

1

Using CFD and ray tracing to estimate the heat losses of a tubular
cavity dish receiver for different inclination angles

Craig, K.J.*, Slootweg, M., Le Roux, W.G., Wolff, T.M. and Meyer, J.P.

*Author for correspondence
Department of Mechanical and Aeronautical Engineering,

University of Pretoria, Pretoria 0002 South Africa,
E-mail: ken.craig@up.ac.za

ABSTRACT

The process of obtaining an accurate estimate of the heat losses of a tubular cavity receiver absorbing
concentrated solar energy from a parabolic dish at various inclination angles and wind speeds is
described. Computational fluid dynamics (CFD) was used to simulate the conjugate heat transfer of the
absorbed solar radiation to the heat transfer fluid while considering thermal radiation as well as forced
and natural convective heat losses. Validation is performed against an experimental heating test at full-
scale using heated air and measured wind conditions. On-sun conditions were modelled using the ray-
tracing software, SolTrace, adapted for complex geometry receivers using ANSYS mesher and user
coding. A 200 million ray result was found to be ray and mesh independent for a meshed receiver
surface containing 30 000 elements. The SolTrace heat flux distribution was implemented as a
volumetric source in ANSYS Fluent employing user-defined functions. The losses due to thermal
radiation out of the cavity, and due to natural convection (using the buoyancy-driven mechanism
afforded by gravity and the ideal gas formulation) and forced convection (due to the atmospheric wind)
are presented. For the dish considered, 40-50% of the absorbed solar power was transferred to the heat
transfer fluid for dish orientations from -45° to 45°, and wind speeds between 0.5 m/s and 4 m/s. This
variation was mainly due to a variation in convective heat losses, with thermal radiative heat losses
remaining constant at about 30%. The Nusselt numbers from the CFD simulations are compared against
correlations from literature.

1. Introduction

1.1 Background
Parabolic dish concentrated solar power (CSP) plants have the benefit of providing a thermal energy

solution for remote areas because of their small footprint and high solar concentration. This CSP
application differs from other plants (parabolic trough, linear Fresnel, solar tower) in that the receiver
with heat transfer fluid is located at a central point that has to move with the reflector to track the sun.
This means that typical heat engines for this type of plant include the Stirling engine and potentially a
recuperated Brayton cycle (micro-turbine), as considered in the current study. The state of the art of
Stirling dishes are summarised by Mancini et al (2003). The recuperated solar dish Brayton cycle has a
potential advantage in terms of cost (Mills, 2004), and can be supplemented with thermal storage (Le
Roux and Sciacovelli, 2019), a combustion chamber for continuous operation and cogeneration (Le
Roux, 2018). In an effort to minimise costs, off-the-shelf turbochargers have been used as
turbomachinery in recuperated Brayton cycles, as was done by Visser et al. (2011). Turbochargers are
available at relatively low cost from the vehicle industry. Numerous high-temperature solar receivers
have been documented in the literature for operation in solar Brayton cycles; however, these solar
receivers are typically not optimised for performance in a recuperated Brayton cycle with turbocharger
as micro-turbine where the pressure ratios are between 1.3 and 2.5. According to Wang et al (2015), a
coiled tube receiver has an advantage in terms of cost and easy installation. The receiver coil design
also assists with the reduction of mechanical stresses due to thermal expansion (Heller et al, 2006).
According to Harris and Lenz (1983), overall solar collector efficiencies of 60 to 70% can be achieved
with advanced systems using open-cavity receivers operating in the range of 773 to 1 173 K.

Le Roux (2015) therefore applied the method of total entropy generation minimisation (optimisation
of the global performance), according to Bejan (2006), on the geometries of a low-cost open-cavity

mailto:ken.craig@up.ac.za

2

tubular receiver and plate-type recuperator of a solar Brayton cycle. With the use of Flownex and
SolTrace, Le Roux and Meyer (2016) also showed how a relatively large tube diameter for the open-
cavity tubular receiver could be beneficial to the output power of the solar dish Brayton cycle.

Le Roux et al (2014) performed an optimisation study using ray tracing, thermodynamic relations
and network heat transfer models. For a low-cost open-cavity tubular receiver and 4.8-m-diameter solar
dish, it was found that efficiencies of between 45% and 70% can be achieved with typical mass flow
rates of between 0.06 kg/s and 0.08 kg/s and receiver air inlet temperatures of between 900 K and
1 070 K. With the use of SolTrace, the optimum aperture size and tube diameter were identified for a
4.8 m diameter solar dish with 45° rim angle, 1° tracking error and 10 mrad optical error (a low-cost
solar dish and tracking system).

The current study aims to assess more accurately the contributions of the different heat transfer loss
mechanisms in an open-cavity tubular receiver of a low-pressure solar Brayton cycle.

1.2 Heat losses from dish cavity receivers
Shuai et al (2008) evaluated the radiation performance of various dish cavity receiver shapes using

Monte Carlo ray tracing with a spherical receiver having the best radiation performance in the absence
of the consideration of natural and forced convection heat losses. Prakash et al (2009) estimated the
convective and radiation heat losses using computational fluid dynamics (CFD) simulations of a
cylindrical cavity receiver with a wind skirt and compared the results with an experiment. Radiation
heat losses were not explicitly simulated and were not dominant at the temperature range studied (below
100 °C), rather, the focus was on the effect of forced convection due to wind as influenced by cavity
inclination. Prakash et al (2012) conducted numerical simulation of open cavities (cubic, hemispherical
and spherical) for different inclinations and aperture openings, and derived a Nusselt-Rayleigh number
correlation involving the inclination angle.

