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Abstract
The ventral surfaces of translucent rocks from hot desert pavements often harbor hypolithic microbial communities, which 
are mostly dominated by cyanobacteria. The Namib Desert fog belt supports extensive hypolithic colonization of quartz 
rocks, which are also colonized by lichens on their dorsal surfaces. Here, we aim to evaluate whether lichens colonize the 
ventral surface of the rocks (i.e., show hypolithic lifestyle) and compare the bacterial composition of these coastal hypo-
lithic communities with those found inland. Fungal DNA barcoding and fungal and bacterial Illumina metabarcoding were 
combined with electron microscopy to characterize the composition and spatial structure of hypolithic communities from 
two (coastal and inland) areas in the Namib Desert. We report, for the first time, the structure and composition of lichen-
dominated hypolithic communities found in the coastal zone of the Namib Desert with extensive epilithic lichen cover. 
Lichen modified areoles with inverted morphology of the genus Stellarangia (three lineages) and Buellia (two lineages) were 
the main components of these hypolithic communities. Some of these lineages were also found in epilithic habitats. These 
lichen-dominated hypolithic communities differed in structural organization and bacterial community composition from 
those found in inland areas. The hypolithic lichen colonization characterized here seems not to be an extension of epilithic 
or biological soil crust lichen growths but the result of specific sublithic microenvironmental conditions. Moisture derived 
from fog and dew could be the main driver of this unique colonization.
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Introduction

Life in desert soil is principally constrained by water avail-
ability. Open desert soils are relatively depauperate habitats 
that support low-biomass microbial communities [1]. In con-
trast, the ventral surfaces of translucent rocks (mainly quartz 
or marble) often harbor hypolithic communities that consti-
tute substantial standing biomass [2–4]. Indeed, hypolithic 
microbial communities are considered hotspots of primary 
productivity and organic matter accumulation in hyper-
arid deserts [5]. Under these translucent rocks, microbial 
communities exist in microrefugia with less stringent envi-
ronmental conditions than open soils, where the overlying 
lithic substrate provides protection against high incident UV 
fluxes, generates thermal buffering, and enhances moisture 
availability [6].

The most common hypolithic communities in hot deserts 
are those dominated by cyanobacteria [2, 4, 6, 7]. Moss-
dominated hypolithic communities have also been reported 
in the Mojave Desert [8] and in the cold Antarctic Dry 
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Valleys [3, 9, 10]. In contrast, fungal-dominated hypo-
lith communities have only been reported in the Antarctic 
Dry Valleys [9], although different fungal taxa have been 
detected in cyanobacteria and moss-dominated lithobiontic 
communities from different deserts [11–13]. These types of 
hypoliths may reflect different successional stages [9].

Lichenized fungi are conspicuous in both hot and cold 
deserts as components of soil crusts [14] or saxicolous (epi-
lithic) communities [15–17]. As poikilohydric organisms, 
lichens show physiological and anatomical adaptations that 
allow them to survive on desert soils and rock surfaces, such 
as thick cortical layers, the production of photoprotective 
pigments, LEA-like proteins, and the development of potent 
antioxidant mechanisms [18]. Lichens have also frequently 
been reported to colonize hidden and protected endolithic 
microhabitats in desert ecosystems [16, 17, 19]. In contrast, 
the presence of lichens in hypolithic habitats has, until now, 
been underexplored. Previously, the colonization of the 
ventral surfaces of quartz rocks by the cyanolichen Peltula 
inversa has been described in the Namib Desert [20], and 
chlorolichens (i.e., lichens with eukaryotic green microal-
gae as photobionts) have also been found underneath small 
translucent flints in dew-dominated desert areas such as the 
highlands of Central Asia [21].

In coastal deserts, the occurrence of fog and dew, together 
with the existence of stable gravel plains, facilitates the 
development of lichens in areas where rainfall is insufficient 
to support extensive vascular plant growth [22, 23]. Indeed, 
the Namib Desert fog belt supports the world’s most exten-
sive lichen cover and a very high diversity of lichens [24]. 
This extensive lichen colonization gives rise to the unique 
and renowned “lichen fields” [25], defined by Jürgens and 
Niebel-Lohmann [26] as “plant formations of considerable 
surface area, in which epilithic to epipsammic (terricolous) 
lichens play the dominant role with respect to structure, 
cover and biomass, if compared with ferns and seed plants.” 
Quartz rocks embedded in coastal desert pavements in the 
Namib Desert are frequently colonized by epilithic lichens 
[27].

