
A mathematical model for the Cannabis epidemic in a

South African province with a non-linear incidence rate

M. Chapwanya1, J. M-S. Lubuma1, H. Lutermann2, A. Matusse1,

F. Nyabadza3 and Y. Terefe4

1 Department of Mathematics and Applied Mathematics, University of Pretoria, South Africa

2 Department of Zoology, University of Pretoria, South Africa

3Department of Pure and Applied Mathematics, University of Johannesburg, South Africa

4Department of Mathematical and Applied Mathematics, University of Limpopo, South Africa

Abstract

A deterministic mathematical model for the dynamics of cannabis use in a South

Africa metropolis of Durban is designed and analysed. The threshold parameter R0,

i.e., the basic reproduction number, is determined and used in the analysis of the model.

It is shown that the model has multiple cannabis persistent equilibria. For a certain

range of R0, the locally asymptotically stable cannabis-free equilibrium co-exists with

the locally asymptotically stable cannabis persistent equilibrium which indicates the

model exhibits backward bifurcation phenomenon due to double exposure to cannabis

sources and re-addiction in the population. In this case, the cannabis consumption

will remain endemic in the population even though the basic reproduction number is

less than unit. In the absence of double exposure and re-addiction, it is shown that

the cannabis-free equilibrium point is globally asymptotically stable (GAS) for R0 < 1,

while the cannabis persistent equilibrium point is GAS forR0 > 1. The model fitting to

the available data is used to estimate the parameters involved in the model. Sensitivity

analysis of the model, using the parameters relevant to cannabis transmission, is given.

Numerical experiments are given to support the theoretical analysis of the model.
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1 Introduction

Cannabis, commonly known as marijuana, is a psychoactive drug from the cannabis plant.

Modern use primarily include recreational, medicinal drug and as part of religious or spiritual

rites. Since the early 20th century, cannabis has been subject to legal restrictions with

the possession, use and sale of cannabis preparations containing psychoactive cannabinoids

currently illegal in most countries of the world. In the Western world, cannabis is the most

frequently detected drug in the blood specimen taken from people suspected of driving under

the influence of drugs, [22]. The United Nations deems it the most-used illicit drug in the

world [20, 21].

Cannabis is often consumed for its psychoactive and physiological effect. The common

effects of cannabis use are euphoria and anxiety. The most robust cognitive effects are on

memory loss, altered time perception, impaired driving ability and decrease in performance

in school resulting in lower level of education. See for example [23] for a review on the

effects of memory loss in cannabis users. The common physical and psychiatric are chronic

inflammation of the respiratory tract, cancer of the respiratory tract, precipitation of clini-

cally overt schizophrenia, acute anxiety or panic and increasing risk of depression and suicide

[11, 14]. The onset of most of these mental effects is within minutes and can last for hours

depending on the amount used. Long term effects may include addiction.

There has been a dramatic increase in treatment demand for drugs in South Africa.

According to the survey made from 1999 to 2001 in Durban, cannabis addiction among

health centre visitors oscillated between 20 − 30%. The patients using cannabis increased

from 10 to 26 patients from the second half of 1996 to 2002. Among these patients, more

than 50% were under the age of 20, [7, 5].

It is against this background and the implication of cannabis abuse to public health that

we propose a mathematical approach to study the prevalence of the cannabis epidemic in

Durban using the available rehabilitation data. Similar efforts can also be found in [5, 24].

The threshold parameter R0, the basic reproduction number is determined and used in

the analysis of the model. It is shown that the model has multiple cannabis persistent equi-

libria. For a certain range of R0, the locally asymptotically stable cannabis-free equilibrium

co-exists with the locally asymptotically stable cannabis persistent equilibrium which indi-

cates the model may exhibit backward bifurcation phenomenon. In this case, the cannabis

consumption will remain endemic in the population even though the basic reproduction num-

ber is less than unity. The system of resulting ordinary differential equations are solved using

MatLab’s stiff solver, ode45. Numerical simulations are provided to support the theoretical

analysis of the model.
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The rest of the paper is arranged in the following order. The cannabis model is formulated

in the next section. The mathematical analysis of the model is presented in Section 3. In

Section 4, the numerical results of the model which includes the parameter estimation using

data collected from 1996 to 2011 and the sensitivity analysis of the model are given. Finally,

the concluding remarks on our findings are discussed Section 5.