As far as convective heat losses are concerned, Pavlovic and Penot (1991) and Clausing et al (1989)
studied mixed convection in an isothermal open cubic cavity experimentally. Pavlovic and Penot (1991)
determined Nusselt-Grashof-Reynolds number correlations for different inclinations for temperatures
up to 120 °C, while Clausing et al (1989) determined Nusselt-Richardson number correlations for
temperatures up to 350 K for various side-facing apertures to the cavity. For these low temperatures,
radiation heat losses were not dominant. In addition, the isothermal assumption of these studies limits
the applicability of these analyses to high-temperature receivers with significant variation in cavity
surface temperature. A comprehensive review of convection heat loss from dish cavity receivers was
written by Wu et al (2010). Numerous correlations for convection heat losses were listed in that
publication, with notable contributions by Stine and McDonald (1989) and Lovegrove et al (2003) for
cylindrical cavities, as investigated in the current study. According to McDonald (1995), the Koenig
and Marvin model for natural convection heat loss from high-temperature receivers is valid up to
900 °C. More recently, Abbasi-Shavazi et al (2020) developed a correlation for convection heat loss for
a cavity with a non-isothermal surface temperature distribution. As mentioned by Wu et al (2010), the
Boussinesq approximation for density as a function of temperature is not valid for high-temperature
(>700 °C) receivers, hence in the current study, the more accurate ideal gas law is used for both the
internal heat transfer fluid (HTF) flow and the external wind flow as it interacts with the HTF due to
the receiver plume exiting into the atmosphere.

1.3 Complex geometry dish receiver modelling
In the current work, the receiver is not exactly cylindrical and is comprised of a winding tube

following an oblong cavity. Earlier work using CFD analysis of the dish receiver by Craig et al (2015a,
2015b) employed finite-volume ray tracing (Craig et al, 2015a) and Monte Carlo ray tracing with a
crude approximation of the complex geometry using circular elements (Craig et al, 2015b). Recent
work by Slootweg et al (2019) and Slootweg (2019) paved the way for using irregular triangular and
quadrilateral elements in SolTrace to describe any complex receiver shape accurately, thereby
generating an accurate solar absorption distribution in the receiver as input to conjugate heat transfer
modelling using CFD. The Slootweg approach was also followed and is described in this paper.

3

1.4 Modelling approaches
The optical performance of dish receivers is often determined using Monte Carlo ray tracing (e.g.

Shuai et al, 2008). The combination of ray tracing and computational fluid dynamics (CFD) has been
used by various researchers to investigate the temperature distributions and performance of dish
receivers. For example, Li et al (2011) used ray tracing to determine a heat source profile for a cavity
receiver with glass cover, while a constant convection coefficient accounted for convection heat losses
at the cover surface as evaluated in a conjugate CFD simulation. Wang et al (2014, 2015) combined ray
tracing with CFD in the evaluation and inverse design of an impinging dish receiver. External
convection heat losses were not considered. Yuan et al (2015) focused on natural convection heat losses
for cavity receivers, both for a cubical central receiver (nominal wall temperature of 750 °C) and a
cylindrical cavity dish receiver (nominal wall temperature of 450 °C). CFD simulations using Fluent
were compared with experimental results and different turbulence models were evaluated; convective
heat loss was generally underpredicted. Heated surfaces were simplified as isothermal or constant heat
flux boundary conditions and mesh sizes ranged from less than 1 million to about 1.8 million cells.

To get a true reflection of the thermal performance of a dish receiver, the input power (as determined
through ray tracing, accounting for absorbed solar irradiation) needs to be quantified and then applied
as heat source in a conjugate CFD simulation. This simulation should then account for radiation heat
losses, natural convection heat losses as well as forced convection heat losses due to wind. The last two
contributions are highly sensitive to the inclination of the receiver as determined by the orientation of
the dish. This is the approach followed and quantified in this paper.

1.5 Layout of paper
The paper starts by presenting a validation case based on the experimental heating test of a dish

receiver using a CFD model that evaluates thermal re-radiation, external forced convection as well as
natural convection. After this case, the process of evaluating a solar heat source using ray tracing for
complex receiver geometries is described. The resulting volumetric heat source is then implemented
into the CFD model, of which results are presented, first for a 0° or upright orientation, and then for a
variety of inclination angles to illustrate the variation in heat loss contributions. The results obtained
are then compared with correlations from the literature. Finally, conclusions are drawn to complete the
paper.

2. Validation case

2.1 Experimental set-up and results

An experiment was used for validation of the CFD model (also see a summary of this experiment in
Wolff et al, 2018 and Wolff, 2020). In the experiment, the low-cost receiver was heated using a blower
and burner at its inlet (see Fig.1d), while temperatures were monitored on the receiver and insulation
surfaces as well as the gas inlet and outlet. The experimental set-up is shown in Fig.1 with the locations
of thermocouples used to monitor selected surfaces of the receiver tube. Typical results are shown in
Fig.2, which include wind speed measured by a local anemometer.

A data set was used as one of the steady-state periods, as indicated in Fig.2. The summary-averaged
data for use and comparison in the CFD model is listed in Tab.1 as well as Tab.B.1. Based on an average
specific heat of 1 139 J/kg-K, the total heat lost from the hot air during its passage through the receiver
was 5 565 W. It was one of the aims of the validation case to quantify the components that made up this
total heat loss. Calculations in Wolff et al (2018) using certain assumptions of view factor and surface
emissivities provided an estimate of heat lost through thermal re-radiation from the aperture of the
receiver, while conduction calculations were used to estimate the heat lost through the insulation
material surrounding the tubular receiver, which was transferred to the wind by external forced and
natural convection. All these contributors to heat loss were compared with the CFD results to follow.