In considering whether the communities present on the 
dorsal surfaces of coastal quartz rocks extended to the ven-
tral surfaces, we investigated hypolithic microbial (fungal 
and bacterial) colonization using a combination of electron 
microscopy and rRNA gene sequencing. We also compared 
the hypolithic microbial communities of these coastal 
(fog-dominated) rocks with those found in inland (rainfall-
dominated) zones to evaluate their uniqueness. Water rela-
tions in the inland areas in the Namib Desert are character-
ized by occasional rainfall events rather than frequent fog 
events [28], and their hypolithic microbial communities are 
dominated by cyanobacteria [4, 29]. We hypothesized that 
translucent rocks in these two areas, subjected to contrast-
ing abiotic conditions and biotic structures, would support 

different hypolithic communities in terms of composition 
and predicted functions.

Materials and methods

Sample collection

Twenty-five quartz rocks showing visible hypolithic growth 
were collected on 15–16 April 2015 from an area (S23° 
3′ 23″, E14° 38′ 42″) near the coast of the Namib Desert 
(105 m asl). This area corresponded to lichen field I [25], 
which is characterized by a dominance of crustose lichens 
on quartz gravel with a lichen density below 20% and by 
frequent fog events (Supplementary Fig.  1). Rocks (in 
the size range of 4–6-cm wide, 4–5-cm long, and 1–2-cm 
high) were randomly collected, at a minimum distance of 
1 m from each other, within a 5-m radius site and stored in 
sterile Whirl–Pak bags. Ten rocks were used for targeted 
morphological and molecular identification of lichenized 
fungi, five for electron microscopy analysis, and ten rocks 
for community structure comparison with ten rocks found 
inland by high-throughput sequencing. Five additional rock 
samples exhibiting hypolithic growth from the inland area 
(S23°33′32″, E15° 02′15″), near the Gobabeb Research and 
Training Station (409 m asl), were collected for compara-
tive microscopy studies (Supplementary Fig. 1). In total, 40 
rocks were collected (25 near the coast and 15 inland).

Identification of lichenized fungi

Preliminary selection and identification of lichenized fungi 
was done visually based on the seminal work by [24] on 
the lichen flora of the Namib Desert. Confirmation of the 
identity of taxa at the genus level was done microscopically 
using hand-cut sections of ascomata mounted in water that 
were observed using a Zeiss Axioplan 2 microscope fitted 
with ‘‘Nomarski’’ differential interference contrast (DIC). 
This was especially important for determining the identity 
of crustose species belonging to the complex genus Buellia 
De Not. Specimens were deposited in the Royal Botanical 
Garden of Madrid (MA).

DNA isolation from these selected epilithic and hypo-
lithic lichen growths was performed as follows. Lichen are-
oles (Buellia spp. and Stellarangia spp.), lobes (Xanthopar-
melia spp.), or hypolithic growths (species not identifiable 
morphologically) were first ground in liquid nitrogen with a 
mortar and pestle. Total DNA was then extracted using the 
Speedtools Tissue DNA kit (Biotools® B&M Labs., S.A), 
following the manufacturer’s recommendations. The fun-
gal DNA barcode nuclear ribosomal Internal Transcribed 
Spacer, which includes the subregions ITS1, 5.8S, and ITS2, 
was amplified from each sample. Three markers were also 
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sequenced for Stellarangia spp. samples: the nuclear large 
subunit ribosomal RNA (LSU), the mitochondrial small 
subunit ribosomal RNA (mtSSU), and the RNA polymerase 
II largest subunit (RPB1). The primers used are shown in 
Supplementary Table 1. PCR amplifications were carried out 
using the Illustra Ready-To-Go GenomiPhi V3 DNA ampli-
fication kit (GE Healthcare Bio-Sciences, Pittsburgh, Penn-
sylvania, USA) following the manufacturer’s instructions. 
PCR conditions for ITS amplifications were as follows: an 
initial 4 min heating step at 94 °C, followed by 30 cycles of 
1.15 min at 94 °C, 1.30 min at 52 °C, and 1.45 min at 72 °C, 
followed by a final extension step of 10 min at 72 °C, after 
which the samples were kept at 4 °C. Negative controls lack-
ing DNA were run to check for contamination. Amplicons 
were purified and cleaned using the QIAGEN quick spin col-
umns (Qiagen®). Both complementary DNA strands were 
sequenced at MACROGEN. Raw electropherograms were 
manually checked, trimmed, and assembled using SeqmanII 
v.5.07© (Dnastar Inc.). GenBank accession numbers are in 
the Supplementary information (Table S1).

