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Abstract: Reducing food insecurity in developing countries is one of the crucial targets of the
Sustainable Development Goals (SDGs). Smallholder farmers play a crucial role in combating
food insecurity. However, local planning agencies and governments do not have adequate spatial
information on smallholder farmers, and this affects the monitoring of the SDGs. This study utilized
Sentinel-1 multi-temporal data to develop a framework for mapping smallholder maize farms and
to estimate maize production area as a parameter for supporting the SDGs. We used Principal
Component Analysis (PCA) to pixel fuse the multi-temporal data to only three components for each
polarization (vertical transmit and vertical receive (VV), vertical transmit and horizontal receive (VH),
and VV/VH), which explained more than 70% of the information. The Support Vector Machine (SVM)
and Extreme Gradient Boosting (Xgboost) algorithms were used at model-level feature fusion to
classify the data. The results show that the adopted strategy of two-stage image fusion was sufficient
to map the distribution and estimate production areas for smallholder farms. An overall accuracy
of more than 90% for both SVM and Xgboost algorithms was achieved. There was a 3% difference
in production area estimation observed between the two algorithms. This framework can be used
to generate spatial agricultural information in areas where agricultural survey data are limited and
for areas that are affected by cloud coverage. We recommend the use of Sentinel-1 multi-temporal
data in conjunction with machine learning algorithms to map smallholder maize farms to support
the SDGs.

Keywords: sustainable development goals; smallholder; maize; Sentinel-1; principal component
analysis; SVM; Xgboost

1. Introduction

The United Nations in 2015 agreed on 17 Sustainable Development Goals (SDGs) with
the aim of ensuring peace and prosperity for the people and the planet [1]. The SDG num-
ber 2—end hunger, achieve food security and improve nutrition, and promote sustainable
agriculture—aims to address this global crisis. Smallholder farming is one of the vehicles
that can be used to achieve this goal [2]. Smallholder farms are in most cases the only main
source of reasonable income and food security for rural livelihoods in most developing coun-
tries. To achieve this goal, spatial agricultural information such as the spatial distribution
of smallholder farms and production area estimates are pre-requisites. The production area
estimates provide a quantitative measure in which food security can be forecasted in rural
communities. Local governments can alleviate starvation and provide targeted relief efforts
by using this information. Food security in developing countries remains a big challenge
that the world is currently facing [3,4]. In Africa, smallholder farmers produce 80% of the
maize in the regions, which forms part of the staple diet [5]. The smallholder maize farmers of
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Africa are faced with environmental problems such as insufficient rainfall because of drought,
insect pest infestations, and infertile soils due to a multitude of reasons (e.g., monoculture,
desertification, salinization, and degradation) [6–8]. Additionally, economic issues such as the
use of outdated technologies, limited market opportunities, and limited access to capital are
prevalent in smallholder farms [5,9]. These issues coupled with an increase in demand for
maize products have contributed to food insecurity, particularly in rural communities that are
reliant on maize [10].

Remote sensing data offers opportunities to monitor and map smallholder farms
because they are able to capture their heterogonous and complex characteristics [11].
Optical remote sensing has been used to map agricultural fields [12,13]. However, clouds
and cloud shadows remain a big challenge in extracting phenological parameters of crops
during the growth stages and mapping crop fields using a multi-temporal approach due
to data gaps [14]. Radar data have emerged as one of the best remote sensing tools that
can be used to map agricultural crops without being affected by clouds [15]. Previously,
this data type was limited to specific regions and campaigns [16]. The Sentinel-1A/B
Synthetic Aperture Radar (SAR) C-band satellites were launched by the European Space
Agency (ESA) with a wider coverage [17]. Applications of SAR data in agricultural crop
mapping have increased over the years; this was mainly driven by free access to the data
and improved spatial (10 m) and temporal (global coverage) resolutions. The smallholder
farms are generally less than 2 ha in size, which makes it difficult to map them with coarse
resolution sensors [18]. Therefore, the characteristics of Sentinel-1 sensors make it a suitable
tool for agricultural applications [19].

