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Abstract

DNA methylation is increasingly recognized as a potential biomarker of metabolic disease.

However, there is limited information on the impact of human immunodeficiency virus (HIV)

infection on the candidacy of DNA methylation to serve as molecular biomarkers. This study

investigated the effect of HIV infection on DNA methylation patterns in the peripheral blood

of South African women with (n = 95) or without (n = 191) gestational diabetes mellitus

(GDM). DNA methylation levels at eight CpG sites in the adiponectin gene (ADIPOQ) pro-

moter were measured using bisulfite conversion and pyrosequencing. Differences between

HIV negative (-) and positive (+) women were observed. In HIV- women, methylation at CpG

-3400 was lower in GDM+ women compared to those with normoglycemia (8.5-fold; p =

0.004), and was associated with higher fasting glucose (β-co-efficient = 0.973; p = 0.006)

and lower adiponectin (β-co-efficient = -0.057; p = 0.014) concentrations. These associa-

tions were not observed in HIV+ women. In silico analysis showed that Transcription Factor

AP2-alpha is able to bind to the altered CpG site, suggesting that CpG -3400 may play a

functional role in the regulation of ADIPOQ expression. Our findings show that DNA methyl-

ation differs by HIV status, suggesting that HIV infection needs to be taken into consider-

ation in studies exploring DNA methylation as a biomarker of GDM in high HIV prevalence

settings.

Introduction

Gestational diabetes mellitus (GDM) is defined as glucose intolerance that is first diagnosed

during pregnancy, with normal glucose tolerance usually restored after delivery [1]. GDM

affects approximately 14% of pregnant women globally [2]. Without appropriate diagnosis and

management, GDM is associated with adverse short-and long-term pregnancy outcomes [3,

4]. Perinatal complications include caesarean delivery, preeclampsia, macrosomia, birth
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injury, neonatal hypoglycaemia and postpartum haemorrhage [4, 5]. Moreover, both mothers

and their offspring have an increased risk of developing type 2 diabetes (T2D) and obesity in

later life [6–9]. GDM is diagnosed using the oral glucose tolerance test (OGTT) at 24–28

weeks of gestation [10]. Although universal screening with the OGTT is recommended for all

pregnant women [11], many countries use a two stage risk factor-based selective screening

strategy due to costs and ease [12–15]. As such, only women with traditional risk factors for

GDM (advanced maternal age, obesity, family history of diabetes mellitus, delivery of a previ-

ous baby more than four kilograms, glucosuria, previous recurrent pregnancy loss, stillbirth,

or birth of a baby with congenital abnormalities) [12, 16] are referred for OGTT screening.

Due to the poor predictive value of traditional risk factors in identifying women with GDM

and the challenges of the OGTT, which include the requirement for fasting and multiple blood

draws, diagnosis of GDM is suboptimal. Accordingly, increased efforts are being directed

towards the identification of sensitive and specific biomarkers to detect GDM. Such biomark-

ers could be useful to facilitate early risk stratification and intervention strategies to better

manage GDM and improve pregnancy outcomes.

Epigenetics reflect the interplay between gene-environment interactions [17, 18], and are

increasingly being implicated in the pathophysiology of metabolic diseases, including GDM.

More recently, epigenetic mechanisms have attracted considerable interest as diagnostic or

prognostic biomarkers of disease. DNA methylation, the most widely studied and best charac-

terized epigenetic mechanism, refers to the addition of a methyl group to the fifth carbon posi-

tion of a cytosine residue within a cytosine-phosphate-guanine (CpG) dinucleotide. This

modification regulates the transcriptional potential of the genome and is known to affect gene

expression pathways associated with a range of pathophysiological processes including glucose

homeostasis, insulin signalling, inflammation and adipogenesis [19–21]. In recent years, accu-

mulating evidence show that aberrant DNA methylation patterns in tissue are reflected in

peripheral blood, which has sparked interest in its potential to serve as biomarkers of disease

[22–24]. As such, a number of studies have reported altered gene-specific methylation during

GDM [25–28].

Adiponectin is an adipose tissue-derived hormone that modulates whole-body energy

homeostasis by regulating glucose and lipid metabolism [29, 30]. In metabolic tissues, adipo-

nectin enhances insulin sensitivity by promoting glucose utilization and fatty acid oxidation.

Adiponectin serum levels are negatively correlated with obesity and obesity-related metabolic

diseases such as insulin resistance, T2D and cardiovascular disease [31–33]. In recent years,

the role of adiponectin during pregnancy has attracted interest, particularly due to evidence

that adiponectin may be secreted from the placenta [34]. Adiponectin concentrations progres-

sively decline with increasing insulin resistance during pregnancy [35, 36], and low adiponec-

tin levels during early pregnancy is associated with the development of GDM [37]. The

potential of maternal serum adiponectin concentration to serve as a biomarker of GDM is

widely reported [38–42]. Altered DNA methylation of the adiponectin gene has been identified

as a key mechanism that regulates serum adiponectin expression, and to influence glucose and

lipid metabolism [43].