Species identification was first approximated by compar-
ing the ITS sequences with nucleotide data deposited in the 
GenBank database (http://​www.​ncbi.​nlm.​nih.​gov/) using the 
BLAST online tool. Secondly, highly similar ITS sequences 
of Buellia spp. and Stellarangia spp. were retrieved and 
aligned independently with the software MAFFT v.7.308 
[30]. Ambiguously aligned regions in the Buellia spp. data-
set were automatically removed using the least stringent 
parameter options with GBlocks v.0.91b [31]. In Stellaran-
gia spp., alignments of LSU, mtSSU and RPB1 sequences 
were identically built and concatenated to the ITS sequence 
dataset. Phylogenetic analyses were conducted under a 
maximum likelihood (ML) and Bayesian inference (BI) 
scenarios. The online version of RAxML-HPC2 hosted at 
the CIPRES Science Gateway [32, 33] was chosen to infer 
ML phylogenies, and 1000 bootstrap pseudoreplicates were 
calculated to evaluate nodal support. The MrBayes analy-
ses were conducted with two parallel, simultaneous four-
chain runs executed over 1 × 108 generations starting with 
a random tree, and sampling after every 1 × 104 steps. The 
first 25% of data were discarded as burn-in, and the 50% 
majority-rule consensus tree and corresponding posterior 
probabilities were calculated from the remaining trees. Opti-
mal substitution models for the two partitions within the 
nrITS (ITS1 + 2, 5.8S; Buellia spp. dataset) and five par-
titions (ITS1 + 2, 5.8S, LSU, mtSSU, RPB1; Stellarangia 
spp. dataset) used in the above analyses (Supplementary 
Table 2) were inferred with PartitionFinder v.1.1.1 consid-
ering a model with linked branch lengths and the Bayesian 
information criterion (BIC). Average standard deviation of 
split frequencies (ASDSF) values below 0.005 and potential 
scale reduction factor (PSRF) values approaching 1.00 were 
considered indicators of chain convergence in the Bayesian 

analyses. As for tree nodal support, nodes showing Boot-
strap support (BS) values equal or higher than 70% (RAxML 
analyses) and Bayesian posterior probabilities (PP) equal 
or higher than 0.95 (MrBayes analyses) were regarded as 
significantly supported. Phylogenetic trees were visualized 
in FigTree v.1.4 (available at http://​tree.​bio.​ed.​ac.​uk/​softw​
are/​tracer/), and Adobe Illustrator CS5 was used for artwork.

High‑throughput sequencing of hypolithic 
communities

Genomic DNA was extracted from hypolithic microbial bio-
mass scraped from quartz rocks using the PowerSoil® DNA 
Isolation Kit (MO BIO laboratories, Carlsbad, CA, United 
States). DNA quality and concentration were measured 
using a NanoDrop ND 1000 spectrophotometer (Thermo 
Fisher Scientific™). For bacterial DNA amplification, 
we followed the bacterial 16S rRNA Illumina Amplicon 
Protocol recommended by the Earth Microbiome Project 
(available at http://​www.​earth​micro​biome.​org/​proto​cols-​
and-​stand​ards/​16s/), using the primer pair 515F (5′-GTG​
YCA​GCMGCC​GCG​GTAA-3′) and 806R (5′-GGA​CTA​
CNVGGG​TWT​CTAAT-3′), which amplifies the V4 region 
of the 16S ribosomal RNA gene [34]. Fungal library prepa-
ration was performed with a two-step PCR method, using 
the ITS1F-KYO1 and ITS2-KYO2 primer set that spans the 
ITS1 region. To this end, PCR amplifications for each sam-
ple were conducted in triplicate, quantified using Quant-iT™ 
PicoGreen® dsDNA Assay Kit (Invitrogen) and pooled at 
equimolar amounts. A no-template sample was included dur-
ing library preparation as a control for extraneous nucleic 
acid contamination. Amplicon products containing sample-
specific barcodes were quantified using the Illumina library 
Quantification Kit ABI Prism® (Kapa Biosystems), pooled 
together in equal concentrations (240 ng of DNA per sam-
ple), and then cleaned using the QIA quick PCR purification 
kit (QIAGEN). Subsequently, the DNA pool was diluted to a 
final concentration of 4 nM and then denatured and diluted 
to a final concentration of 4 pM in 15% PhiX. Finally, the 
DNA library was loaded in MiSeq Illumina and run using 
the version 2 module, 2 × 250 pair-end, following the manu-
facturer’s instructions. Raw reads were demultiplexed, and 
barcode sequences were removed by the sequencing centre. 
Both amplicon libraries were generated at the ASU Genom-
ics Core (Arizona State University, USA).