Different authors have used a Sentinel-1 multi-temporal approach to map agricultural
crops. Useya and Chen [20] used Sentinel-1 data to map smallholder maize and wheat
farms in Zimbabwe. The authors used model-level data fusion (i.e., data were stacked and
used as input into the models) and achieved overall accuracies of 99% and 95% for different
study area sites. Kenduiywo et al. [21] applied a Dynamic Conditional Random Fields
(DCRFs) classification procedure on multi-temporal Sentinel-1 images to map different
kinds of crops (maize, potato, sugar beet, wheat, and other classes). The authors were
able to map maize with a producer and user accuracies of 93.74% and 90.04%, respectively.
Whelen and Siqueira [22] used comprehensive Sentinel-1 multi-temporal data to identify
agricultural land cover types. They concluded that vertical transmit and vertical receive
(VV) and vertical transmit and horizontal receive (VH) polarizations individually and
combined were able to provide an accuracy of above 90% over North Dakota. All authors
mention the problem of “Big Data” when dealing with Sentinel-1 multi-temporal images
due to the increase in dimensionality. Therefore, processing multi-temporal satellite data
requires more computational resources. McNairn and Brisco [19] provide a detailed review
on the applications of C-band polarimetric SAR for agricultural applications.

In this study, we used multi-temporal images of Sentinel-1 to develop a framework to
map smallholder maize farms using well-known machine learning algorithms (Support
Vector Machine—SVM and Extreme Gradient Boosting—Xgboost) under a complex envi-
ronment. The strengths of these algorithms are that: (1) the SVM algorithm can handle high
dimensional data using a few training samples [13]. (2) The Xgboost algorithm runs at an
improved computational speed, which is advantageous when processing multi-temporal
images for the maize planting season [23]. (3) Additionally, both algorithms have a good
feature identification capacity and are non-parametric [13,24,25]. The two-stage image
fusion approach was applied. Firstly, pixel-level fusion was done; the purpose of this
first stage is to reduce computational demands on the system by reducing the dimen-
sions of the datasets using Principal Component Analysis (PCA). Secondly, model-level
fusion was done; this second stage uses sufficient principal components for all the reduced
polarizations as input into the classifying algorithms.

Generally, this approach has been used mainly in hyperspectral remote sensing image
classification or change detection analysis [26,27]. It has not yet been applied to Sentinel-1 to
map smallholder maize farms and estimation of their production areas. The approach was
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tested on a rural community in Makhuduthamaga, Limpopo province of South Africa. This
region is dominated by smallholder maize farms and most farmers farm for subsistence.

2. Literature Review

The continuous reliance of developing counties on smallholder farms for food security
requires effective monitoring and management of these farms. Smallholder farms play
a crucial role in combating hunger in developing countries [3,5]. However, smallholder
farms continue to be threatened by climate variability and climate change, population
growth, and changes in land use management [6–8]. Remote sensing technology provides
an opportunity to monitor and manage smallholder farms. Essential crop parameters (e.g.,
biophysical, crop production area, crop type) can be estimated with reasonable accuracies.
This information can be used to better manage essential crops (e.g., maize, rice) [12,13] and
to improve management practices (e.g., irrigation, monitoring of production, mobilization
of resources from governmental departments to the farmers in need).

Remote sensing has been underutilized for applications concerning smallholder farms.
Table 1 lists the number of retrieved articles, books, and book chapters from a bibliomet-
ric search using common key words from the two widely used databases in scientific
research, i.e., Scopus and Web of Science. The results generally indicate that an average
of 1807 articles were published involving the use of remote sensing for maize crops at
different spatial scales. The research generally involves using remote sensing to monitor
crops, classify crop types, and estimate crop biophysical parameters at different spatial
scales using different remote sensing sensors (e.g., MODIS, Landsat, and Sentinel-1/2)
(e.g., Karthikeyan et al. [28], Mufungizi et al. [29], Skakun et al. [30], Ji et al. [31]). This high
number of research outputs was mainly due to the general search, using remote sensing
and maize as keywords.

Table 1. A bibliometric search result of common result phrases and the associated number of documents retrieved. Time
limit was not used in the search criteria.

Search Criteria (Limited to Article, Book Chapter, and Book) Scopus Web of Science Core Collection

TITLE-ABS-KEY (remote AND sensing AND maize OR corn) 1672 1942
TITLE-ABS-KEY (remote AND sensing AND sdgs) 49 66

TITLE-ABS-KEY (remote AND sensing AND sdgs AND maize OR corn) 1 1
TITLE-ABS-KEY (remote AND sensing AND maize OR corn AND smallholder) 35 43

Kavvada et al. [32] outlined the importance of Earth Observation data in delivering
on the SDGs. The water ecosystem, land-use efficiency, and land degradation have been
identified by the Group on Earth Observations (GEOS) 2020–2021 Work Plan on SDGs as
areas that require attention in terms of development of methodologies and lack of data
in some areas. Kavvada et al. [32] identified additional areas where Earth Observation
can provide an indirect contribution to other SDGs such as sustainable economic growth
by providing population distribution or urban structures. On average, 58 articles from
our search results have been published that focused on remote sensing as a tool to realize
different SDGs. For example, Cochran et al. [33] used a remote sensing-based ecosystem
services platform (EnviroAtlas) to address SDG numbers 6, 11, and 15. This platform
can be used to monitor water levels, land cover, and other socio-economic variables such
as population density. These variables are used to report on certain SDGs indicators at
different governmental levels.