2 Model formulation

In this section, we give a detailed mathematical formulation of cannabis epidemic model in a

population. The population under consideration is classified into four disjoint compartments

or classes as indicated in Fig. 1. The susceptible individuals to cannabis are denoted by

S. The exposed and addicted individuals to cannabis are represented by A. Individuals

under treatment or rehabilitation and individuals completely free from cannabis addiction

are denoted by T and R, respectively. The total population N under consideration is given

by

N = S + A+ T +R.

S
Λ

µS

A

µA αA

T

µT

R
µR

β1(A+ δ1A
2)S νA

β2(A+ δ2A
2)R γA

σT

Figure 1: Schematic diagram of the model.

The recruitment of new cannabis users is assumed to be due to the contact rate that

depends on an increase likelihood of being a cannabis user from double exposer to cannabis

users [4]. More precisely, the number of individuals leaving the susceptible compartment

and the recovered compartment to the cannabis users compartment are β1(1 + δ1A)AS and
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β2(1 + δ2A)AS, respectively. In both cases, the force of infection is due to double exposures

to the cannabis source over a short time interval. Mathematical models formulated based on

incidence rate with double exposure can also be found in [2, 3, 6, 18]. Moreover, we assume:

1. Relapse is only after recovery from treatment. The rate of defaulting once in treatment

is assumed to be very low.

2. Relapse is through double exposure.

3. Self recover for the addicted individuals.

4. Homogenous mixing.

5. Cannabis addiction leads to additional mortality.

6. Inpatient rehabilitation/treatment.

The rate of movement of individuals from one compartment to another compartment is

illustrated in Fig. 1. The description of parameters involved in the model formulation are

given in Table 1. The values of all parameters are nonnegative.

Parameter Description
Λ Recruitment rate into S
µ Natural death rate
β1 Contact rate to spread the habit in class S
β2 Contact rate to spread the habit in class R
δ1 Rate of cannabis exposer for individuals in S
δ2 Rate of cannabis exposer for individuals in R
α Death rate induced by high cannabis consumption in A
ν Rate of transfer for individuals from A to T
σ Rate of transfer for individuals from T to R

Table 1: Parametric description

Mathematically, the flow diagram given in Fig. 1 is equivalent to the following system of

equations.

dS

dt
= Λ− β1(A+ δ1A

2)S − µS, (1)

dA

dt
= β1(A+ δ1A

2)S + β2(A+ δ2A
2)R− (µ+ α + ν + γ)A, (2)

dT

dt
= νA− (µ+ σ)T, (3)

dR

dt
= σT + γA− β2(A+ δ2A

2)R− µR. (4)
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If we add the equations from (1) – (4), we obtain the conservation law

dN

dt
= Λ− µN − αA. (5)

From Eq. (5), we get the inequality

Λ− (µ+ α)N ≤ dN

dt
≤ Λ− µN.

By Gronwall inequality, we obtain

0 ≤ N ≤ Λ

µ
. (6)

Thus the model is biologically feasible on the positive cone

Ω =

{
(S,A, T,R) ∈ R4

+ : 0 ≤ S + A+ T +R = N ≤ Λ

µ

}
.

We assume that the system (1)-(4) is appended with the following initial condition:

S(0) = S0 ≥ 0, A(0) = A0 ≥ 0, T (0) = T0 ≥ 0 and R(0) = R0 ≥ 0.

Theorem 2.1. The system (1) – (4) defines a dynamical system on Ω.

Proof. The proof of the theorem is provided in two steps.

First, we want to show that Ω is positively invariant set. More precisely, we need to

show that no trajectory leaves Ω by crossing one of its faces (see [5]). Let us assume that a

trajectory crosses one of the faces at certain time given below.