Amplicon quality processing, clustering, 
and classification

High-throughput sequence analysis and bioinformatic 
processing was performed according to [35]. Briefly, 
16S rRNA and ITS sequence datasets were pre-processed 
and trimmed using PrinSeq-lite v0.20.4 to obtain an 
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average quality score ≥ 25 using a 7 nt window with a 
4 nt step. All sequences shorter than 100 bp were fil-
tered out. Paired end reads were merged using PEAR 
0.9.6 [36]. Quality filtered reads were analyzed using 
QIIME v1.9.1 [34]. Chimeric sequences were identi-
fied and removed using Usearch v6.1.544 against the 
RDP “Gold” database [37] for bacteria/archaea and the 
UNITE database for fungi [38]. Operational taxonomic 
unit (OTU) picking were carried out at 99% sequence 
identity against the SILVA 132 database [39] for the 
bacterial/archaeal 16S rRNA and the UNITE v 8.2 [38] 
for the fungal ITS data.

The newly obtained raw high-throughput sequencing 
data, for both fungi and bacteria, was deposited into the 

NCBI Sequence Read Archive (SRA) database (BioProject 
ID: PRJNA734915).

Comparing coastal and inland hypolithic bacterial 
communities

To compare the bacterial communities from coastal hypo-
liths with those from inland sites, we used 16S rRNA gene 
high-throughput sequencing data obtained above and from 
a previous study [40]. For OTU comparisons, given that 
the sequencing data from [40] was obtained with prim-
ers 27F/519R on a Roche 454 FLX titanium instrument, 
we used the OTUs closed-reference picking protocol 

Fig. 1   A Quartz pavement in the coastal area of the Namib Desert 
supporting epilithic lichen colonization; B epilithic Stellarangia 
namibensis; C epilithic S. testudinea; D epilithic Stellarangia sp.; E 
epilithic Xanthoparmelia sp.; F epilithic Buellia sp.; G quartz rock 

supporting green hypolithic community from the inland area; H 
quartz rock supporting green hypolithic community from the coastal 
area; I black hypolithic growth from the inland area; J hypolithic 
Stellarangia sp. areoles (arrows) from the coastal area
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implemented in QIIME v1.9.0 [34]. The OTUs closed-ref-
erence protocol allows comparison of sequences obtained 
using primers that targeted different regions of the 16S 
rRNA gene and different sequence platforms [41]. Func-
tional prediction based on OTU representative sequences 
was performed using PICRUSt2 version 2.1.4_b [42].

Statistical analyses

Differences in alpha diversity (Inverse Simpson, Shannon 
and observed number of OTUs) and relative abundance 
(at phylum and family levels) between coastal and inland 
bacterial hypolithic communities were assessed using 
Kruskal–Wallis tests. Differences in bacterial commu-
nity composition and predicted functions between coastal 
and non-coastal hypolithic communities were based on 
Bray–Curtis dissimilarities using permutational multivari-
ate ANOVA (PERMANOVA) [43], implemented using 
the adonis function in the R package vegan [44]. Within-
group variance in community composition and predicted 

function was performed using the betadisper function in 
vegan. Changes in gene abundance between coastal and 
non-coastal hypolithic bacterial communities were tested 
using Welch’s t-tests implemented in STAMP [45].

Characterization of hypolithic communities 
by scanning electron microscopy with backscattered 
electron imaging (SEM‑BSE)

The rock-microorganism interface was observed by scanning 
electron microscopy with backscattered electron imaging 
(SEM-BSE) [46]. Briefly, rock fragments containing hypo-
lithic communities were fixed in glutaraldehyde (3% v/v) 
and osmium tetroxide solutions (1% w/v), dehydrated in a 
graded ethanol series (from 30 to 100% v/v), and embedded 
in LR-White resin. The resulting blocks were finely pol-
ished, carbon coated, and observed using a FEI INSPECT 
105 SEM microscope. Microprobe analyses was performed 
using an Oxford Instruments INCA X-act Energy Dispersive 
Spectrometer (EDS) microanalytical system during SEM 
observations.