An average number of 39 papers were retrieved when the smallholder keyword
was added to the search method. This generally shows that there is a need for more
research focused on smallholder farms using remote sensing data to address SDG number 2.
The bibliometric analysis also revealed that most research involving remote sensing and
maize was produced by researchers from the United States of America and China, with
a combined total of 819 authors contributing to this research area, whereas the African
continent had only 34 authors contributing in total. This is concerning as smallholder maize
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farms contribute significant proportions to providing a sustainable staple food source for
developing countries [3,5]. Earth Observation systems have matured enough to provide
accurate information to smallholder farmers to enhance their food production under erratic
climate variability and climate change, hence contributing towards SDG number 2.

Other research studies have used Synthetic Aperture Radar (SAR) data to map maize
fields. For example, Abubakar et al. [34] used multi-temporal Sentinel-1 and Sentinel-2
to map smallholder farms in Nigeria using a stacking approach of different Sentinel data
combinations. The authors applied SVM and Random Forest (RF) algorithms and achieved
an overall accuracy of more than 90% for both algorithms. However, the authors did not
provide the estimated production area for maize, which is the most important parameter for
SDG reporting and food security monitoring. Jin et al. [35] used multi-temporal Sentinel-1
and Sentinel-2 to also map maize production areas and estimate yield using the Google
Earth Engine (GEE) platform in Tanzania and Kenya. Seasonal median composites, radar
backscatter and optical surface reflectance were used to build an RF classifier and they
obtained accuracies of more than 70%. Polly et al. [36] used both Sentinel-1 and Sentinel-2
to map maize in Rwanda and noted that Sentinel-1 had a poor performance, which resulted
in overestimating the maize production area compared to the Sentinel-2 data. All authors
acknowledge that smallholder farms are difficult to map due to their small size and
heterogenous characteristics that can affect the spectral/backscatter signal. They also
encourage the use of Sentinel-1 multi-temporal data since this platform can be used in all
weather conditions and the resolution of 10 m is sufficient to contribute towards SDGs
with relatively high accuracy. Generally, local governments still lack spatial agricultural
information on smallholder farms.

It has not yet been fully established whether the use of the PCA technique on Sentinel-1
to enhance the detection of smallholder maize farms can be effective. The PCA is a simple
but powerful multivariate technique that transforms inter-correlated variables into a set
of new linearly orthogonal (non-correlated) variables called principal components, and
these components have maximum variance [37]. The condition of maximum variance
is an added advantage to the classification algorithms as this can allow determination
of decision boundaries with ease, therefore enhancing the detection of different classes.
Meanwhile, a stacking approach such as the one used by Abubakar et al. [34], Jin et al. [35],
and Useya and Chen [20] may result in class overlap due to inter-correlated bands that may
exist within the stacked datasets. This can lead to potential misclassification of different
classes. Readers should consult Canty [38] for more details on PCA formulation.

3. Materials and Methods
3.1. Study Area and Field Data Collection

Limpopo province is located on the northern part of South Africa. This province hosts
Makhuduthamaga (Figure 1), which is the focus of this study. The area has rural villages
that focus on smallholder maize farming [39]. Hence, due to the dominance of smallholder
farms in the area, it was selected as a case study. Weather stations from the Agricultural
Research Council located in Nchabeleng, Ga-Rantho, and Leeuwkraal have recorded an
average annual rainfall of 536 mm and average annual temperatures of 7 ◦C in winter and
35 ◦C in summer. Makhuduthamaga has an undulating topography with rock habitats in
the form of rock outcrops, rocky ridges, rocky flats, and rocky refugia [40].
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Figure 1. Study area location map for Makhuduthamaga in Limpopo, South Africa.