Human immunodeficiency virus (HIV) infection alters epigenetic mechanisms such as

DNA methylation [44, 45], which may affect their ability to serve as biomarkers of GDM. Sub-

Saharan Africa accounts for 68% of the global HIV burden, with an estimated 25.7 million peo-

ple infected with HIV [46]. Given the high prevalence of HIV in Africa, particularly in women

of reproductive age [47], it is important to examine the effect of HIV infection on the potential

of DNA methylation to serve as a biomarker for GDM. Previous studies investigating DNA

methylation during GDM were conducted in HIV negative (HIV-) women [25] or in low HIV

prevalence settings without consideration of HIV status [48, 49]. This study aimed to address
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the scarcity of studies exploring the interaction between HIV and DNA methylation. We mea-

sured DNA methylation levels at eight CpGs at -3413, -3410, -3400, -3372, -473, -415, -112 and

-45bp upstream of the ADIPOQ promoter in the peripheral blood of HIV infected and unin-

fected South African pregnant women with (n = 95) or without (n = 191) GDM using pyrose-

quencing. Associations between altered CpG methylation and clinical characteristics were

examined. The functional significance of altered CpGs were explored using in silico transcrip-

tion factor binding prediction.

Materials and methods

Study population

This research forms part of a larger study investigating screening strategies for GDM in a

South African population [12]. One thousand pregnant black African women attending a pri-

mary care clinic in Johannesburg, South Africa were recruited between September 2013 to

March 2016. Women with singleton pregnancies, and who did not have pre-existing diabetes

(type 1 diabetes (T1D) and T2D) were included in the study. Participant selection for this

study is shown in Fig 1. In total 95 women with GDM and 191 women without GDM were

included in this study. Women were stratified according to their GDM (GDM (GDM +); no

GDM (GDM-)) and HIV (HIV positive (HIV+); HIV negative (HIV-)) status as follows: GDM-

HIV-: n = 118, GDM+ HIV-: n = 63 and GDM- HIV+: n = 32, GDM+ HIV+: n = 73. Of the 105

HIV+ women, 36 were on anti-retroviral treatment (ART) (GDM+ (n = 12) and GDM-

(n = 24)), 68 were ART naïve (GDM+: n = 20, GDM-: n = 48) and one had missing data, which

was not included in the ART analysis. At recruitment, demographic data and risk factors for

GDM, i.e. advanced maternal age (age > 35 years), obesity (body mass index (BMI) > 30 kg/

m2), family history of diabetes mellitus, delivery of a previous baby more than four kilograms,

Fig 1. Flow diagram for study participants. A subset of women with (n = 95) and without (n = 191) GDM were

selected for this cross-sectional study and were stratified according to HIV negative and HIV positive groups. HIV:

Human Immunodeficiency Virus.

https://doi.org/10.1371/journal.pone.0248694.g001
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glucosuria, previous recurrent pregnancy loss, stillbirth, or birth of a baby with congenital

abnormalities, were assessed using a standardised questionnaire (S1 Questionnaire). Anthro-

pometric measurements including age, height (cm) and weight (kg) were obtained using stan-

dard procedures as previously described [12], and BMI was calculated as weight (kg)/height

squared (m2). At their first visit, random glucose and glycated haemoglobin (HbA1c) concen-

trations were measured using a glucometer (Roche Diagnostics, Mannheim, Germany) and

the point-of-care Afinion system (Alere Technologies, Oslo, Norway), respectively. All women

with random glucose and HbA1c concentrations more than 11.1 mmol/L 6.5%, respectively,

were excluded. Women included in the study were requested to return within two weeks in a

fasted state for blood collection. Ethical approval for this study was granted by the University

of Pretoria Health Sciences Ethics Committee (180/2012). The study was conducted according

to the Declaration of Helsinki and all women gave written informed voluntary consent after

the procedures had been fully explained in the language of their choice [12].

Study procedures

Study procedures were described previously [12]. GDM was diagnosed using the 75-g 2-hr

oral glucose tolerance test (OGTT) at 24–28 weeks of pregnancy according to the International

Diabetes and Pregnancy Study Group (IADPSG) criteria, and diagnosed if at least one glucose

value was met (fasting plasma glucose� 5.1mmol/L, 1 hr OGTT� 10 mmol/L or 2 hr

OGTT� 8.5 mmol/L) [50]. HIV testing was offered to all pregnant women using rapid HIV

kits and results were confirmed with a different kit according to the guidelines of the South

African Department of Health [51]. HIV positive women were treated with Atripla™; a fixed-

dose coformulation of three anti-HIV drugs, efavirenz, emtricitabine and tenofovir given

once-daily [51]. After an overnight fast, blood samples were collected for measuring fasting

glucose concentrations (Vermaak and Partners, Pretoria, South Africa) or stored at -80 oC to

assess serum adiponectin concentrations (human adiponectin enzyme-linked immunosorbent

assay (ELISA) (Merck, Dermstadt, Germany)) and profile DNA methylation.