• t1 : S(t1) = 0,
dS

dt
(t1) < 0, S(t) > 0, A(t) > 0, T (t) > 0 and R(t) > 0 for

0 < t < t1, or

• t2 : A(t2) = 0,
dA

dt
(t2) < 0, S(t) > 0, A(t) > 0, T (t) > 0 and R(t) > 0 for

0 < t < t2, or

• t3 : T (t3) = 0,
dT

dt
(t3) < 0, S(t) > 0, A(t) > 0, T (t) > 0 and R(t) > 0 for

0 < t < t3, or

• t4 : R(t4) = 0,
dR

dt
(t4) < 0, S(t) > 0, A(t) > 0, T (t) > 0 and R(t) > 0 for

0 < t < t4.
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In the first case, from Eq. (1), we obtain dS
dt

(t1) = Λ > 0, which is a contradiction. Thus,

S remains positive. In the second case, using Eq. (2), we have
dA

dt
(t2) = 0, which is also a

contradiction with our assumption and hence, A remains positive. In the third and fourth

cases, we have
dT

dt
(t3) = νA(t3) > 0 (see (3)), and

dR

dt
(t4) = σT (t4) + γA(t4) > 0 (see (4)),

respectively. These are contradictions to our assumptions as well. Therefore, in all cases, for

any positive initial data in Ω, S, A, T and R remain positive and stay in Ω.

Secondly, the total population N(t) at time t satisfies Eq. (6).

Combining the two steps, the result in Theorem 2.1 follows from the classical theory of

dynamical systems [17].

3 Equilibrium points and their stability

The equilibrium solutions of (1) – (5) are investigated as solutions of the system

Λ− β1(A+ δ1A
2)S − µS = 0, (7)

β1(A+ δ1A
2)S + β2(A+ δ2A

2)R− (µ+ α + ν + γ)A = 0, (8)

νA− (µ+ σ)T = 0, (9)

σT + γA− β2(A+ δ2A
2)R− µR = 0. (10)

From Eq. (8), we either have

A = 0 or β1(1 + δ1A)S + β2(1 + δ2A)R− (µ+ α + ν + γ) = 0. (11)

If A = 0, then from (7) and (9) – (10), we obtain

S =
Λ

µ
, T = 0, and R = 0,

respectively. Hence,

E0 = (S,A, T,R) =

(
Λ

µ
, 0, 0, 0

)
, (12)

which is called the cannabis-free equilibrium point.

The so called basic reproduction number, the average number of secondary cases produced

by a cannabis user during his/her cannabis use life time in a population, denoted by R0 is

determined by using the next generation matrix method [1, 8]. In this approach, we get
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(taking the intiated compartment to be A),

F = β1(A+ δ1A
2)S + β2(A+ δ2A

2)R and V = (µ+ α + ν + γ)A.

The Jacobian of F and V are given by

JF = β1(1 + 2δ1A)S + β2(1 + 2δ2A)R and JV = µ+ α + ν + γ,

respectively. Thus

JF (E0) =
β1Λ

µ
and JV (E0) = µ+ α + ν + γ.

Numerically, R0 is defined as the spectral radius of K = JF .(JV )−1 or

R0 =
β1Λ

µ(µ+ α + ν + γ)
. (13)

Theorem 3.1. The cannabis-free equilibrium E0 is locally asymptotically stable (LAS) for

R0 < 1 and unstable when R0 > 1.

Proof. The result is obtained by Hartman-Grobman Theorem [17]. The Jacobian matrix of

the system (1)-(4) at E0 is

J(E0) =



−µ −β1Λ

µ
0 0

0
β1Λ

µ
− (µ+ α + ν + γ) 0 0

0 ν −(µ+ σ) 0

0 γ σ −µ


.

To find the eigenvalues r of J(E0), we solve the equation

det(rI − J(E0)) = 0,

where I is the 4× 4 identity matrix. This equation can be written as
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r + µ
β1Λ

µ
0 0

0 r −
(
β1Λ

µ
− (µ+ α + ν + γ)

)
0 0

0 −ν r + (µ+ σ) 0

0 −γ −σ r + µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

or equivalently

(r + µ)2

[
r −

(
β1Λ

µ
− (µ+ α + ν + γ)

)]
(r + (µ+ σ)) = 0.