Field surveys for the collection of training and validation data for different landcover
types within the smallholder boundaries occurred from 18 to 21 February 2019. A hand-
held Garmin Global Positioning System (GPS) device which has a positional accuracy
of 1.5 meters (on average mode) used to capture the coordinates of different land cover
classes. The dominant land cover classes in the study area were captured; these include
maize, bare land, and vegetation. The bare land and vegetation classes were combined
to generate training samples (n = 9895 pixels) for the non-planted areas. The maize class
consisted of n = 9802 pixels training samples. The samples were randomly selected into
80% training and 20% validation for each class. Constraining the land cover classes to two
classes reduced the potential of classification errors from using the classes individually
due to the variations in the natural occurrence of certain features. Limiting the area of
investigation to the smallholder boundary excluded the farming activities in residents’
backyards, thus only land that was demarcated as smallholder farmland was considered.
A total of 18 smallholder farms were randomly selected in the field for validation purposes.
Their areas were measured using a GPS. Most of these farms do not have proper access
roads, which made it difficult to survey more farms.

3.2. Sentinel-1 Data Acquisition and Pre-Processing

Sentinel-1 consists of a constellation of two satellites—Sentinel-1A and Sentinel-1B—
which carry C-band SAR instruments to observe the Earth’s surface. Sentinel-1 has a frequent
repeat cycle of 12 days and the repeat cycle of the two-satellite constellation can offer a
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6 day repeat cycle depending on the availability of observations from both of them [41]. The
advantages of this configuration in the current study is that Sentinel-1 can capture the spatio-
temporal variations of smallholder farms. This study used Sentinel-1 Level-1 Ground Range
Detected (GRD) images, which cover the maize cropping season (November 2018–July 2019)
inclusive of all the smallholder farms. These images were 22 in total, and they were acquired
from the Copernicus Open Access Hub in the Interferometric Wide (IW) mode. Both the VV
and VH polarizations with a 10 m spatial resolution were used.

Pre-processing of the radar images was done in the Sentinel Application Platform
(SNAP) according to Filipponi [42]. Firstly, the orbit files were applied to update the orbit
state vectors in the metadata files. Secondly, radiometric calibration was done by applying
annotated image calibration constants to convert the intensity values into sigma nought
values. Thirdly, speckle filtering was performed to reduce the granular noise caused by
many scatters. Fourthly, the geometric distortions caused by topography were corrected for
using the Range Doppler terrain correction with a 3 sec Shuttle Radar Topography Mission
(SRTM) Digital Elevation Model (DEM). Finally, the two polarizations (VV and VH) were
converted from a linear scale to a decibel scale and the ratio VV/VH was calculated.

Figure 2 illustrates the mean polarizations for selected planted maize farms and non-
planted maize areas during the planting season. The mean backscatter values for the VV,
VH, and VV/VH polarizations for maize are −13.66, −20.14, and 0.68 dB, respectively.
The aggregated class has mean values of −14.83, −20.67, and 0.72 dB for VV, VH, and
VV/VH polarizations, respectively. The VH polarization has the highest variance of
6.31 dB compared to VV polarization with 2.65 dB and the VV/VH ratio with 0.0009 dB.
The VH polarization seems to respond more effectively to the growing stages of maize.
A similar observation was made by Son et al. [43] when they studied the rice crop also
using Sentinel-1 data. This response is attributed to an increase in the volumetric structure
of maize, which increases multiple reflections of the incoming signal.
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3.3. Machine Learning Algorithms

The SVMs are advanced non-parametric statistical learning kernel-based algorithms
commonly used in classification of remote sensing data [44,45]. Training data are projected
into a higher-dimensional space using a linear/kernel-based function to optimally separate
classes [43]. Parameters that optimally define the linear/non-linear hyperplane to separate
the target classes are determined through an optimization problem. New data are evaluated
based on the defined hyperplane constraints and categorized accordingly. The SVM requires
regularization parameters that assist in tuning the model. These are C and gamma values,
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which were determined by the grid search method. In this study, the regularization parameter
was 100, the gamma value was 0.01, and a Radial Basis Function (RBF) kernel was used. A
comprehensive review of the tuning method can be found in Mountrakis et al. [46].

The Xgboost is part of the classification and regression ensemble gradient boosting
machines (e.g., Gradient Boosting and AdaBoost). This boosting technique is an improved
version of Gradient Boosting and AdaBoost because it has a higher computational efficiency
and improved capacity to deal with over-fitting. For example, Xgboost grows trees parallel
to each other, whereas the original Gradient Boosting model builds the trees in a series
configuration [23,36,47]. Boosting uses many weak classifiers to produce a powerful
classifier in an additive manner. The classifiers are trained on the weighted versions of the
training sample; misclassified data are given more weight during the iteration process so
that the next step focuses on the misclassified data [23]. The predictions improve over time
and the final predictions are decided through a majority voting process to create vigorous
predictions. This algorithm contains a rigorous number of regularization parameters that
can be tuned to improve predictions and minimize overfitting [48]. These parameters are
also determined using a grid search method.