DNA methylation analysis

Genomic DNA was extracted from 2 ml of whole blood in ethylenediaminetetraacetic acid

(EDTA) tubes using the QIAamp DNA Blood Midi Kit (Qiagen, Hilden, Germany). DNA con-

centration was measured using the Qubit Flourometer (Invitrogen, Carlsbad, USA) with the

Quanti-iT dsDNA Broad Range assay kit (ThermoFisher, Massachusetts, USA), according to

the manufacturer’s instructions. DNA methylation analysis was performed using pyrosequen-

cing. Briefly, 500 ng of DNA was bisulfite converted using the EpiTech Fast DNA Bisulfite Kit

(Qiagen, Hilden, Germany), according to the manufacturer’s instructions. PCR was performed

on 20 ng of bisulfite converted DNA using the Pyromark PCR kit and pyrosequencing was

conducted using the PyroMark Gold Q96 reagent kit and the PyroMark Q96 pyrosequencer

(Qiagen). Bisulfite treatment and pyrosequencing assays were tested using bisulfite conversion

controls and methylated standards (0% to 100%) (S1 Fig) (Qiagen), according to manufactur-

er’s instructions. Samples were randomly selected and tested in duplicate to confirm reproduc-

ibility of methylation data.

Primers

The three primer sets used for DNA methylation analysis were selected from publications that

identified regions important for ADIPOQ gene regulation [49, 52] or designed using the Pyro-

Mark Assay Design Software (version 2.0.2.5, Qiagen). Primer set 1 (R1) represents 4 CpGs at

-3413, -3410, -3400 and -3372 (region C in Bouchard et al. 2012 [49]) and primer set 2 (R3)
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represents 2 CpGs at -112 and -45 (Houshmand-Oeregaard et al. 2017 [52]) upstream from

the transcription start site (TSS). Primer set 3 (R2) (2 CpGs at -473 and -415 upstream from

the TSS) was designed by us. Primer sets included a forward, reverse and sequencing primer

(Integrated DNA Technologies, Inc., South Africa). The primer and target sequences, chromo-

somal location and amplicon lengths are listed in S1 Table.

In silico analysis

In silico analysis was conducted to identify potential transcription factors that bind to regions

of altered CpG methylation. Transcription factor prediction software, ALIBABA 2.1 [53] and

ALGGEN-PROMO [54], was used to identify putative transcription factors with binding sites

overlapping CpG -3400 in the region between -3425 bp to -3383 bp (42 bp) within the human

ADIPOQ gene sequence (GRCh38/hg38) (https://www.ensembl.org/index.html). Transcrip-

tion factor predictions were cross-referenced using the MeDReader database [55] to assess the

likelihood of these transcription factors binding to highly methylated regions.

Statistical analysis

Statistical analysis was conducted using STATA 14 (StataCorp, College Station, USA). Data are

expressed as the median and interquartile range (25th– 75th percentile) and categorical data are

expressed as count (percentage). Data normality was tested using the Shapiro-Wilk test. Numerical

data were analyzed using the Mann-Whitney test, while categorical variables were analyzed using

the Chi-squared test. Associations between GDM and differentially methylated CpGs were ana-

lysed using logistic regression adjusting for age, BMI and gestational age. GDM was classified as

the binary dependent variable and DNA methylation as the continuous independent variable.

Associations between DNA methylation and clinical characteristics were assessed using univariable

and multivariable linear regression analysis adjusting for age, BMI and gestational age. Graphs

were drawn in Prism 7, Version 7.03 (GraphPad, La Jolla, USA). A DNA methylation cut-off of

>1.5-fold and a p-value of�0.05 (α) was considered statistically significant. The p-values were

adjusted for multiple testing using Bonferroni correction cut-off at α/n (n = number of CpG sites).

Results

Participants characteristics

Participant characteristics are presented in Table 1. All measures of glucose concentration

were higher in HIV- women with GDM compared to those with normoglycemia. In HIV+

women, fasting and OGTT glucose concentrations were higher in women with GDM com-

pared to those with normoglycemia, while no differences in HbA1c levels were observed. HIV-

women with GDM had more risk factors and lower serum adiponectin concentrations than

women without GDM. These GDM associated differences in risk factors and adiponectin con-

centrations were not observed in HIV+ women. No difference in the percentage of women on

ART was observed between GDM and non-GDM groups. The majority of women with GDM

(80/95; 84.2%) were diagnosed on fasting plasma glucose alone, whilst 2/95 (2.1%) were diag-

nosed on 2 hr OGTT alone, and a further 13/95 (13.7%) were diagnosed with fasting glucose

plus one or two additional abnormal glucose reading (S2 Table).

HIV infection alters the association between GDM and ADIPOQ DNA

methylation

To investigate the effect of HIV infection on ADIPOQ DNA methylation levels during GDM,

methylation levels at eight CpG sites within the ADIPOQ promoter were quantified. A
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schematic representation of the eight CpG sites in ADIPOQ promoter that were investigated

are illustrated in Fig 2. Pyrosequencing showed high levels of methylation at all CpGs, with sig-

nificant inter-individual heterogeneity observed between women (Figs 3 and 4). In HIV-

women, methylation at CpG -3400 was lower in GDM+ women compared to those with nor-

moglycemia (8.5-fold; p = 0.004) (Fig 3). These differences were not observed in HIV+ women.

In HIV+ women, methylation at CpG -3372 was higher in GDM+ women compared to GDM-

women (4.0-fold; p = 0.006) (Fig 4). Logistic regression adjusting for age, BMI and gestational

age confirmed the association between GDM and DNA methylation at CpG -3400 in HIV-

women (β co-efficient = -3.954, 95% CI = -6.658 to -1.250, p = 0.004), while the association

between GDM and DNA methylation at CpG -3372 in HIV+ women did not withstand adjust-

ing for these factors (Table 2). Interestingly, lower methylation levels at five CpGs, -3413

Table 1. Participant characteristics.