4

a) b)

c) d)

Figure 1 a) Receiver mounted on 4.8 m diameter dish for gas heating test. Note the grey painted cover over the
insulation. During the heating test simulated here, the dish faced directly upwards, not as in the photo; b) tubular

receiver with selected thermocouple locations; c) tubular receiver while being insulated; d) blower and burner
attached to inlet of receiver.

Thermocouple 13

Thermocouple 4

Dish

Receiver

Gas bottles
for burner

Blower

Burner

5

Figure 2 Measured temperatures on the receiver surface (14 thermocouples along the length of the receiver

from the inlet to the outlet), inlet and outlet air temperatures (Ti and To), and wind speed on 19 Sept 2017. The
chosen steady-state period is also indicated.

Property Value

Receiver tube mass flow rate [kg/s] 0.05323
Inlet temperature (Ts1) [°C] 761.3

Outlet temperature [°C] 669.5
Average wind speed [m/s] 1.9 – 4.4

Environmental temperature [°C] 23
Table 1 Summary of conditions during experiment for upright dish orientation.

2.2 CFD analysis of validation case

From the experimental results (to be discussed in detail below), it was clear that convection heat
losses (whether due to the external wind or due to natural convection) accounted for a significant portion
of the total heat loss. For this reason, the CFD computational domain needed to be selected with care to
account for these mechanisms. In addition, the material models and physics that were resolved had to
be adjusted to be able to account for all the convection-related heat transfer mechanisms in conjunction
with the radiative and conductive heat transfer.

2.2.1 Computational domain
The computational domain was determined based on the location of the experimental set-up on the

roof of the Engineering II building at the University of Pretoria, as shown in Fig.3. Based on
measurement data of the SAURAN network (Brooks et al, 2015) station on the roof of the adjacent
building, the prevailing wind on the testing date indicated that a side-on wind could be used to simplify
the computational domain, as shown in Fig.4. The 5 m upstream fetch corresponded roughly to the start
of the roof, which aided in the assumption of a uniform inlet velocity profile. The other boundaries of
the domain were somewhat arbitrary in that the roof section was narrow and that no other large
obstructions impacted the receiver flow pattern for the studied wind direction. The wake of the dish
(simplified for this analysis) was also expected to be thin at this dish orientation.

0

1

2

3

4

5

6

7

0

200

400

600

800

1000

11:00 11:10 11:20 11:30 11:40 11:50 12:00 12:10 12:20 12:30 12:40 12:50

W
in

d
Sp

ee
d,

 w
 (m

/s
)

Te
m

pe
ra

tu
re

. T
 (°

C
)

Time

Ts1
Ts2
Ts3
Ts4
Ts5
Ts6
Ts7
Ts8
Ts9
Ts10
Ts11
Ts12
Ts13
Ts14
Ti
To
Wind (m/s)

Chosen data set
range

6

Figure 3 Location of dish on roof of Engineering II building and average wind direction on 19 Sept 2017
(Brooks et al, 2015). Image from maps.google.com

Figure 4 Computational domain (5 m upstream and to sides, 6 m above receiver, 9 m downstream, 1 m

clearance below dish) for validation case

2.2.2 Computational model of receiver
The computational domain was divided into blocks for meshing, as depicted in Fig.5a. The different

components of the receiver are displayed in Fig.5b, c (receiver insulation), Fig.5d, e (tube with internal
air at HTF and cavity air shown). The tube was segmented to allow for high-quality mapped meshing.

a) b) c)

Eng I building

SAURAN GIZ
University of

Pretoria station

Location of dish

Average wind
direction

Eng II building

Wind direction

Dish in upright
position (0°)

Receiver with
insulation

Local anemometer

Outer insulation
and painted cover

Inner
insulation

Wind direction

7

d) e) f)
Figure 5 a) Computational geometry of domain; b) receiver outer insulation (fibre board); c) receiver inner

insulation (fibre blanket); d) receiver tube with air in cavity; e) receiver tube containing air as heat transfer fluid;
f) schematic explanation of inlet boundary condition for HTF with void creating external boundary for inlet

condition

2.2.3 Computational mesh
The division of the computational domain allowed for predominantly hexahedral elements for the

external domain (Fig.6a) and the tubular sections of the internal fluid (Fig.6b,c). The insulation material
and air in the receiver cavity had complex shapes and were meshed using tetrahedral elements. The
fluid mesh in the tubular receiver resulted in a maximum y+ of about four for most of the receiver
domain when using a mesh sizing of 2mm for the receiver tubes. The receiver tube mesh density is
governed by the overall mesh sizing. A mesh dependency study was performed to investigate the effect
of this sizing. For this study, only the tube and the internal heat transfer fluid were considered in the
model, with boundary conditions on the inner and outer halves of the pipe approximated by the results
obtained for the full model. This involved a mixed boundary condition (radiation and convection) on
the inner cavity-facing half of the tube, and a heat flux boundary condition based on the conduction
heat loss through the insulation. These settings were based on the values in Tab.1 and a wind speed of
4 m/s. The coarsest mesh considered had a sizing of 4 mm (Fig.6d). The results of this study are shown
in Table 2 and Figure 7. The finest three sizes had outlet temperatures that were within a 2% range as
shown. Performing a Grid Convergence Index (GCI) study on the 3 mm, 2.5 mm and 2 mm mesh sizes
(with a refinement order of about 1.8 based on mesh count) resulted in a GCI asymptotic convergence
of 1.0023 for the outlet temperature. From these results, the 2 mm setting was deemed to be fine enough
for the subsequent studies. The overall mesh count for the complete CFD model using this size setting
was about 42.8 million cells for the validation model. In addition, mesh adaption of this model was
performed on the inner boundary of the receiver tube resulting in an overall mesh count of 52 million
cells and a maximum y+ value of 2. This model predicted an outlet temperature and heat loss by radiation
that were within 0.1% of that obtained by the 42.8 million cell mesh.