Fig. 2   Phylogram depicting the 
evolutionary relationships of 
species within the lichenized 
fungal genus Stellarangia 
based on a four loci (ITS, LSU, 
mtSSU, and RPB1) dataset 
obtained using Sanger sequenc-
ing. The represented topology 
was obtained under a Bayesian 
framework using MrBayes. 
Sequences generated from 
lichen thalli are labelled with 
“AL,” whereas those obtained 
in the high-throughput study 
(ITS data) correspond with the 
OTUs. Data from the remaining 
species depicted in the tree was 
obtained from GenBank (see 
Supplementary Table 4). Poste-
rior probabilities (PP, Bayesian 
analyses) and bootstrap support 
(BS, RAxML analyses) are 
represented on branches leading 
to nodes. Black dots denote 
hypolithic habitats and white 
dots epilithic habitats
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Results

Visual identification of epilithic and hypolithic 
colonizers

The upper surface of most quartz rocks from the coastal 
area was colonized by lichens (Fig. 1A). Stellarangia spp. 
(Fig. 1B-D) were the lichenized fungi more commonly 
found at epilithic locations, but species in Xanthoparme-
lia (Fig. 1E) and Buellia (Fig. 1F) were also observed. In 

contrast, the dorsal surfaces of quartz rocks from the inland 
area showed no lichen colonization. Hypolithic colonization 
was detected in quartz rocks from both localities, but two 
different types of communities were distinguished, cyano-
bacteria-dominated communities and lichen-dominated 
communities. Greenish (Fig. 1G–H) and black (Fig. 1I) 
hypolithic communities dominated by cyanobacteria were 
found in both, coastal and inland samples. Hypolithic com-
munities harboring modified lichen areoles (arrows in 
Fig. 1J) were found only in the coastal area.

Fig. 3   Phylogram depicting the 
evolutionary relationships of 
species within the lichenized 
fungal genus Buellia based 
on Sanger sequencing of the 
ITS. The represented topology 
was obtained in the Bayesian 
analysis. Sequences generated 
from lichen thalli are labelled 
with “AL”; the ones within a 
black rectangle were obtained 
from epilithic thalli. Data from 
the remaining species depicted 
in the tree was obtained from 
GenBank (see Supplementary 
Table 5). Posterior probabilities 
(PP, Bayesian analyses) and 
bootstrap support (BS, RAxML 
analyses) are represented on 
branches leading to nodes. 
Black dots denote hypolithic 
habitats and white dots epilithic 
habitats
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Targeted molecular and phylogenetic identification 
of epilithic and hypolithic fungal colonizers

Three distinct genetic lineages of Stellarangia spp. were 
revealed by BLAST searches of the ITS sequences obtained 
from epilithic lichen areoles. One such lineage represented 
the species Stellarangia namibensis (Kärnefelt) Frödén, 
Arup & Søchting and another S. testudinea (V. Wirth & 
Kärnefelt) Frödén, Arup & Søchting (Supplementary 
Table 3). Our ITS sequences clustered into statistically well-
supported clades representing these two taxa in our four-
loci ML and Bayesian phylogenetic reconstructions (Fig. 2). 
The third Stellarangia lineage formed an independent and 
well-supported (PP = 1; BS = 98%) clade in our phylogenies. 
However, relationships of this lineage with clades repre-
senting the other Stellarangia species were not supported 
(Fig. 2). The ITS sequence generated from an epilithic thal-
lus of a Buellia species (sample AL21) showed the closest 
match to B. badia (Fr.) A. Massal with a sequence similarity 
of 91% (Supplementary Table 3), whereas samples AL35 
and AL62 were only distantly related to any other known 
Buellia species. In fact, the former two lineages formed a 
statistically well-supported clade (PP = 1; BS = 99%) in our 
ML and Bayesian phylogenetic trees (Fig. 3). Finally, the 
ITS sequences generated from Xanthoparmelia thalli had 
closest matches to X. taractica (Kremp.) Hale, although with 
a relatively low sequence similarity (91.7%; Supplementary 
Table 3).

Hypolithic lichen thalli contained species of the genus 
Stellarangia (three distinct lineages) and Buellia (two lin-
eages). Hypolithic Stellarangia sequences were identical 
or closely matched to sequences obtained from epilithic S. 
testudinea and Stellarangia sp. (Fig. 2). In contrast, ITS 
sequences of hypolithic Buellia spp. were substantially 
dissimilar to those obtained from epilithic thalli (Sup-
plementary Table 3) and thus were located into an unre-
lated phylogenetic clade, which was the sister (PP = 1; 
BS = 88%) to a subclade containing B. almeriensis Lli-
mona and B. taishanensis Q.D. Wang & Z.F. Jia (Fig. 3).