Participant Characteristics HIV- HIV+

GDM- GDM+ p-value GDM- GDM+ p-value

Participants: n 118 63 73 32

Age (years) 26.0 (23.0–30.0) 28.0 (24.0–32.0) 0.079 29.0 (25.0–33.0) 30.0 (25.0–32.0) 0.613

BMI (kg/m2) 25.6 (22.7–28.6) 26.9 (22.9–30.7) 0.232 25.8 (22.3–29.7) 26.6 (24.4–33.6) 0.085

Gestational Age (weeks) 25.0 (20.0–28.0) 25.0 (21.0–27.0) 0.754 26.0 (22.0–28.0) 25.0 (20.5–26.5) 0.306

Random glucose (mmol/L) 4.3 (3.9–4.7) 4.6 (4.1–5.0) <0.001 4.4 (4.1–4.9) 4.6 (4.3–5.2) 0.124

Fasting glucose (mmol/L) 4.3 (4.0–4.6) 5.7 (5.3–6.0) <0.001 4.5 (4.2–4.8) 5.4 (5.3–5.7) <0.001

OGTT 1 hr (mmol/L) 5.3 (4.5–6.3) 6.3 (5.6–8.3) <0.001 5.5 (4.7–6.3) 5.9 (5.3–7.0) 0.029

OGTT 2 hr (mmol/L) 5.2 (4.6–5.7) 6.1 (5.1–7.3) <0.001 5.1 (4.3–5.8) 6.1 (5.1–7.1) <0.001

HbA1c (%) 5.1 (4.8–5.3) 5.3 (5.0–5.5) 0.007 5.3 (5.1–5.5) 5.3 (5.1–5.5) 0.886

Adiponectin (μg/ml) 9.7 (7.3–14.5) 7.6 (4.9–11.8) 0.009 14.4 (9.4–20.3) 14.0 (7.2–19.6) 0.427
aRisk Factors: n (%) 0.038 0.143

None 75 (63.6) 30 (37.6) 34 (46.6) 10 (31.3)

� 1 risk factor 43 (36.4) 33 (52.4) 39 (53.4) 22 (68.7)

ART: n (%) - - - 0.567

Yes 24 (32.8) 12 (38.7)

No 49 (67.1) 19 (61.3)

aRisk factors: advanced maternal age (age > 35 years), obesity (BMI > 30 kg/m2), family history of diabetes mellitus, delivery of a previous baby more than four

kilograms, glucosuria, previous recurrent pregnancy loss, stillbirth, or birth of a baby with congenital abnormalities. Data are expressed as the median and interquartile

range (25th–75th percentiles) or as count (percentage). ART: antiretroviral treatment; BMI: body mass index; OGTT: oral glucose tolerance test; HbA1c: glycated

haemoglobin.

https://doi.org/10.1371/journal.pone.0248694.t001

Fig 2. Schematic illustration of the location of the eight CpG sites upstream of the ADIPOQ gene. Region 1 (R1)

represents 4 CpGs at -3413, -3410, -3400 and -3372, R2 represents 2 CpGs at -473 and -415 and R3 represents 2 CpGs

at -112 and -45. TSS: Transcription start site.

https://doi.org/10.1371/journal.pone.0248694.g002
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(6.3-fold; p<0.001), -3410 (6.4-fold; p<0.001), -3400 (6.3-fold; p<0.001), -3372 (4.6-fold;

p<0.001) and -415 (3.6-fold; p<0.001) were observed in HIV- compared to HIV+ women (Fig

5). No differences in methylation levels at these CpGs were observed in HIV+ women on ART

compared to ART naïve women (S2 Fig).

DNA methylation and clinical characteristics

Since CpG -3400 was associated with GDM after adjusting for age, BMI and gestational age in

HIV- women, we further explored the association between methylation at this CpG and

Fig 3. ADIPOQ promoter DNA methylation and GDM status in HIV- women. DNA methylation at eight CpGs

within the promoter of ADIPOQ was measured in HIV- pregnant women with and without GDM (n = 118 GDM-;

n = 63 GDM+). Data are represented in a scatter dot plot as the median and interquartile range. ��p<0.01.

https://doi.org/10.1371/journal.pone.0248694.g003

Fig 4. ADIPOQ promoter DNA methylation and GDM status in HIV+ women. DNA methylation at eight CpGs

within the promoter of ADIPOQ was measured in HIV+ pregnant women with and without GDM (n = 73 GDM-;

n = 32 GDM+). Data are represented in a scatter dot plot as the median and interquartile range. ��p<0.01.

https://doi.org/10.1371/journal.pone.0248694.g004
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clinical characteristics. Univariable and multivariable regression adjusting for age, BMI and

gestational age showed that methylation levels at CpG -3400 were positively associated with

fasting glucose (β co-efficient = 0.720, 95% CI = 0.091; 1.349, p = 0.025) and negatively associ-

ated with serum adiponectin (β co-efficient = -0.050, 95% CI = -0.096; -0.004, p = 0.035) con-

centrations in HIV- women (Table 3).