Air in cavity

Receiver tube
containing heat

transfer fluid (air)

Inlet of
air HTF

Inlet of air HTF

Insulation

Surrounding
air

Void

Inlet
pipe

8

a) b)

c) d)
Figure 6 a) Computational mesh of domain (view from bottom); b) internal heat transfer fluid in tube; c)

mesh of tubular receiver (2mm size); and d) mesh of tubular receiver (4mm size)

Figure 7 Mesh dependency of receiver outlet temperature [K]. 2% band shown as shaded region around

finest mesh result.

9

 Property Value Value Value Value Value
Mesh size setting [mm] 1.5 2.0 2.5 3 4
Mesh count [million] 26.3 13.5 7.25 4.22 2.34

HTF outlet temperature [K] 893 887 885 873 862
Pressure drop [Pa] 707 736 768 780 818

Table 2 Results of mesh dependency study. Model of tube and inner fluid only.

2.2.4 Computational settings
The settings are summarised in Tab.3. Turbulent flow was assumed based on both the external and

internal conditions (Re = 1E6 based on dish diameter and Re = 2.1E4 based on internal tube conditions).
The SST k-ω turbulence model was used for turbulent closure of the steady Reynolds-averaged Navier-
Stokes equations, which were solved in double precision using the coupled segregated solver in ANSYS
Fluent v2019 R3. Thermal re-radiation was computed using the discrete ordinates (DO) model with 3×3
angular discretisation and 3×3 pixilation, while natural convection was enabled by activating gravity
and specifying air as an ideal gas. The influence of the number of angular discretization intervals was
determined by varying the phi and theta solid angle increments between two and four in each direction,
i.e., 2×2, 3×3 and 4×4, and checking the effect on the HTF outlet temperature and pipe heat losses.
From the coarser setting of 2×2 to the finer setting of 4×4, the outlet temperature varied by 0.8% and
the pipe heat losses by 2%. The 3×3 setting, used for all the subsequent cases in this paper, was within
0.7% of the pipe heat loss and within 0.04% of the outlet temperature determined by the finer 4×4
setting. Note that these settings for the DO model have profound implications on computational
resources required. The 2×2 setting implies that 2×2×8=32 additional equations are solved, while for
the 4×4 setting 4×4×8=128 additional equations are solved in addition to the mass conservation, three
momentum equations, energy equation and two turbulence transport equations. The memory overhead
is also significant.

All the external boundaries except for the ground and inlet wind were specified as outlet boundaries
at 0 Pa gauge pressure. The specified operating density was based on an absolute atmospheric pressure
of 86.6 kPa and environmental temperature of 23 °C (Brooks et al, 2015), with the reference pressure
location for buoyancy-driven flow at the top of the domain. Body-force weighted discretisation was
used for the pressure equation. The thermal conductivities of the insulation and stainless steel 316 tube
material were specified as functions of temperature.

Finally, the internal air path was connected to the external wind environment through the outlet of
the receiver. However, the receiver inlet boundary condition location was enabled by creating a small
void between the external domain and the receiver HTF, thereby creating the effect of the blower and
burner in the computational domain (see Fig.5f for a schematic explaining this condition). The use of
air as medium neglected any combustion products that were present due to the burner gas providing the
heat source.

 Property Value

Receiver tube emissivity (highly-oxidised stainless
steel at 1000 K) (Çengel and Ghajar, 2015) 0.8

Insulation outer surface emissivity (primer paint at
300 K) (Çengel and Ghajar, 2015) 0.9

Insulation thermal conductivity [W/m.K] (Wolff et
al, 2018)]

(0.085, 0.112, 0.145)
at (473, 673, 873) K

Operating pressure (abs) [kPa] (Brooks et al, 2015) 86.6
Operating (environmental) temperature [°C] (Brooks

et al, 2015) 23

Ground temperature [°C] 45
Table 3 Computational settings, material properties and boundary conditions for validation case

2.3 Results of validation case

The integrated results of the CFD simulation of the validation case are summarised in Tab.4. It shows
that the overall heat transfer between the heated air and environment was captured accurately, with a
6 K or 0.9% difference between experiment and CFD outlet temperature at the median wind velocity of

10

4 m/s. The radiative heat loss was predicted within 7%, while the conduction heat losses through the
insulation outer walls compared well. The overall heat loss from the HTF was underpredicted by 7.3%
at a simulated wind speed of 4 m/s. The comparison between the experimental thermocouple and
simulated temperatures at approximately the same locations is displayed in Fig.8. It shows that the CFD
consistently overpredicted the experimental temperatures with an average deviation of 17.2 K (or 1.8%
using the average absolute temperature), although a similar trend is shown for most of the receiver tube
length. At the inlet, there is a difference in how the insulation was modelled, hence the deviation there.
There is a slight effect of wind speed on these temperatures with higher speeds leading to lower
temperatures as expected. The root mean square deviation of the experimental measurements during the
period considered is small. Possible reasons for the overprediction are the fact that the insulation
material did not seal tightly in the experiment and that the temperature on the receiver surface was
influenced by the presence of hot air in the gaps (the modelled geometry had no air gaps). Additionally,
some heat could have been lost through cracks between the insulation boards, especially at the top of
the receiver, thereby aiding natural convection losses and lowering the temperature in the experiment.

