [202], despite the fact that these control measures
have been in place since Tsarist times for precisely the opposite reason. Indeed, the Russian name for
anthrax is ‘сибирская язва’, or ‘Siberian plague’ due to its historical prevalence in just this area. Thus,
while these models are tempting for computationally oriented biologists to use, they need ground-
truthing and integration with system-specific knowledge and mechanistic understanding to be of value
for management, risk analysis or further understanding of a system.

Genome-wide association studies (GWAS) can be used to detect genes linked with variation in
virulence or transmission in parasites [203,204]. GWAS has been used to assess parasite virulence
factors [205,206], niche selection [207] and even to detect an evolutionary trade-off between strain
toxicity and transmissibility in Staphylococcus aureus [208]. Parasite (and host) genomics and
phylogenetics across populations or ecosystems can be used to investigate how coevolution proceeds
in systems given a range of selection pressures imposed by the host(s), parasites and environment.
Combining phylogenetic approaches with GWAS facilitates the detection of putative virulence and
transmission traits, and their variation, in natural systems (figure 1). Phylogeographic studies can then
assess how parasite dynamics change over time, comparing systems under different selection pressure.
By combining these approaches, one may determine the step-wise evolutionary mechanisms that
would lead to patterns in the data observed through parasite genetic sequences. Once key variations
in parasite genotype–phenotype are detected across spatial scales, the flexibility within these traits can
be investigated in experimental studies to detect reaction norms and the phenotypic plasticity of
different genotypes for transmission and virulence over a range of environmental conditions.
6. Summary
Despite decades of research into virulence–transmission relationships, we have little consensus on the
directionality of how and if virulence and transmission are related, especially for transmission modes
beyond direct transmission. Thus, we propose that we need not just new tools and new research, but
rather new ways of framing this question, refining and defining it to better capture the mechanisms
and forces directing the evolution of virulence and transmission, in particular with regard to the role
of the environment in these processes (box 6). These innovations are critically important for
understanding the dynamics of host–parasite interactions. We are confronting emerging infectious
diseases with rapid evolution taking place in novel hosts, and altered temperature and precipitation



Box 6. Future questions.

We highlight the following questions as important areas for future research in virulence–
transmission relationships. These areas of investigation specifically address how the environment
contributes to or alters virulence–transmission relationships between parasites and their hosts:

— How do environmental conditions contribute to the evolution of parasite traits or life-history
strategies? Which conditions are most important, and are they predictable?

— How does varying selection pressure along environmental gradients affect parasite
environmental survival? Do gradients of variation in parasite survival link to predictable
changes in parasite virulence?

— How do species interactions in the off-host phase alter disease dynamics (e.g. the role of
microbial predators or competitors on parasite density and infectiousness)?

— How strong is the link between parasite genetic traits and phenotypic traits that are relevant to
life-history trade-offs? To what degree does phenotypic plasticity (or epigenetics) enable
parasite success under a range of conditions in the external environment? Does the amount
of phenotypic plasticity possible vary predictably among parasite taxa?

— Can we leverage the variation in environmental conditions across a parasite’s range to
understand how conditions in the environment alter virulence and transmission traits, and
host–parasite dynamics? Can we then predict the epidemiological outcomes of parasite
emergence in novel geographical regions?

— How does context-dependent selection alter virulence and transmission traits across a parasite’s
range? How do these processes compare for mobile versus stationary hosts? For different
parasite taxa? For different transmission modes or routes?
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patterns as a result of land use transformations and global climate change. With better understanding of
how the environment alters disease dynamics, we can enhance our abilities to predict or mitigate disease
outbreaks in a changing environment.
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