3.4. Experimental Design

The experimental design scheme is illustrated in Figure 3. The first stage (i) involves
preparation and pre-processing of Sentinel-1 images as described in Section 3.2. The
second stage (ii) pixel-based PCA image fusion, which reduces the dimensions of the
multi-temporal Sentinel-1 images into only 3 bands (i.e., principal components 1, 2, and 3).
The bands describe more than 70% of the information contained in the multi-temporal
images (Figure 4). The selection criteria were motivated by reducing the computational
demands on the system, without compromising on the accuracy of the results. The third
stage (iii) entails model-level data fusion and application of SVM and Xgboost classification
algorithms. The last stage (iv) is the generation of the classification map. The second stage
(ii) is necessary to reduce computational demands and Random Access Memory (RAM)
requirements. The third stage (iii) involves model-level data fusion using machine learning
algorithms as described in Section 3.3. The data were separated into training (80%) and
testing (20%) [49]. The performance and results of the algorithms in different experiments
are compared using well-known evaluation metrics. This experiment was implemented
using a Python programming platform on a Ryzen 9 3900, 12 cores processor at 3.8 GHz
and 128 GB RAM computer.
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)
N2 −
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) , (2)

k̂i =
N(xii)−

(
xi+ × x+j

)
N(xi+)−

(
xi+ × x+j

) , (3)

where k is the land cover classes in the confusion matrix, xi+ and x+j represent marginal
total for row i and column j. xii represents the number of observations in row i and column
i. N represents total number of samples. The overall accuracy describes the proportion of
the area mapped correctly. It provides a user with a probability that a randomly selected
location on a map is correctly classified [57]. Kappa values that are more than 80% indicate
good agreement between the reference and derived classification map. The k̂ measures the
overall level of agreement between the reference data and the model data. The k̂i allows
computation of the level of agreement between the reference data and the model data for a
specific class i.

Precision measures the ability of the algorithm not to label a true positive sample (tp)
or a sample that is false positive ( f p). Recall measures the ability of the algorithm to find all
the true positives, and false negative is represented by f n. F1-Score is the harmonic mean
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calculated from both precision and recall values. These statistical values are calculated
according to Equation (4) [55,58,59]:

precision = tp
tp+ f p ,

recall = tp
tp+ f n ,

F1−Score = (1+ β2) precision×recall
β2×precision+recall , where β = 1.

(4)

Cross-validation is another statistical method used to evaluate the performance of the
model by dividing the data into k-folds (e.g., a standard value of 10 folds was used); the
algorithm uses one set of data as training and the other sets are used to evaluate the model.
During this iterative process, the accuracy score is calculated. The final cross-validation
value is derived of the average accuracies from each iterative process. The superiority and
significance between the SVM and Xgboost algorithms for each experiment were evaluated
using a non-parametric McNemar’s statistical test [60–62]. The test is based on chi-square
(χ2) statistics, calculated using Equation (5):

χ2 =
(| f12 − f21| − 1)2

( f12 + f21)
, (5)

where f12 denotes the number of cases that are wrongly classified by Model 1 but correctly
classified by Model 2, and f21 denotes the number of cases that are correctly classified by
Model 1 but wrongly classified by Model 2 [63]. This was computed from two contingency
matrices from the two algorithms that were being tested.

The unbiased proportional mapped areas were estimated using the method described
by Olofsson et al. [57]. This method takes into account errors in misclassifications as
reported in a confusion matrix. The mapped areas are estimated at 95% confidence intervals,
and this is useful in providing error margins for the estimated areas for the end-users.
Additional validation of the classification models’ ability to estimate smallholder maize
was done. The areas measured at 18 smallholder farms were compared to the estimated
areas from the SVM and Xgboost algorithms through a linear regression model. The p-value
(p) and Pearson correlation coefficient (R) were derived to evaluate the agreement.