Property Experiment CFD
Wind speed [m/s] 1.9 – 4.4 3 4 5

Mass flow rate [kg/s] 0.05323
Inlet temperature [°C] 761.3

Outlet temperature [°C] 670 679 676 673
Average receiver inner-surface temperature [°C] 674a 676 673 670

Minimum receiver inner-surface temperature [°C] 602b 604 593 590
Maximum receiver inner-surface temperature [°C] 694c 698 696 696

Average receiver insulation outer-surface
temperature [°C] 72.2∗ 65.1 61.5 58.9

Radiation heat loss through aperture [W] 2 764d 2 598 2 570 2 559
Heat loss from sides of insulation [W] 796 771 771 771
Heat loss from top of insulation [W] 116 150 150 150

Heat loss from bottom of insulation [W] 157 152 151 150
Total conduction heat loss [W] 1069e 1 073 1 072 1 071

Heat loss from heat transfer fluid [W] 5 565 5 003 5 158 5 368
Pressure drop of HTF [Pa] - 971 969 969

External convection heat loss [W] 1732 1 332 1 543 1 738
* side surfaces only a Average of experimental thermocouple values b Outlet thermocouple (no.14)
c Inlet thermocouple (no.2) d Based on average thermocouple temperature e Appendix B

Table 4 Comparison between experimental and CFD results – Validation case

11

Figure 8 Comparison between measured and simulated temperatures [°C] on receiver surface (for 12

thermocouples) as a function of normalised curvilinear distance along the receiver for different wind speeds in
the simulation. The RMS range is shown for the experimental results.

However, on the whole, the CFD validation was successful and it is assumed that the method (which
included radiative as well as external forced and natural convection) can be applied to other solar heat
source scenarios, as discussed in the next section.

The detailed CFD results are presented next. The interaction between the hot air emanating from the
tubular receiver and the external wind caused the plume to be bent and to follow the wind direction, as
depicted in Fig.9 in the form of pathlines (Fig.9a) and temperature contours on the central y = 0 plane
(Fig.9b).

Figure 10 illustrates the cooling of the hot air due to heat losses, both through conduction into the
insulation and through convection and radiation through the receiver aperture. The wind direction
(shown in Fig.10a) resulted in a slight asymmetric convection pattern at the mouth or aperture of the
receiver, while buoyancy effects resulted in some stratification of the air trapped in the cavity.

Wind direction

12

a)

b)

 Figure 9 Plume of receiver depicted using a) flow pathlines coloured by temperature [°C] and b) temperature
contours (clipped at 175 °C) on y = 0 plane – Validation case, 4 m/s

The variation in temperature on the outer insulation surfaces is shown in Fig.11, with the regions

surrounding the inlet and outlet pipes being the hottest, as expected. There was a slight secondary effect
of convection cooling due to the wind direction. The wind formed a wake behind the receiver and the
influence of the dish was not significant at this orientation.

The convection and radiation heat losses were dominant in the locations of highest surface
temperature close to the inlet, as confirmed in the surface temperature contours of Fig.12 and total and
radiation surface heat flux contours in Fig.13. The latter is reported as positive values, while the total
heat losses are reported as negative in ANSYS Fluent.

As a final CFD result of the validation case, the incident radiation contours as solved by the discrete
ordinates method are depicted in Fig.14. This radiation signature is useful in understanding the view
factor experienced by the high-temperature sections of the receiver and their role in contributing to high
radiation heat losses.

a) y = 0 b) x = 0

Figure 10 Temperature contours [°C] in a) y = 0 and b) x = 0 plane through receiver – Validation case, 4 m/s

Wind direction

13

Figure 11 External temperature distribution of receiver insulation outer surface (clipped at 175 °C) –

Validation case, 4 m/s

Figure 12 Receiver surface temperature contours [°C] – Validation case, 4 m/s

Wind direction

14

a) b)

Figure 13 a) Total and b) radiative heat flux [W/m2] on receiver tube walls – Validation case, 4 m/s

 a) b)
Figure 14 Incident radiation [W/m2] on y=0 plane a) overall, clipped at 3 kW/m2, b) local in receiver cavity.

Validation case, 4 m/s

3. Solar heat source using ray tracing

3.1 Complex geometry modelling in SolTrace

The method developed by Slootweg et al (2019) and Slootweg (2019) was used here to replace the
hot burner inlet with an on-sun condition, i.e. the HTF air entered at a lower temperature and then was
heated by the concentrated solar irradiation of the dish focused on the receiver aperture. SolTrace
(Wendelin and Dobos, 2013) was used as the ray-tracing software and was based on the Monte Carlo
method. The numerical solution approach involved using ANSYS mesher to generate a meshed or
tessellated representation of the tubular receiver’s surfaces exposed to the concentrated sun. Each of
these mesh elements was then converted and implemented as a separate element(s) in SolTrace by using
the available irregular triangular elements. A schematic illustrating the method is given in Fig.15 with
the equations for the transformation explained in Appendix A. The code used to convert the mesh file
into input files for SolTrace is given in Appendix C, and the script to simulate the model in SolTrace is
given in Appendix D. More details regarding the method can be found in Slootweg (2019).