Hence, r1 = −µ (with multiplicity 2), r2 = −(µ + σ) and r3 =
β1Λ

µ
− (µ + α + ν + γ) are

the eigenvalues with negative real part if r3 = β1Λ
µ
− (µ + α + ν + γ) < 0. This is true if

R0 =
β1Λ

µ(µ+ α + ν + γ)
< 1. Therefore, E0 is LAS if R0 < 1 and unstable when R0 > 1.

This completes the proof of the theorem.

3.1 Existence of backward bifurcation

Before investigating the global asymptotic stability of the cannabis-free equilibrium, it is

instructive to determine the number of cannabis persistent equilibrium for (1) – (4). For

A > 0 and if we assume that E∗ = (S∗, A∗, T ∗, R∗) be a cannabis persistent equilibrium,

then from Eq. (9), we obtain

T ∗ = Ψ1A
∗, (14)

where

Ψ1 =
ν

µ+ σ
.

From Eq. (10), we have

R∗ =
Ψ2A

∗

µ+ β2(1 + δ2A∗)A∗
, (15)

where,

Ψ2 =
νσ + γ(µ+ σ)

µ+ σ
= σΨ1 + γ.
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Moreover, from Eq. (7) and Eq. (11), we get

S∗ =
Λ

µ+ β1(1 + δ1A∗)A∗
(16)

and

β1(1 + δ1A
∗)S∗ + β2(1 + δ2A

∗)R∗ −Q = 0, (17)

respectively, where,

Q = µ+ α + γ + ν.

After plugging (15) and (16) into (17), we obtain the following expression

β1(1 + δ1A
∗)

Λ

µ+ β1(1 + δ1A∗)A∗
+ β2(1 + δ2A

∗)
Ψ2A

∗

µ+ β2(1 + δ2A∗)A∗
−Q = 0, (18)

or equivalently

g(A) = b4A
4 + b3A

3 + b2A
2 + b1A+ b0 = 0, (19)

where

b4 = β1β2δ1δ2(Q−Ψ2) > 0,

b3 = β1β2(δ1 + δ2)(Q−Ψ2)− Λβ1β2δ1δ2,

b2 = Qβ1β2 +Qµβ1(δ1 + δ2)− Λβ1β2(δ1 + δ2)− β1β2Ψ2 − µβ2δ2Ψ2,

b1 = Qµ(β1 + β2)− Λβ1β2 − Λµβ1δ1 − µβ2Ψ2,

b0 = Qµ2 − Λµβ1 = Qµ2(1−R0).

The positive roots of Eq. (19) are the cannabis persistent equilibrium points.

Remark 3.2. From (19), we infer the following points.

1. Notice that b4 > 0 as Q−Ψ2 > 0.

2. The coefficient b3 > 0 if (δ1 + δ2)(Q−Ψ2) > Λδ1δ2.

3. The sign of b0 is dependend on the value of R0. The relation is summarized in the

following form

b0

{
> 0, if R0 < 1

< 0, if R0 > 1.
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cases b4 b3 b2 b1 b0 R0 No of sign No of possible
changes equilibrium

1 + + + + + < 1 0 0
+ + + + - > 1 1 1

2 + + + - + < 1 2 0, 2
+ + + - - > 1 1 1

3 + + - + + < 1 2 0, 2
+ + - + - > 1 3 1, 3

4 + - + + + < 1 2 0, 2
+ - + + - > 1 3 1, 3

5 + - - + + < 1 2 0, 2
+ - - + - > 1 3 1, 3

6 + - + - + < 1 4 0, 2, 4
+ - + - - > 1 3 1, 3

7 + + - - + < 1 2 0, 2
+ + - - - > 1 1 1

8 + - - - + < 1 2 0, 2
+ - - - - > 1 1 1

Table 2: Number of possible positive roots of g(A).

By applying Descartes’ rule of signs [9] on Eq. (19), the various possibilities for the roots

of g(A) are given in Table 2. Based on the existence of the different possible positive roots,

we have the following result.

Theorem 3.3. The model (1)-(4)

1. has a unique cannabis persistent equilibrium if cases 1, 2, 7 and 8 are satisfied and

R0 > 1.

2. could have more than one cannabis persistent equilibrium if cases 3, 4, 5 and 6 are

satisfied and R0 > 1.