In silico analysis

DNA methylation at CpG -3400 was inversely correlated with serum adiponectin concentra-

tions in all HIV- women, suggesting a role in gene regulation. Thus, to further explore the

functional significance of CpG -3400 site, in silico transcription factor prediction was con-

ducted to identify transcription factors capable of binding to altered methylation sites. A bind-

ing site for Transcription Factor AP2-alpha (TFAP2A) was identified directly over the altered

methylated CpG -3400 site (Fig 6). It is known that DNA methylation is capable of interfering

with transcription factor binding in adjacent regions and influencing gene expression. Thus,

binding sites between -3425 bp to -3383 bp that spanned the investigated CpG -3400 were also

explored. Transcription factor prediction software identified several other transcription fac-

tors: Glucocorticoid receptor alpha and beta (GRα and GRβ), X-Box Binding Protein 1

Table 2. Association between GDM and ADIPOQ DNA methylation levels in HIV- and HIV+ women.

GDM status β co-efficient 95% CI p-value

HIV-

CpG -3400 -3.954 -6.658; -1.250 0.004

HIV+

CpG -3372 -1.693 -5.093; 1.708 0.329

Multivariable logistic regression analysis: Adjusted for age, body mass index and gestational age; β: beta; CI:

Confidence interval. Statistical significance is indicated by p<0.05.

https://doi.org/10.1371/journal.pone.0248694.t002

Fig 5. ADIPOQ promoter DNA methylation and HIV status. DNA methylation at eight CpGs within the promoter

of ADIPOQ was measured in HIV- (n = 181) and HIV+ (n = 105) pregnant women. Data are represented in a scatter

dot plot as the median and interquartile range. ���p<0.001.

https://doi.org/10.1371/journal.pone.0248694.g005
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(XBP1), General Transcription Factor IIi (GTF2I), Specificity Protein 1 Transcription Factor

(SP-1) and Odd-Skipped Related Transcription factor 1 (OSR1) capable of binding within the

wider region spanning CpG -3400 site.

Discussion

DNA methylation plays an important role in the pathophysiology of GDM and is widely

explored as a potential biomarker that could facilitate risk stratification and intervention strat-

egies to potentially better manage GDM and improve health outcomes. It is estimated that

approximately 1.3 million pregnancies are complicated by HIV globally [46], with a large pro-

portion of HIV infected women living in Sub-Saharan Africa [46]. Thus, it is important to

examine the effect of HIV infection on DNA methylation, which may impact its candidacy to

serve as a biomarker for GDM. However, studies on the interaction between HIV infection

and DNA methylation are scant. Our findings provide novel evidence that HIV infection alters

ADIPOQ DNA methylation during GDM. In HIV- women only, methylation levels at CpG

Table 3. Association between methylation at CpG -3400 and clinical characteristics in HIV- women.

DNA methylation at CpG -3400 β 95% CI p-value β 95% CI p-value

Univariable Multivariable

Random glucose -1.043 -50.509; 48.424 0.962 26.105 -56.978; 109.188 0.432

Fasting glucose 0.973 0.283; 1.662 0.006 0.720 0.091; 1.349 0.025

OGTT 1 hr -0.061 -0.144; 0.022 0.150 -0.038 -0.116; 0.039 0.332

OGTT 2 hr 0.029 -0.089; 0.148 0.625 0.047 -0.066; 0.160 0.416

HbA1c -0.0004 -0.001; 0.001 0.349 -0.0001 -0.001; 0.001 0.811

Adiponectin -0.057 -0.102; -0.012 0.014 -0.050 -0.096; -0.004 0.035

Risk factors -0.009 -0.066; 0.047 0.740 -0.013 -0.072; 0.045 0.658

Univariable linear regression analysis: DNA methylation and clinical parameters.

Multivariable linear regression analysis: Adjusted for age, body mass index and gestational age. β: beta coefficient; CI: Confidence interval. OGTT: oral glucose tolerance

test; HbA1c: glycated haemoglobin; ADIPOQ: Adiponectin gene. p<0.05 indicate statistical significance.

https://doi.org/10.1371/journal.pone.0248694.t003

Fig 6. Schematic illustration of transcription factors binding to differentially methylated CpG -3400 and to

adjacent regions. In silico transcription factor prediction analysis identified transcription factor AP2-alpha (TFAP2A)

binding site directly over CpG –3400 upstream of the ADIPOQ gene transcription start site, using ALGGEN-PROMO1

and ALIBABA 2.12 software. Eight other transcription factor binding sites were identified within the region -3425 to

-3383 adjacent to the region of altered DNA methylation. The following factors were identified: GRα—Glucocorticoid

Receptor Alpha; XBP1—X-Box Binding Protein 1; SP-1—Specificity Protein 1 Transcription Factor; OSR1—Odd-

Skipped Related Transcription Factor 1; GRβ—Glucocorticoid Receptor Beta; GTF2I –General Transcription Factor IIi

and TFAP2A - Transcription Factor AP2-alpha; Bold-face/highlighted nucleotides—indicate differentially methylated

CpG -3400; Brackets—transcription factor binding regions adjacent to CpG -3400; Red dotted circle–TFAP2A binding

site.

https://doi.org/10.1371/journal.pone.0248694.g006
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-3400 were lower in women with GDM compared to those with normoglycemia. Methylation

levels at CpG -3400 were associated with higher fasting glucose and lower adiponectin concen-

trations in HIV- women, but not in HIV+ women. In silico analysis demonstrated that tran-

scription factor, TFAP2A, binds the differentially methylated CpG -3400, suggesting that it

may play a role in regulating ADIPOQ expression.