High‑throughput sequencing of fungal ITS regions 
from lichen‑dominated hypolithic communities

The ITS metabarcoding analysis revealed that lichen-form-
ing fungi were present in all analyzed coastal hypolithic 
communities, including these from rocks without lichen 
epilithic colonization. These results also confirmed that 
these communities were mostly dominated by the lichen-
forming genus Stellarangia (Fig.  4A–B). Phylogenetic 
analyses (Fig. 2) revealed that some Stellarangia OTUs 
were closely related to Stellarangia sp., while others were 
closely related to S. testudinea. In contrast, samples with 
conspicuous blackish hypolithic growths and scarce lichen 

thallus development were dominated by OTUs belonging to 
the non-lichenized fungal genus Alternaria.

Spatial organization of hypolithic communities

Hypolithic communities from coastal and inland samples 
shared some spatial structural features (Fig. 5A–B). Dense 
aggregates with dominance of filamentous cells occupied 
the proximal layer (with reference to the rock), while a 
broader loose matrix with more dispersed cells retaining 
numerous soil mineral fragments occupied the distal layer 
(Fig. 5A–D). However, hypolithic communities from both 
areas differed markedly in composition (Fig. 6). In the 
inland samples, cellular ultrastructure and morphology 
revealed that filamentous cyanobacteria (Fig. 5C), accom-
panied by aggregates of putative coccoid cyanobacteria 
(black arrows in Fig. 5E), dominated the proximal dense 
layer in hypolithic communities. In contrast, in the coastal 
samples, lichen symbiont cells were the main components 
of this dense layer (Fig. 5B). Fungal hyphae appeared 
associated to green microalgae cells in this dense layer 
(Fig. 5D), but extended downward (towards the underlying 
soil) and were associated to different mineral fragments 
(Fig. 5B). The observed structure resembles a lichen het-
eromerous thallus organization, with an algal (photobiont) 

Fig. 4   A Relative abundance of fungal genera (A) and fungal OTUs 
(B) in hypolithic growths from coastal area (N1–N10) obtained 
through high-throughput Illumina sequencing. N1, N2, N4, N5, and 
N6 did not show visible epilithic growth, but epilithic Stellarangia 
thalli were observed in samples N7, N9, and N10 and Xanthoparme-
lia sp. in sample N8
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layer differentiated from a medullar layer composed of 
fungal hyphae. However, this structure lacked an upper 
cortex. Putative cyanobacteria were frequently observed 
in the proximity of hyphae from the loose layer at the soil 
face (black arrows in Fig. 5F). Bacteria-like cell aggre-
gates were detected in both types of hypolithic communi-
ties and frequently found in areas dominated by cyanobac-
teria (white arrows in Fig. 5E–F).

Anatomical features of hypolithic lichens

A common feature of lichens found on the ventral sur-
faces of quartz rocks was an inverse internal morphology, 

with an algal layer exposed toward the quartz rock surface 
(Fig. 6, Fig. 7A–B) and no upper cortex (Fig. 7A). In are-
oles of hypolithic Stellarangia testudinea, algal cells were 
also observed within isidia (i.e., lichen asexual propagule) 
in the lichen surface exposed to the soil (black arrow in 
Fig. 7B). Some lichen areoles grew from the hypolithic 
lichen thallus toward the surface (Fig. 7C). In fact, lichens 
expanded from the center to the lateral margins of the 
rock (Fig. 7D) showing gradual changes in their anatomy 
(Fig. 6). Lichen areoles showed an upper cortex in the 
lateral margins of rocks, either very thin and orientated 
toward the rock in areas under the soil surface (Fig. 7E) 
or broad and orientated opposite to the rock surface above 

Fig. 5   SEM-BSE images of 
hypolithic growths. A Cyano-
bacteria-dominated hypolithic 
community from the inland 
area. B Lichen-dominated 
hypolithic community from the 
coastal area. C Filamentous 
cyanobacteria closely associated 
to the ventral surface of quartz 
rock from the inland area. D 
Algal and fungal symbiont 
lichen cells in the dense layer 
of a hypolithic growth from 
the coastal area. E Filamentous 
cyanobacteria associated to 
aggregates of putative coccoid 
cyanobacteria (black arrows) 
and heterotrophic bacteria 
(white arrow) in the dense layer 
of a hypolithic growth from 
the inland area. F Filamentous 
cyanobacteria (black arrows) 
and aggregates of coccoid 
bacteria cells (white arrows) 
associated to fungal hyphae in 
the looser layer of hypolithic 
community from the coastal 
area
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the soil surface (arrow in Fig. 7D). Aggregates of associ-
ated algal and fungal cells without a clear lichen thallus 
structure were also occasionally observed on the margins 
of the rock surfaces (Fig. 7F).