3. could have multiple cannabis persistent equilibria if cases 2−8 are satisfied and R0 < 1.

4. has no cannabis persistent equilibrium if case 1 is satisfied and R0 < 1.

Theorem 3.3 (3) shows the co-existence of cannabis-free equilibrium and cannabis per-

sistent equilibrium, which indicates the system (1)-(4) can undergo backward bifurcation

phenomenon for R0 < 1. In this case, the cannabis problem will stay in the population

even though the basic reproduction is less than unity. By using (21), a schematic diagram

of backward bifurcation is given in Figure 2.
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Figure 2: Backward bifurcation

3.2 Non-existence of backward bifurcation

If there is no double exposure (i.e., δ1 = δ2 = 0) and relapse (i.e., β2 = 0) in the cannabis

dynamics, then from (19), we obtain

g(A) = b1A+ b0 = 0, (20)

where

b1 = µQβ1,

b0 = Qµ2 − Λµβ1 = Qµ2(1−R0).

Then from (20), we infer that the model will have only cannabis-free equilibrium for R0 < 1

and unique cannabis persistent equilibrium for R0 > 1. It is important to observe that if

there is no double exposure (i.e., δ1 = δ2 = 0) and there is relapse (i.e., β2 6= 0), then (19)

reduces to

g(A) = b2A
2 + b1A+ b0 = 0, (21)
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where

b2 = β1β2(Q−Ψ2) > 0,

b1 = µQβ1 − µQβ2

(
−1 +R0 +

Ψ2

Q

)
,

b0 = Qµ2 − Λµβ1 = Qµ2(1−R0).

Then the model still has a backward bifurcation when b1 < 0 and R0 < 1. Therefore, to have

a model without a backward bifurcation, we need also to avoid relapse. Avoiding relapse

may be achieved through the introduction of educational programs that lead to individuals

staying clean after rehabilitation. Hence, in the absence of double exposure and relapse, we

claim the following two results.

Theorem 3.4. Considering the model (1)-(4) in the absence of relapse and double exposure,

the cannabis-free equilibrium is globally asymptotically stable (GAS) whenever R0 ≤ 1.

Proof. To prove the global stability of the cannabis-free equilibrium, we use LaSalle Invari-

ance Principle [10].

We consider the function

V : Ω→ R, V (E) = A,

where E = (S,A, T,R). It is clear that V is positive definite (i. e. V (E0) = 0 and V (E) > 0

for E0 6= E ∈ Ω). Denote by f(S,A, T,R) the vector-function in the right-side of (1)-(4) with

δ1 = δ2 = β2 = 0 and by V̇ the directional derivative of V in the direction of f(S,A, T,R).

Then we obtain

V̇ = ∇V.f(S,A, T,R),

= (0, 1, 0, 0).f(S,A, T,R),

= (β1S − (µ+ α + ν + γ))A

≤ (β1
Λ

µ
− (µ+ α + ν + γ))A, because S ≤ Λ

µ

= (µ+ α + ν + γ)(R0 − 1)A.

Thus, V̇ ≤ 0 on Ω if R0 ≤ 1. Hence, V is a Lyapunov function for E0 on Ω. Furthermore,

V̇ = 0⇔ E = E0.

Hence, the largest invariant set contained inM =
{
E ∈ Ω : V̇ = 0

}
is {E0}, i. e., E(t)→ E0
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as t→∞. Therefore, we conclude by LaSalle Invariance Principle [10] that the cannabis-free

equilibrium E0 of the model with δ1 = δ2 = β2 = 0 is GAS on Ω for R0 ≤ 1. This completes

the proof of the theorem.

The global asymptotic stability of the cannabis-free equilibrium point guaranteed by

Theorem 3.4 is illustrated in Fig. 3.
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Figure 3: Numerical simulations supporting the GAS of the cannabis-free equilibrium.

Theorem 3.5. Considering the model (1)-(4) with δ1 = δ2 = β2 = 0, the unique cannabis

persistent equilibrium E∗ guaranteed by (20) is GAS whenever R0 > 1.