Adiponectin is secreted by adipose tissue and plays a critical role in maintaining glucose

homeostasis and insulin sensitivity [56]. Pregnancy is characterized by insulin resistance,

which increases as pregnancy progresses in order to meet the nutritional demands of the grow-

ing fetus [57]. Accordingly, lower adiponectin concentrations are observed with pregnancy

duration [35, 36]. Moreover, adiponectin levels are lower in women with GDM compared to

pregnant women with normoglycemia [37], suggesting that adiponectin dysregulation plays a

role in the pathophysiology of GDM. DNA methylation is an epigenetic mechanism that may

regulate adiponectin expression [43]. Our findings are consistent with others who have simi-

larly reported altered ADIPOQ methylation in populations from Denmark, Germany and

French-Canadian Origin [48, 52, 58]. Ott et al. showed that the average ADIPOQ DNA methyl-

ation is higher in paired subcutaneous and visceral adipose tissue depots of German women

with GDM compared to normoglycemia, suggesting that ADIPOQ DNA methylation may be

involved in the complex metabolic and subclinical inflammatory milieu associated with insulin

resistance and the risk of developing GDM. Furthermore, these authors showed that methyla-

tion levels at these CpG sites were correlated with lower ADIPOQ gene expression, supporting

the functional relevance of these sites [48]. In a Danish population of adult offspring born to

women with GDM, Houshmand-Oeregaard et al. reported increased ADIPOQ DNA methyla-

tion in subcutaneous adipose tissue, which was accompanied by decreased gene expression

[52]. Moreover, studies have also reported altered ADIPOQ methylation in the placenta of

pregnant women with obesity and GDM [58, 59]. These studies were conducted in low HIV

prevalence settings and did not consider the effect of HIV on ADIPOQ DNA methylation.

Our findings are consistent with a previous study that similarly reported high CpG methyl-

ation in the ADIPOQ promoter. Ott et al. showed that methylation at highly methylated CpGs

in the ADIPOQ gene were altered in peripheral blood of women with GDM compared to those

with normoglycemia. Furthermore, these authors showed that although the overall correlation

between DNA methylation levels in adipose tissue and maternal blood was low, hypermethyla-

tion of one specific CpG within ADIPOQ was conserved in visceral adipose tissue and mater-

nal blood of women with GDM, supporting its biomarker potential [48]. In HIV- women,

DNA methylation at CpGs -3400 within the ADIPOQ promoter correlated with higher glucose

and lower serum adiponectin concentrations, which is consistent with findings from Bouchard

et al. who similarly reported an association between ADIPOQ methylation and hyperglycemia

and circulating adiponectin concentrations during pregnancy [49]. Bouchard et al. quantified

DNA methylation in the placenta at delivery, while DNA methylation in our study was mea-

sured in peripheral blood of women with an average gestational age of 23.6 weeks. These find-

ings suggest that altered DNA methylation in the placenta at delivery are reflected in

peripheral blood around 23 weeks of gestation, highlighting the potential of DNA methylation

as a biomarker.

Although studies have previously reported on the effect of HIV infection on DNA methyla-

tion levels, these were not in the context of GDM [44, 60–63]. In vitro studies demonstrated

that HIV infection modulates DNA methylation to promote viral integration into the host cell

and to increase the virus’s ability to replicate, survive and establish latency [60, 61]. In our

study, five CpG sites (-3413, -3410, -3400, 3373, and -415) were differentially methylated in

HIV- compared to HIV+ women, regardless of GDM status. Using the HumanMethylation450

Beadchip array, Zhang et al. similarly reported DNA methylation differences in HIV- and
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HIV+ individuals [44]. A study investigating global DNA methylation in LINE-1 and AluYb8

repetitive elements showed lower global DNA methylation in infants exposed to HIV and

ART in utero compared to unexposed infants [64]. In our study, ADIPOQ DNA methylation

at CpGs -3413, -3410, -3400, 3373 or -415 did not differ in ART treated and ART naive HIV+

women. Moreover, our findings show that in contrast to HIV- women, risk factors did not dif-

fer between HIV+ women with or without GDM, suggesting that screening for GDM using

risk factors alone lacks sensitivity in HIV+ South African women, and may result in many

HIV+ women with GDM remaining undiagnosed.

ADIPOQ DNA methylation was inversely correlated with serum adiponectin concentra-

tions in HIV- women, thus transcription factor, TFAP2A, predicted by in silico analysis to bind

CpG -3400, may be involved in regulating ADIPOQ expression. TFAP2A forms part of the

transcription factor activating protein 2 (TFAP2) family [65] that can directly transactivate

their target genes by binding the same GC-rich consensus sequence [66, 67]. Studies have

reported that TFAP2 may play a role in regulating genes for insulin resistance and adiposity

[68, 69]. Furthermore, TFAP2A has been shown to be widely expressed during embryonic

development [65, 70], particularly in placenta where reduced expression of TFAP2A was iden-

tified in syncytiotrophoblast cells of pregnancies complicated by diabetes, hypertension and

mild pre-eclampsia compared to age-matched controls, suggesting a link between TFAP2A
expression and pregnancy outcomes [71]. These results suggest that altered methylation of

CpG in the ADIPOQ promoter could potentially regulate ADIPOQ gene expression during

GDM, which may differ in HIV- and HIV+ pregnant women. Further mechanistic studies are

required to elucidate the role of these putative transcription factors in regulating ADIPOQ
expression during GDM.