4. Results
4.1. Accuracy Assessment

A two-stage data fusion approach was used in this study, utilizing a time-series
of Sentinel-1 polarization datasets. The SVM and Xgboost accuracy assessment results
are listed in Table 2. The SVM has an overall accuracy of 97.1%, cross-validation score
value of 89%, kappa value of 93.3%, and the conditional kappa coefficient of agreement
of 90.54% and 95.7% for maize and non-planted classes, respectively. The Xgboost has an
overall accuracy of 96.8%, cross-validation score value of 96%, kappa value of 92.6%, and
conditional kappa coefficient of agreement of 90.4% and 94.4% for maize and non-planted
classes, respectively. The maize classified pixels were similar for both classifiers based on
the confusion matrix. The precision, recall, and F1-Score values for both algorithms have
similar values that are more than 90% for both classes. It can also be noted that the recall
for the planted maize class in both cases is approximately 3.7% lower compared to the
precision score value. This observation is also supported by the kappa statistic and suggests
that the planted maize class is less accurately classified compared to the non-planted class.
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Table 2. Accuracy assessment produced for the Sentinel-1 multi-temporal classification using the Support Vector Machine
(SVM) and Extreme Gradient Boosting (Xgboost) algorithms.

Model Overall Accuracy Cross-
Validation Confusion Matrix

SVM
Planted Maize Non-Planted

0.971 0.89 +/−0,05 20,139 1457
628 50,790

Xgboost
Planted Maize Non-Planted

0.968 0.96 +/−0.02 20,115 1481
825 50,593

SVM Xgboost

Classes Planted Maize Non-Planted Planted Maize Non-Planted

Precision 0.97 0.972 0.961 0.972
Recall 0.933 0.988 0.931 0.984

F1-Score 0.951 0.98 0.946 0.978

These results show that the SVM and Xgboost produced an acceptable performance in
mapping smallholder farms and illustrated the capability of two-stage image fusion employed
in this study. In particular, both algorithms classified the non-planted area class better by
approximately 5% compared to the planted maize class. The cross-validation score indicates
that the Xgboost algorithm is more consistent and stable compared to the SVM algorithm. The
Xgboost algorithm cross-validation score outperformed the SVM algorithm cross-validation
score by 7%. This is in contrast with the other statistical measures (Table 2), which seem to
suggest that SVM has outperformed the Xgboost algorithm.

In situations where statistical evaluation matrices seem to contradict each other, a non-
parametric statistical test must be conducted. In our case, we used McNemar’s significance
test. If the estimated test statistic is lower than the critical chi-square table value (i.e., 3.84 at
95% confidence level), the null-hypothesis is rejected and it is concluded that there is no
significant difference between the two model results [64]. The McNemar’s chi-square value
of 64.62 and p-value of 9.085 × 10−16 were obtained by comparing the two algorithms.
We, therefore, reject the null-hypothesis and conclude that the two results are statistically
different from each other.

4.2. Variable Importance

Permutation variable importance was used to compute variable importance using the
two estimators (SVM and Xgboost). The permutation algorithm can be defined to be the
decrease in a model score when a single feature value is randomly shuffled [65]. Variable
importance for each VV, VH, and VV/VH PCA 1, 2, and 3 polarizations are depicted in
Figure 5. The VH and VV PCA polarizations formed the top six most important variables
and the least important variables were the VV/VH PCA ratios. Specifically, the VH PCA 3
received the highest score, followed by the VV PCA 1 and VH PCA 2. The dominance of
VH and VV polarizations was expected. Figure 6 depicts the VV, VH, and VV/VH PCA
polarization composites. Smallholder maize farms are clearly enhanced by the VV and VH
PCA polarization composites compared to the VV/VH polarizations.
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images used in the analysis. PCA 3 for the VH polarization is the most important variable in our
study. The same results were obtained for the two estimators.

4.3. Mapping and Area Estimate for Smallholder Maize Farms

The maps for the maize planted areas produced by the SVM and Xgboost algorithms
are depicted in Figure 7. The classification maps reveal the spatial distribution of the small-
holder maize farms in our study area. It can be seen that most farmers that planted maize
during the 2018/2019 season are from the south eastern part of Makhuduthamaga. These
observations are consistent with both maps that were produced by the two algorithms.
Visual inspection reveals no obvious disagreement between the two maps as predicted by
the SVM and Xgboost algorithms.
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The unbiased proportional areas were generated. The SVM algorithm estimated the
planted maize class to be 7073.558 ± 0.01 ha and the non-planted class was estimated to be
33420.96 ± 0.01 ha. Meanwhile, the Xgboost estimated the planted maize class area to be
7303.32 ± 0.180 ha and the non-planted class was estimated to be 33191.2 ± 0.820 ha. It is
worth noting that the SVM algorithm has better error margins (0.01 ha) for both classes
compared to the Xgboost algorithm, which has error margins of 0.18 and 0.82 ha for the
planted maize class and non-planted areas, respectively. The areas for the 18 smallholder
farms (Figure 8) compared well with those generated by the classification models. The SVM
classifier had a better fit (R = 0.89) in comparison with the Xgboost algorithm (R = 0.84).
The linear model was an ideal fit for the data. The positive relationship was significant at a
95% level (p < 0.5).
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5. Discussion