Bacterial diversity and composition

Bacterial alpha diversity values were similar between the 
two types of hypoliths (Supplementary Fig. 2). Overall, bac-
terial communities were dominated by the phyla Proteobac-
teria (36% on average), Cyanobacteria (29%), Actinobacte-
ria (15%), Bacteroidetes (10%), and Thermi (5%) (Fig. 8A). 
The relative abundance of Proteobacteria was significantly 
higher in inland hypoliths compared to coastal hypoliths 
(Kruskal–Wallis, P < 0.05), while the relative abundance of 
Bacteroidetes and Thermi was significantly higher in coastal 
hypoliths compared to non-coastal hypoliths (Kruskal–Wal-
lis, P < 0.05). At the family level (Supplementary Fig. 3), 
Sphingomonadaceae (9%), Phormidiaceae (9%), Xenococ-
caceae (7%), and Acaryochloridaceae (5%) mainly contrib-
uted to the bacterial community. The relative abundance of 
the families Sphingomonadaceae, Acaryochloridaceae, 
Geodermatophilaceae, Cytophagaceae, Bradyrhizobiaceae, 
and Trueperaceae was significantly higher in coastal hypo-
liths than in inland hypoliths (Kruskal–Wallis, P < 0.05).

The taxonomic (OTU level) and predicted functional 
(KO level) community structure of hypolithic bacterial com-
munities from coastal and inland areas differed markedly 
as revealed by NMDS ordinations (Fig. 8B–C) and PER-
MANOVA analysis (P < 0.01 in both cases). Furthermore, 
non-coastal hypoliths were more variable in their taxonomic 
and functional profiles than coastal hypoliths (permutation 
dispersion: P < 0.01 in both cases).

Discussion

Here, we characterize, for the first time, lichen-dominated 
hypolithic communities from the Namib Desert. Previous 
research has reported that the distribution of terricolous 
lichens in the Namib Desert depends on factors such as dis-
tance to the coast, elevation, climatic gradients, wind and 
sand force, substrate, and physiological adaptations [25, 47]. 
The extensive growth of epilithic and crust forming coastal 
lichens is thought to be supported by moisture content 
derived from fog and dew [22, 23, 48]. Water availability has 
also been considered an important determinant in shaping 
hypolithic microbial community structure along an inverse 
fog-rainfall gradient across the central Namib Desert [4]. 
Hence, the frequent fog and dew events in these coastal areas 
could also explain the establishment of lichen-dominated 
hypolithic communities, as the hypolithic habitat increases 
water retention by shading [2, 20, 49].

Hypolithic habitats in dryland soils provide specific 
microclimatic conditions that facilitate a level of biocom-
plexity not possible in surrounding “open” soils [50]. In 
agreement with this observation, electron microscopy 
characterization revealed complex spatial structures 
formed by aggregates of microorganisms from different 
taxonomic groups trapping soil mineral components and 
closely associated to the quartz lithic substrate. In fog-
dominated coastal areas, filamentous fungi were the main 
structural components of these communities. Conversely, 
cyanobacteria were the dominant structural components in 
communities from inland sites. The structures of lichen-
dominated hypolithic communities were more dense 
than those without lichens, presumably because hypo-
lithic lichen symbionts provide a high degree of thallus 

Fig. 6   Scheme of lichen-dominated (coastal area) and cyanobacteria (inland area) dominated hypolithic communities
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organization. In lichen-dominated communities, medullar 
hyphae were associated to bacterial aggregates and showed 
clear interactions with soil mineral fragments. A similar 
relationship was observed between filamentous cyanobac-
teria and soil mineral fragments in cyanobacteria-domi-
nated communities. Hypolithic aggregates of cyanobac-
teria and heterotrophic bacteria are generally embedded 
in a dense matrix of extracellular polymeric substance 
(EPS), which plays key structural and functional roles 
[17]. The contribution of EPS to the spatial structures of 
hypolithic biomass found in the Namib Desert could be 
more relevant in inland cyanobacteria-dominated commu-
nities, because in coastal lichen-dominated communities, 