Proof. We prove this theorem by using the LaSalle Invariance Principle [10] with the Lya-

punov function defined on

Ω0 =
{
E = (S,A, T,R) ∈ Ω : S,A, T,R > 0

}
,

such that

V (E) =

[
S − S∗ − S∗ln

(
S

S∗

)]
+

[
A− A∗ − A∗ln

(
A

A∗

)]
. (22)

It is possible to show that V is positive definite, i.e., V (E∗) = 0 and V (E) > 0 for E∗ 6= E ∈
Ω0. The directional derivative of V along a solution of (1)-(4) is

V̇ =

(
1− S∗

S

)
Ṡ +

(
1− A∗

A

)
Ȧ,

=

(
1− S∗

S

)
[Λ− (β1A+ µ)S] +

(
1− A∗

A

)
[β1S − (µ+ α + ν + γ)]A. (23)
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At the endemic equilibrium, we obtain

Λ = (β1A
∗ + µ)S∗ and β1S

∗ = µ+ α + ν + γ. (24)

Plunging (24) into (23) gives

V̇ =

(
1− S∗

S

)
[(β1A

∗ + µ)S∗ − (β1A+ µ)S] +

(
1− A∗

A

)
[β1S − β1S

∗]A. (25)

Further simplifications of (25) give

V̇ = −µ(S − S∗)2

S
+ β1A

∗S∗
(

1− A

A∗
S

S∗

)(
1− S∗

S

)
+ β1A

∗S∗
(

1− A

A∗

)(
1− S

S∗

)
,

≤ −µ(S − S∗)2

S
+ β1A

∗S∗
(

1− S∗

S

)
+ β1A

∗S∗
(

1− S

S∗

)
,

= −µ(S − S∗)2

S
+ β1A

∗S∗
(

2− S∗

S
− S

S∗

)
.

By using the arithmetic-geometric mean inequality (i.e. a1 + a2 + · · · + an ≥ n n
√
a1a2 . . . an

), we infer that

V̇ (E) ≤ 0 for all E ∈ Ω0.

Furthermore

V̇ = 0⇔ E = E∗.

Thus, the largest invariant subset contained in the set

M =
{
E ∈ Ω0 : V̇ = 0

}
is the set {E∗}. Hence, by LaSalle Invariance Principle, the endemic equilibrium is GAS for

R0 > 1.

The global asymptotic stability of the cannabis persistent equilibrium is depicted in

Figure 4.

4 Application of the model

In this section we apply the proposed model to the available data. A sensitivity analysis and

numerical simulations will also be provided.
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Figure 4: The GAS of the cannabis persistent equilibrium for R0 = 1.7298.

4.1 Parameter estimation

KwaZulu Natal has 10.27 million of inhabitants [16]. This province is the second largest

province in South Africa. Its population has increased from 8.5 million in 1996 to 10.27

million in 2011. The growth is due to migration from other provinces. As an application

of the system (1)−(4), we fit the model to data from the South African Community Epi-

demiology Network on Drug Use (SACENDU) [15]. We model the cannabis epidemic as

from 1996 to 2013, due to the availability of documented data. The table below shows the

data of individuals seeking treatment for cannabis as their primary substance of abuse at

specialised treatment centres in Durban and KwaZulu Natal Province respectively. The data

was collected from 1996 to 2013 on a six month interval by SACENDU.

Year 96b 97a 97b 98a 98b 99a 99b 00a 00b 01a 01b 02a 02b
Users 10 9 21 16 20 30 23 25 20 21 26 22 26

Year 03a 03b 04a 04b 05a 05b 06a 06b 07a 07b 08a 08b 09a
Users 23.2 23.6 22.8 24.8 32.4 27.5 22.5 18.5 20.5 17.4 19.8 16.4 20.3

Year 09b 10a 10b 11a 11b 12a 12b 13a
Users 28.4 32.8 25.6 17.1 16.2 18.8 24.6 31.5

Table 3: Primary Cannabis abuse for the period of 1996b to 2013a in %

In Figure 5 (a) we show a representation of the proposed model fitted to the data in Table

3 for individual seeking treatment for Cannabis as their primary substance. To support the

fitting, we plot the residuals in Figure 5 (b). It is clear that the model fits well for the

corresponding parameters given in Table 4.
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Figure 5: Illustration of the data fitting to the model.