To the best of our knowledge, this study is the first to explore the interaction between HIV

infection and DNA methylation during GDM. A further strength of the study is the sample

size (n = 286) which was larger than previous studies on DNA methylation and GDM and

were adjusted for known confounders such as age, BMI and gestational age [48, 49]. We used

pyrosequencing, which is considered the gold standard for DNA methylation analysis and is a

highly reproducible method that is able to accurately detect small methylation differences [72].

However, we acknowledge that our study is not without limitations. All study participants are

black South African pregnant females, and therefore generalizability to other populations may

not be applicable. In addition, a large percentage of women were diagnosed with GDM using

abnormal fasting glucose measurements only, which may have led to false positives due to

non-adherence to fasting. However, these results should be interpreted with caution, since

women with even mild GDM have showed improved maternal and neonatal outcomes with

lifestyle intervention and medical management if necessary [73–75]. Furthermore, due to the

cross-sectional nature of the study causality between HIV infection, ADIPOQ methylation and

GDM cannot be determined, warranting further longitudinal studies. Peripheral blood con-

sists of a variety of different cell types including erythrocytes, lymphocytes and platelets [76],

which may confound methylation analysis. Although we previously reported no significant

differences in cell type composition in a subset of our sample [25], we acknowledge the role of

cell type composition as a possible confounder in our analysis. Furthermore, we did not quan-

tify messenger RNA levels, thus we are not able to assess whether DNA methylation changes

led to altered gene expression. We did however observe that ADIPOQ methylation at CpG

-3400 was inversely correlated with serum adiponectin concentration levels, which is consis-

tent with the role of DNA methylation to silence gene expression. Although DNA methylation

is traditionally associated with gene silencing, increased methylation was associated with

higher adiponectin expression in HIV+ women. These results support the view that DNA

methylation is functionally complex and may regulate other mechanisms such as alternative
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splicing and microRNAs, and may even induce gene expression [77, 78]. Future mechanistic

studies to explore the function of the observed methylation changes and the in silico-identified

transcription factors are required. Importantly, DNA methylation is an epigenetic mechanism

that is influenced by several environmental factors, and although we adjusted for age, BMI and

gestational age, other factors such as diet, exercise and smoking status may have confounded

our analysis [79–82]. Although, women were recruited from the same community and were

likely to have similar environmental exposures, significant inter-individual heterogeneity was

observed in our study, reflecting both genetic and environmental differences. Lastly, informa-

tion on viral load, CD4+ count, immune status and HIV and ART duration, were not known,

limiting our ability to fully understand the relationship between DNA methylation, GDM and

HIV infection.

In conclusion, this study provides novel evidence that HIV infection alters the association

between GDM and ADIPOQ DNA methylation in South African women. These findings have

implications for biomarker discovery in high HIV prevalence settings and highlights the

importance of considering HIV status in DNA methylation biomarker studies in such settings.

Further studies are required to determine the functional significance of the DNA methylation

changes observed in this study and to explore the relationship between DNA methylation,

GDM and HIV infection.
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Factor TFAP2B Is Associated With Insulin Resistance and Adiposity in Healthy Adolescents. Obesity.

2009; 17(9):1762–7. https://doi.org/10.1038/oby.2009.83 PMID: 19325541

69. Fuke T, Yoshizaki T, Kondo M, Morino K, Obata T, Ugi S, et al. Transcription factor AP-2β inhibits

expression and secretion of leptin, an insulin-sensitizing hormone, in 3T3-L1 adipocytes. International

Journal of Obesity. 2010 Apr; 34(4):670–8. https://doi.org/10.1038/ijo.2009.295 PMID: 20065963

70. Zainolabidin N, Kamath SP, Thanawalla AR, Chen AI. Distinct Activities of Tfap2A and Tfap2B in the

Specification of GABAergic Interneurons in the Developing Cerebellum. Front Mol Neurosci [Internet].

2017 [cited 2020 Jun 11]; 10(281). Available from: https://www.frontiersin.org/articles/10.3389/fnmol.

2017.00281/full PMID: 28912684

71. Sheridan RM, Stanek J, Khoury J, Handwerger S. Abnormal expression of transcription factor AP-2α in

pathologic placentas. Hum Pathol. 2012 Nov; 43(11):1866–74. https://doi.org/10.1016/j.humpath.2012.

01.011 PMID: 22575257

72. Fakruddin M, Chowdhury A. Pyrosequencing-An alternative to traditional sanger sequencing. American

Journal of Biochemistry and Biotechnology. 2012 Jan 1; 8(1):14–20.