bacterial aggregates are restricted to marginal areas at the 
soil surface. EPS matrices are critically important for the 
retention of moisture [17], which could be essential for 
communities in inland (hyper-arid) areas where fog, dew, 
and rainfall events are very rare and atmospheric relative 
humidity values are significantly lower than in coastal 
areas. In contrast to Antarctic moss-dominated hypoliths, 
in which cyanobacteria frequently associates to the quartz 
surface between the rock and the moss [10], in the cryp-
togam-dominated hypolithic community described here, 
lichen symbionts were closely associated with the quartz 
rock, and cyanobacteria were not observed at the interface.

Fig. 7   SEM-BSE images of 
hypolithic lichens. A Lichen 
thalli with inverse internal 
morphology showing an algal 
layer exposed toward the quartz 
rock and lack of upper cortex. 
B Stellarangia testudinea 
areoles showing isidia (arrow) 
in the lichen surface exposed 
to the soil. C Lichen hypolithic 
growth showing at the ventral 
face a section with inverse inter-
nal morphology and a growth 
expansion orientated toward the 
soil surface. D Lichen areoles 
expanding to the lateral margins 
of the rocks corresponding to 
the rock showed in the inset, 
showing gradual changes in 
their anatomy. Arrow points to 
lichen areole at soil surface with 
upper cortex and non-inverse 
internal morphology. E Lichen 
areoles at the lateral margin of 
the rocks with inverse morphol-
ogy and thin upper cortex. F, 
Associations of algal and fungal 
lichen symbiont cells without a 
clear lichen thallus structure
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The bacterial communities found in coastal and inland hypo-
liths were clearly different in both taxonomy and predicted 
function. This is expected, as it has previously been reported 
that lichens harbor a specific microbiome and that different 
microbiomes perform different functions [51, 52]. Indeed, Bac-
teroidetes, which showed a higher abundance in lichen-domi-
nated coastal hypoliths compared to cyanobacteria-dominated 
inland hypoliths, are common in marine and maritime lichens 
[52]. Bacteroidetes are typically classified as copiotrophs and 
therefore preferring high nutrient availability [53]. In contrast, 
Firmicutes, Actinobacteria, and Proteobacteria, which are also 
ubiquitous in lichens [51, 54], did not display any difference in 
relative abundance between the two types of hypoliths. Alto-
gether, it seems that both biotic (i.e., the presence of lichens) 
and abiotic factors (e.g., nutrient levels, water availability) likely 
determine the composition and predicted functional reperto-
ries of the bacterial communities of the two types of hypoliths. 

The increase in taxonomic and functional similarity in coastal 
hypoliths is an indication of biotic homogenization, which may 
indicate a more prominent role of deterministic processes (i.e., 
habitat filtering) in the assembly of those communities.

The rocks harboring lichen-dominated hypolithic 
communities were part of a lichen field with high density of 
saxicolous and crust-forming lichens. However, the hypolithic 
lichen colonization reported here seems not to be an extension 
of epilithic or biological soil crust lichen growths. While 
some rocks showed colonization by the same Stellarangia 
species in both epilithic and hypolithic locations, others only 
showed hypolithic or epilithic lichen colonization. In addition, 
connections between hypolithic growths and biological soil 
crusts as those reported for the cyanolichen Peltula inversa [20] 
were not observed at the studied lichen field. Hence, lichen-
dominated hypolithic colonization seems to be the result of 
specific sublithic microenvironmental conditions. Indeed, 

Fig. 8   A Relative abundance of bacterial phyla in hypolithic growths 
from coastal (N1–N10) and inland (GN1–GN10) areas obtained 
through high-throughput Illumina sequencing. Non-metric multidi-
mensional scaling (NMDS) ordination plots (Bray–Curtis dissimi-

larities) from coastal (N1–N10) and inland (GN1–GN10) sampling 
points, showing the differences in taxonomic (B) and functional (C) 
composition
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hypolithic lichens were adapted to this microenvironment 
because they showed inverted morphology. The inverted 
morphology is thought to be an adaptive mechanism to 
cope with the high irradiance and low water availability that 
characterize desert soils [20]. Two probably new lichen-forming 
fungal species were reported in this study, one assigned to the 
genus Stellarangia and the other to the genus Buellia, which 
suggest that these cryptic habitats located under coastal quartz 
rocks could act as reservoirs of unknown fungal taxa.
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