Parameter Value Source
Λ 0.0400 [13]
µ 0.0200 [13]
α 0.0300 [13]
γ 0.0110 [13]
β1 0.121 Fitting
β2 0.0443 Fitting
δ1 0.164 Fitting
δ2 0.822 Fitting
ν 0.0789 Fitting
σ 0.172 Fitting

Table 4: Parameter values used in the simulations

4.2 Sensitivity analysis

The basic reproduction number R0 is an important quantity that depends on the parameters

involved in the system of differential equations (1)-(4). In this section, we would like to know

how R0 responds to the changes in the parameters. The change in the value of R0 with

respect to a changes in the values of the parameters is measured by the derivative of this

quantity with respect to that parameter. Mathematically, the sensitivity of R0 with respect
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to a parameter p is given by [12],

γR0
p =

∂R0

∂p
. (26)

A much more powerful tool is the normalized sensitivity index of R0, which gives the change

in the value of R0 with respect to the change in the parameter p and is given by

ER0
p =

∂R0

∂p

p

R0

=
4R0%

4p%
. (27)

Hence, we infer that if p changes by y%, then R0 will change by ER0
p y%. The sensitivity

index of R0 with respect to the parameter p is positive if R0 is increasing with respect to

p and negative if R0 is decreasing with respect to p. This analysis helps us to know the

sensitive parameters for the control strategy of the epidemic. The calculation of sensitive

index of R0 at the baseline parameter values of the model is given in Table 5.

Parameter Baseline Value Sensitivity index Source
Λ 0.0400 1.0000 [13]
β1 0.1210 1.0000 Fitting
µ 0.0200 -1.1430 [13]
α 0.0300 -0.2144 [13]
ν 0.0789 -0.5640 Fitting
γ 0.0110 -0.0786 [13]

Table 5: Table for the sensitivity index of R0(= 1.7298) with respect to each parameter in
(13).

The identification of the key parameters for the cannabis transmission is crucial in design-

ing effective control strategies. Hence, by using the reproduction number R0 as the response

function, the table can be used to propose effective control strategies to avoid direct and

indirect contacts with the potential cannabis sources. In Table 5, the negative sign indicates

that R0 is decreasing when the corresponding parameter is increasing. In a similar way, a

positive sign indicates that R0 increases when the corresponding parameter is increased.

The cannabis persistent equilibrium A∗ decreases as the γ, µ, α and ν increase is pre-

sented in Figure 6 (a) while Figure 6 (b) explains that cannabis persistent equilibrium A∗

increases as Λ and β1 increase.
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Figure 6: (a): Sensitivity analysis with respect to γ, µ, α and ν. (b): Sensitivity analysis
with respect to Λ and β1.

5 Conclusion

Addiction to alcohol and heroin in a population are studied in [4] and [13], respectively.

In this work, we presented the mathematical analysis of cannabis epidemic model in the

population. When there is double exposure to the cannabis source and a possibility of

re-addiction of cannabis in the population, the classical control strategy R0 < 1 is not

sufficient. Due to the existence of backward bifurcation phenomena, cannabis epidemic can

persist in the population. The mathematical analysis confirmed that the cannabis epidemic

dies out from the population whenever there is no double exposure to the cannabis source and

re-addiction of cannabis for R0 < 1. In this case, the cannabis-free endemic equilibrium is

globally asymptotically stable for R0 < 1. Moreover, in the absence of backward bifurcation,

it is proved that the cannabis persistent equilibrium point is globally asymptotically stable

for R0 > 1. We also fitted the model to data on rehabilitation with the objective of using the

model parameters that give the best fit to obtain the incidence curve. The sensitivity index

of R0 with respect to the parameters involved in the model is discussed. The index helps

the policy makers to identify the key parameters such as Λ and β1 which contribute for the

increment of R0 in the population in oder to propose the right control strategies. Whenever

these parameters increase, the basic reproduction number R0 also increases correspondingly.

The other information for the policy makers is increasing µ, α, ν and γ result in a decrease

in R0.

This work offers many opportunities for improvement and extensions of the proposed

model.
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