15

Figure 15 Schematic illustrating the method developed by Slootweg et al (2019) and Slootweg (2019),
where a complex geometry surface is approximated by converting a computational mesh to irregular triangular
elements to be used in SolTrace. A flux distribution is determined by applying the average absorbed ray of an

element and applying the average value to the centroid of the element.

3.2 Ray-tracing model set-up

A side view of the SolTrace model is shown in Fig.16. The mounting arm of the receiver (which
would cast a shadow) was omitted from this model. The geometrical parameters are listed in Tab.5 and
the optical properties in Tab.6. A maximum sun condition with a direct normal irradiation (DNI) value
of 1 000 W/m2 and a pill-box sunshape with a 9.3 mrad angle were assumed. Typical rays are shown
in Fig.17 with the shadow cast by the receiver clearly visible.

Dimension Value

Receiver width [m] 0.614
Receiver height [m] 0.916

Aiming height/focal length [m] 2.897
Dish diameter [m] 4.8

Table 5 Dimensions of dish and receiver in SolTrace

 Reflectivity Slope
error

(mrad)

Specularity
error

(mrad)
Dish 0.8 3.0 3.0

Receiver tubes 0.2 0.71 100
Inner insulation surfaces 0.3 5 100
Insulation surfaces at the

aperture 0.76 1 0.2

External insulation surfaces 0 0.71 0.14
Table 6 Optical properties of dish and receiver in SolTrace

16

Figure 16 SolTrace model showing ray hits on dish and receiver

3.3 Ray and mesh independence study

The density of the ANSYS mesh had an influence on the number of ray intersections required in
SolTrace for a converged solution. A separate investigation was conducted to determine the number of
ray intersections required for ray independence. A summary of this study is shown in Figures 18 and
19. In Fig.18, the absorbed radiative flux is displayed as the ray count is increased for a mesh count of
31 456 elements. Of these elements, 20 672 were on the pipes (as shown in Fig.18), while the rest were
used for the insulation surfaces between the pipes and at the receiver aperture. The size of the mesh
can be seen clearly in Fig.18a as each meshed element is given a different colour corresponding to the
number of ray hits times power per ray divided by element area. A clear and converged pattern emerged
for ray counts above 100 million (108).

This convergence is quantified in Fig.19, first in the total absorbed power value converging at a ray
count above 108 (shown as a total heat value (Fig.19a), and percentage error (Fig.19b)), and in the form
of an error plot for each element (Fig.19c), where the error was calculated per element to highlight the
fact that even if the total absorbed flux was determined correctly, it was where the flux was distributed
that took more rays to converge, e.g. the last 1% of elements (red and black traces in Fig.19c) still
experienced a 100% (log10(100) = 2) error or more for a ray count of 107 or 10 million.

Figure 17 SolTrace sample rays, note shadow cast by receiver insulation (the latter not shown)

To ensure that at least 90% of the elements had a maximum deviation of under 1%, the ray

independence study was conducted up to 200 million or 108.3 rays for the mesh count of 31 456 elements
and was used in the on-sun results to follow.

Aiming height
(focal length)

Receiver
height

Receiver
width

Dish diameter

17

a) b) c) d)

e)

Figure 18 Absorbed radiation on tubular receiver for different ray counts a) 105, b) 106, c) 107, d) 108 and e)
2×108 rays

a) b)

18

c)

Figure 19 a) Convergence and b) percentage error of total absorbed heat versus ray count for 31 456 mesh
elements; c) error progression as a function of ray count for 31 456 mesh elements. The percentage error of a
single element relative to the final simulated value is shown, divided into the elements that represent 50%> of
the maximum element flux (magenta), 10% to 50% of the maximum element flux (green), 1% to 10% of the

maximum element flux (blue), 0.1% to 1% of the maximum element flux (red) and the rest of the data (zero flux
elements were excluded).

3.4 Interpolation of heat source into CFD model

Using the optical properties in Tab.6 with a DNI of 1 000 W/m2, the total absorbed power from the
SolTrace model was 12 730 W, which represents a 70% optical efficiency (88% when excluding the
dish reflectivity in the optical efficiency). Note that the total absorbed power depends on the dish
reflectivity as well as the reflectivity of the inner insulation surfaces (for a dish reflectivity of 90% and
inner insulation surface reflectivity of 70%, the total absorbed power will be 14 828 W).

The SolTrace generated heat flux [W/m2] was then interpolated into ANSYS Fluent as a volumetric
heat source by dividing the flux through the tube thickness and applying it on the whole of the inside
half of the tube. Because of the curvature of the pipe, especially around the turns, the inner-surface area
of the tubular receiver times the thickness was not exactly equal to the volume of the receiver tube in
the CFD model. This error was about 4.2% and hence the heat source was adjusted by this amount so
that the ANSYS Fluent total heat value [W] was the same as the total SolTrace value (power per ray
times final intersection count) [W].