This study used Sentinel-1 multi-temporal datasets to map smallholder maize farm
spatial distribution and to estimate maize production area for the maize crop. A two-staged
image fusion technique was employed. The first stage involved using a pixel-based PCA
technique to transform the original multi-temporal backscatter values into three component
images that explained more than 70% of the information. This was done for the VV, VH,
and VV/VH polarizations. The second stage involved model-level fusion, where all the
components were used as input features into the machine learning algorithms. The SVM
and Xgboost algorithms were used as classifiers to map the distribution of the maize farms
and production area in Makhuduthamaga of Limpopo province, South Africa. This study
found that Sentinel-1 had a high capacity to map smallholder maize planted areas with the
application of machine learning algorithms. Furthermore, the two processing strategies
used in this study detected smallholder maize farms with acceptable accuracy.

The accuracy assessment results were also expected. The overall accuracies were better
than 90%, the cross-validation scores were greater than 85%, and the kappa coefficient of
agreement and conditional kappa coefficient of agreement were all better than 90%. These
results confirm the suitability of our approach in mapping smallholder farms using Sentinel-1
multi-temporal datasets. Other studies such as Ndikumana et al. [66] used Sentinel-1 multi-
temporal data to map agricultural crops by applying a Deep Recurrent Neural Network and
obtained favorable results that were better than 85% in accuracy. The SVM and Xgboost
algorithms estimated maize production areas to be 7073.558± 0.01 ha and 7303.32± 0.180 ha,
respectively. These values are relatively comparable to each other and SVM seems to have
smaller error margins at a 95% confidence level and slightly higher overall accuracy than the
Xgboost. However, for cross-validation scores, the Xgboost performed better. McNemar’s test
showed that the results from the two algorithms were statistically different from each other.
Other authors have evaluated different machine learning algorithms and obtained mixed
performance indicators. Aguilar et al. [67] used different ensemble classifiers (Random
Forest, SVM, and Majority Voting) to map smallholder farming systems based on the cloud-
based multi-temporal approach and obtained overall accuracies ranging from 60% to 72%.
Dong et al. [68] used Xgboost algorithms together with Decision Tree, Random Forest, and
SVM to map land cover using Gaofen-3 Polarimetric SAR (PolSAR) data and obtained overall
accuracies ranging from 88.4% to 93%. Zhong et al. [69] used machine learning algorithms and
Deep Neural Network algorithms to map crop types and found that a Convolutional Neural
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Network model achieved 85.5%, while the Xgboost achieved 82.4% in overall accuracy under
a multi-temporal classification scenario. Overall, the results produced by the classification
algorithms compared favorably with the ground-based measured areas. Both algorithms had
an agreement of more than 80%.

There are a few factors that may have contributed to the mapping errors as produced
by the two algorithms and the radar data. Examples of these include, but are not limited
to, loss of information during the PCA data reduction stage, backscatter mixing, and
different planting patterns. Dimensional reduction may have contributed to the mapping
errors. However, the three components that were kept for each polarization at more than
70% proved sufficient in our study. According to Woodhouse [16], backscatter intensity
is sensitive to variations in scattering geometry, distribution of scatterer size, surface
reflectivity beneath the canopy, leaf area density, row structure, and orientation relative to
the range domain of the radar. Smallholder farms normally practice crop mixing, un-equal
row planting patterns, and lack of irrigation systems. These practices can influence the
backscatter intensity from maize. Scattering from nearby vegetation, such as grass and
soil-canopy multiple scattering, can also contribute towards misclassification.