73. Meek CL, Lewis HB, Patient C, Murphy HR, Simmons D. Diagnosis of gestational diabetes mellitus: fall-

ing through the net. Diabetologia. 2015 Sep 1; 58(9):2003–12. https://doi.org/10.1007/s00125-015-

3647-z PMID: 26071759

74. Nigam A, Sharma S, Varun N, Munjal YP, Prakash A. Comparative analysis of 2-week glycaemic profile

of healthy versus mild gestational diabetic pregnant women using flash glucose monitoring system: an

observational study. BJOG: An International Journal of Obstetrics & Gynaecology. 2019; 126(S4):27–

33. https://doi.org/10.1111/1471-0528.15849 PMID: 31257712

75. Landon MB, Rice MM, Varner MW, Casey BM, Reddy UM, Wapner RJ, et al. Mild gestational diabetes

mellitus and long-term child health. Diabetes Care. 2015 Mar; 38(3):445–52. https://doi.org/10.2337/

dc14-2159 PMID: 25414152

76. Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlén S-E, Greco D, et al. Differential DNA Methyla-

tion in Purified Human Blood Cells: Implications for Cell Lineage and Studies on Disease Susceptibility.

PLOS ONE. 2012 Jul 25; 7(7):e41361. https://doi.org/10.1371/journal.pone.0041361 PMID: 22848472

77. Pheiffer C, Erasmus RT, Kengne AP, Matsha TE. Differential DNA methylation of microRNAs within

promoters, intergenic and intragenic regions of type 2 diabetic, pre-diabetic and non-diabetic individu-

als. Clin Biochem. 2016 Apr; 49(6):433–8. https://doi.org/10.1016/j.clinbiochem.2015.11.021 PMID:

26656639

78. Bird A. DNA methylation patterns and epigenetic memory. Genes & Development. 2002 Jan 1; 16(1):6–

21. https://doi.org/10.1101/gad.947102 PMID: 11782440

79. Joubert BR, Håberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK, et al. 450K epigenome-wide scan

identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Envi-

ron Health Perspect. 2012; 120(10):1425–31. https://doi.org/10.1289/ehp.1205412 PMID: 22851337

80. Lim U, Song M-A. Dietary and lifestyle factors of DNA methylation. Methods Mol Biol. 2012; 863:359–

76. https://doi.org/10.1007/978-1-61779-612-8_23 PMID: 22359306

81. Pauwels S, Ghosh M, Duca RC, Bekaert B, Freson K, Huybrechts I, et al. Dietary and supplemental

maternal methyl-group donor intake and cord blood DNA methylation. Epigenetics. 2017; 12(1):1–10.

https://doi.org/10.1080/15592294.2016.1257450 PMID: 27830979

82. Miyake K, Kawaguchi A, Miura R, Kobayashi S, Tran NQV, Kobayashi S, et al. Association between

DNA methylation in cord blood and maternal smoking: The Hokkaido Study on Environment and Chil-

dren’s Health. Scientific Reports. 2018; 8(1):5654. https://doi.org/10.1038/s41598-018-23772-x PMID:

29618728

PLOS ONE DNA methylation and HIV infection during gestational diabetes mellitus

PLOS ONE | https://doi.org/10.1371/journal.pone.0248694 March 22, 2021 17 / 17

https://doi.org/10.1038/oby.2009.83
http://www.ncbi.nlm.nih.gov/pubmed/19325541
https://doi.org/10.1038/ijo.2009.295
http://www.ncbi.nlm.nih.gov/pubmed/20065963
https://www.frontiersin.org/articles/10.3389/fnmol.2017.00281/full
https://www.frontiersin.org/articles/10.3389/fnmol.2017.00281/full
http://www.ncbi.nlm.nih.gov/pubmed/28912684
https://doi.org/10.1016/j.humpath.2012.01.011
https://doi.org/10.1016/j.humpath.2012.01.011
http://www.ncbi.nlm.nih.gov/pubmed/22575257
https://doi.org/10.1007/s00125-015-3647-z
https://doi.org/10.1007/s00125-015-3647-z
http://www.ncbi.nlm.nih.gov/pubmed/26071759
https://doi.org/10.1111/1471-0528.15849
http://www.ncbi.nlm.nih.gov/pubmed/31257712
https://doi.org/10.2337/dc14-2159
https://doi.org/10.2337/dc14-2159
http://www.ncbi.nlm.nih.gov/pubmed/25414152
https://doi.org/10.1371/journal.pone.0041361
http://www.ncbi.nlm.nih.gov/pubmed/22848472
https://doi.org/10.1016/j.clinbiochem.2015.11.021
http://www.ncbi.nlm.nih.gov/pubmed/26656639
https://doi.org/10.1101/gad.947102
http://www.ncbi.nlm.nih.gov/pubmed/11782440
https://doi.org/10.1289/ehp.1205412
http://www.ncbi.nlm.nih.gov/pubmed/22851337
https://doi.org/10.1007/978-1-61779-612-8%5F23
http://www.ncbi.nlm.nih.gov/pubmed/22359306
https://doi.org/10.1080/15592294.2016.1257450
http://www.ncbi.nlm.nih.gov/pubmed/27830979
https://doi.org/10.1038/s41598-018-23772-x
http://www.ncbi.nlm.nih.gov/pubmed/29618728
https://doi.org/10.1371/journal.pone.0248694