It can be argued that using the whole thickness of the tube as volumetric heat source is not an accurate
reflection of the solar concentrated direct normal irradiation being absorbed in the first micrometers
below the surface (Bergman et al, 2011), resulting in a difference in the tube inside and outside wall
temperatures because of the poor convection heat transfer capability of air as heat transfer fluid in the
current application, and with stainless steel being used with its moderate thermal conductivity (around
23 W/m-K for the current tube temperatures). A more accurate implementation therefore would be to
model a separate layer on the heated tube outer circumference, as done by Moghimi et al (2015). To
test the difference between these two implementation methods, a test case was simulated with two
sections of tube of length 2 m, side by side, the one with the volumetric heat source applied to a thin
layer (0.15 mm was used), and one with the heat source applied to the whole 3.05 mm tube thickness.
The conditions were based on those given in Tab.7 in the next section with external tube wall boundary
conditions based on the convection, radiation and conduction heat losses simulated in the next section.
The heat source used is based on the maximum heat flux obtained in Fig.20, namely 112 kW/m2. The
setup is illustrated in Fig.21 with the temperature distribution obtained shown both as cross-sectional
temperature contours and as a plot along the centreline of the pipes. The effect of the implementation
is to give a difference in inner and outer wall temperatures as expected, but the difference in outer
temperature is only 0.8%. This means that the simpler method of using the whole tube thickness is

19

justified in the current application, but such proof should be obtained before using this approach in
general.

a)

b) c)

Figure 20 Comparison of volumetric heat source implementation method. a) Computational setup; b)
Temperature contours [K] in cross section, indicating lines for plot in c); c) Temperature [K] along centreline

for tube heated in layer only and in full thickness of tube

The interpolated ANSYS Fluent heat source distribution was implemented using the procedure

described in Moghimi et al (2015). The process involved using a user-defined scalar to interpolate the
source, then copying this scalar to a user-defined memory and assigning this memory location to a heat
source for the relevant solid cell zones. The result is depicted in Fig.21 together with the SolTrace
distribution for comparison. The total (integrated) heat source differed by less than 0.12% from the
SolTrace value.

Volumetric
heat source

HT

Tube wall facing
insulation

Tube wall
facing cavity

heat source
in thin layer

heat source
full thickness

20

a) b)

Figure 21 Volumetric heat source [W/m3] as a) interpolated into ANSYS Fluent, from the b) SolTrace heat
flux divided by tube thickness of 3.05 mm to give [W/m3], 2×108 rays.

4. Upright orientation CFD results

To assess the on-sun performance, the conditions specified in Le Roux and Meyer (2016) were used

with the hot air plume still exiting to atmosphere. When used in a recuperated Brayton cycle, this air
stream will pass through the downstream components, like the turbine and the recuperator, to generate
a net cycle power output of about 1-2 kW. The conditions are listed in Tab.7 with the summary CFD
results. As shown in Tab.7, the radiation heat losses accounted for 31% of the total absorbed power
(provided as heat source). The convection heat loss from the receiver aperture only accounted for 14%
of the heat provided due to the downward orientation of the receiver. For other orientation angles, this
convection heat loss was expected to increase. These losses, combined with the heat losses from the
external surfaces of the receiver insulation, implied that about 44% of the absorbed solar heat was
transferred to the heat transfer fluid.

 Property CFD

Value
Mass flow rate [kg/s] (Le Roux et al, 2014) 0.06
Inlet temperature [°C] (Le Roux et al, 2014) 657

Environmental temperature [°C] 22
Wind speed [m/s] 4

Outlet temperature [°C] 744
Total (integrated) solar heat source [W] 12 746

Average receiver inner-surface temperature [°C] 780
Average receiver insulation outer-surface temperature [°C] 64.2

Radiation heat loss through aperture [W] 3 944
Heat loss from sides of insulation [W] 867
Heat loss from top of insulation [W] 180

Heat loss from bottom of insulation [W] 150
Heat gain by heat transfer fluid [W] 5 667

Pressure drop of HTF [Pa] 1 113
Convection heat loss from receiver aperture [W] 1 733

Table 7 CFD results for simulation using solar heat source

The detailed CFD results are displayed in the following figures. The focused heating by the dish
caused higher temperatures deeper into the tubular cavity receiver, illustrating one of the advantages of
cavity receivers. Because these higher temperatures were deeper into the cavity, the radiation and
convection heat losses associated with them were less. The temperature contours in Fig.22 confirm that
the location of maximum heat source matched the region of higher temperatures on the receiver inner
surface. The heat loss profile (not shown) corresponded to these regions of higher temperature.

21

Figure 22 Receiver surface temperature contours [°C] – Solar-heated case 0° (upright)

The receiver insulation temperature profile shows hot regions in several areas. These are due to the

HTF pipe inlet and outlet, and due to absorbed radiation and conduction in the aperture region (Fig.23,
note that temperatures were clipped at 175 °C). The effect of the wind direction (see arrow in Fig.23)
on the insulation temperatures is noticeable, but is not significant in this receiver orientation (facing
down).

Finally, the heating effect of the HTF by the absorbed solar irradiation is illustrated in the
temperature rise of the HTF pathlines in Fig.24. The local fluid temperature reached a value higher than
the outlet temperature in the region of the highest heat source.

Figure 23 Receiver insulation temperature [°C] contours clipped at 175 °C – Solar-heated case 0° (upright)

22

Figure 24 Pathlines heated by solar irradiation coloured by temperature [°C], range chosen to highlight

heating of HTF – Solar-heated case 0° (upright)

5. Effect of dish orientation and wind speed on heat transfer

5.1 Inclination of cavity receiver

The orientation of the dish affects the inclination of the cavity receiver as it rotates to remain pointed
at the sun. It is expected that an increase or decrease in the inclination angle from the 0° upright position
presented above will result in an increase in heat losses because of two convective phenomena. Firstly,
buoyancy effects as driven by gravity will result in natural convection heat losses from the cavity as its
heat gets “leaked” upwards due to the tilted aperture and density differences. Secondly, a receiver that
is exposed to the windward side will “catch” more of the wind, resulting in a washing out of the heat
contained in the cavity. Conversely, a cavity that is facing downwind will be exposed to the suction
pressure in the separation bubble, which will “suck” out some of the heat from the cavity. Technically,
these contributions are termed natural and forced convection, and it is expected that the cavity will
operate in the so-called mixed-convection regime.