We showed that the PCA data reduction method can be used to facilitate the mapping
of smallholder maize farms. Machine learning algorithms require data that can be separable
to successfully classify data into their respective classes [50]. The PCA provides this
by decorrelating the multi-temporal backscatter values into components that describe
unique information for different classes, therefore enhancing the probability of accurate
classification. Maize can grow up to an average height of 2 m and the structural volume
of the crop also increases as the leaves also grow. This makes it possible to map maize
with radar data, since the VV and VH polarizations are sensitive to vegetation structure
and volumetric changes [70]. A frequent revisit of Sentinel-1 of 10–12 days and its high
spatial resolution of 10 meters can capture the phenological stages of maize [41]. The
increase in backscatter intensity for the maize class makes it possible to map smallholder
farms in complex environments. PCA also suppresses other classes with low variable
backscatter over time; these classes include grasslands and bare soil in our study area. The
PCA image composites provide clear examples, where the advantage of the first stage of
image fusion used in this study can be seen (Figure 6). The high level of importance of VH
and VV polarizations were expected. Other studies, such as Arias et al. [71], illustrated
that the VH, VV, and VH/VV polarizations ranked differently depending on the type
of crop that was investigated. VH polarization was more suitable for rice and rapeseed
discrimination, VV polarization was more suitable for alfalfa, and the VH/VV ratio was
suitable for discriminating crops from different seasons.

The results can be used to generate spatial agricultural information such as estimating
crop production areas and their spatial distributions in areas where survey datasets are not
available, such as in our study. The results can be used to inform local government about
the levels of agricultural activities in rural communities, thus providing ways to forecast
food shortages and improve food security. The use of Sentinel-1 multi-temporal data
provides an opportunity to afford this critical information regardless of the environmental
conditions such as clouds or lack of extensive reference data. These results can also be used
to contribute towards the SDG number 2. We therefore recommend the use of Sentinel-1
multi-temporal data to map smallholder farms at a provincial scale. More studies need to
be done to explore the phase and amplitude data extracted from the backscatter intensities
and their contribution to the accuracy of classifying smallholder farms. Different image
fusion techniques and multi-sensor data fusion should also be explored.

The limitation of this study was that there were no agricultural statistics to indepen-
dently validate the areas obtained by the machine learning algorithms. These validation
data are normally collected by local agricultural departments. For example, the United
States Department of Agriculture (USDA) uses remote sensing and extensive reference
data provided by the National Agricultural Statistics Service (NASS) to generate the crop
layer and associated statistics [72]. In areas with limited reference data, such as smallholder
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farms in developing countries, remote sensing technology provides a sustainable way
to generate agricultural statistics with reasonable accuracies [18,20]. Processing multi-
temporal data requires computational resources that are otherwise not easily accessible
in developing countries. The Google Earth Engine (GEE) and other platforms provide an
alternative solution to process data online, and these platforms allow for large-scale data
processing at a relatively low cost. For example, Jin et al. [35] used the GEE platform to
process Sentinel-1 data to map smallholder maize farms.

Future work should focus on testing this approach in different areas where smallholder
farms are dominant. The response and efficiency of this approach should also be tested
on different crop types. The operational model should be developed to consider the time
domain when forecasting smallholder maize production areas. The phase and amplitude
data from multi-temporal Sentinel-1 data and multi-sensor data should be explored in
mapping smallholder farms in the future. These research opportunities will ensure that
remote sensing technology can be fully utilized to support SDGs.

6. Conclusions

This study presented Sentinel-1 multi-temporal data for mapping smallholder maize
farms’ spatial distribution and estimated production areas. The two-stage image fusion
approach was adopted. The SVM and Xgboost machine learning algorithms were applied.
The results revealed that most smallholder farms in our study area are distributed in
the south eastern part of Makhuduthamaga. The algorithms provided comparable sta-
tistical evaluation results. However, McNemar’s test showed that the results from the
two algorithms were statistically different from each other. The SVM and Xgboost algo-
rithms estimated maize production areas to be 7073.558 ± 0.01 ha and 7303.32 ± 0.180 ha,
respectively, for the region. The classified areas for selected farms compared favorably
with the measured areas in the field and the SVM classifier had a better fit (R = 0.89) in
comparison with the Xgboost algorithm (R = 0.84). The SVM algorithm seems to have gen-
erally performed better than the Xgboost algorithm. The use of multi-temporal Sentinel-1
with a two-stage image fusion approach proved to be effective in mapping smallholder
farms. This framework can be used to support the SDGs and to provide spatial agricultural
information to inform policy design and implementation by local government. Different
seasons and different crop types should be tested using this approach, including extraction
of phase and amplitude data from multi-temporal Sentinel-1 data. Multi-sensor data fusion
should be explored to improve the mapping of smallholder farms in the future.
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