Given that the temperatures experienced by the cavity surfaces are high (around 780 °C for the
upright 0° case at a wind speed of 4 m/s), it is expected that radiative heat losses will dominate over
convective heat losses. The results in this section will test this hypothesis.

5.2 Solving strategy for different dish orientations

Five different dish orientations were considered, as shown in Fig.25. The rotation mechanism of
the dish was not considered or realised but the various orientations did result in a different distance
between it and the ground, as shown in Fig.25. Five different CFD domains were then generated, each
with the dish in a different orientation. For the higher dish orientation angles, the attacking wind caused
a much larger wake. For these cases, the solution domain was extended both in length and height. An
example is shown in Fig.26 for the 22.5° orientation with domain extents indicated.

The steady RANS equations were still solved, neglecting any transient effects due to atmospheric
turbulence or vortex shedding (Wolmarans and Craig, 2019). The solving strategy that was followed
amounted to keeping the inner mesh that contained the receiver with its internal flow as well as a
cylindrical region around it and above the dish as constant for all the dish rotations. This process is
illustrated in Fig.26 for the 22.5° orientation. Essentially, two separate meshes were generated, one was
the constant cylinder mentioned above, and the other was the outer volumes as shown. The two meshes
were then combined in ANSYS Fluent in the following manner:

23

• Import the inner mesh (in the upright orientation 0°).
• Translate it vertically to the origin.
• Rotate it by the required angle depending on the outer mesh being considered.
• Translate the rotated cylinder to the correct location matching the outer mesh.
• Import the outer mesh.
• Assign mesh interfaces where the regions touch.
• First translate and then rotate the combined mesh to the original upright orientation of the

inner cylinder. This is required because the heat source file is written in these original
coordinates and needs to be interpolated to the correct location of the receiver.

• Choose operating and boundary conditions and solve for different wind speeds.

The mesh counts for the models ranged from 42.8 million for the 0° orientation, to 64.6 million cells
for the extreme orientations (e.g. 45°). The DNI was kept at 1000 W/m2 for all orientations, implying
that the same solar volumetric heat source was used.

Figure 25 Dish orientation angles and clearance from ground

24

Figure 26 Strategy for accommodating different dish orientations and re-using the mesh of the cylindrical
portion above the dish containing the receiver. Shown for 22.5° orientation.

5.3 Results for different dish orientations and wind speeds

The effect of dish orientation is to rotate the cavity receiver causing the wind and flow pattern
caused by the dish to influence the convection heat transfer from the cavity. Tab.8 shows the results for
a wind speed of 4 m/s. Notable from the table is that the radiation heat loss and insulation exterior
temperatures were relatively constant with orientation. The convection heat loss was sensitive to the
orientation as expected and was the main contributor to the HTF outlet temperature variation, shown in
Fig.27. To assess the balance between forced and natural convection, the wind speed was reduced, first
to 2 m/s and then to 0.5 m/s. The shape of the graph stayed relatively constant for lower wind speeds,
but at the highest wind speed, there was an asymmetry due to the fact that the aperture facing the wind
(negative dish orientations) would be more exposed to forced convection heat losses than positive
orientation angles where the dish would shield the receiver to some extent. This is confirmed by a higher
temperature being reached by the HTF for +45° compared with -45° at 4 m/s.

For the 4 m/s wind speed, the percentage absorbed power converted to the HTF varied between
40% and 45%. The radiation heat loss percentage stayed relatively constant between 29% and 31% with
the main variation due to the convection heat loss (between 16% and 22%). Simulations were also
conducted at lower wind speeds (not shown in Tab.8 but discussed later). For 2 m/s and 0.5 m/s, the
HTF heat conversion varied between (43% and 50%) and (45% and 50%) respectively, again mainly
due to a variation in convective heat losses: (10%-16%) and (10%-15%) for 2 m/s and 0.5 m/s
respectively.

Volumes
surrounding
“Cylinder”

“Cylinder” above dish
encapsulating Receiver (mesh

re-used for all orientations)

22.5°
Receiver

containing
tube

“Cylinder” fits
into this void

25 m

51 m

25

Dish orientation [°] -45 -22.5 0 22.5 45

Total (integrated) solar heat source [W] 12720 12737 12741 12746 12730
HTF outlet temperature [°C] 732 745 744 736 735

Average receiver inner-surface temperature [°C] 763 781 780 768 765
Average receiver insulation outer-surface temperature [°C] 62.4 65.5 64.2 63.3 63.3

Radiation heat loss through aperture [W] 3765 3950 3944 3750 3918
Heat loss from sides of insulation [W] 849 862 867 854 856
Heat loss from top of insulation [W] 181 191 180 181 176

Heat loss from bottom of insulation [W] 137 146 150 141 154

Heat gain by heat transfer fluid [W] 5058 5935 5867 5328 5260
Convection heat loss from receiver aperture [W] 2730 1653 1733 2492 2366

Pressure drop of HTF [Pa] 1085 1086 1113 1097 1075
Minimum receiver temperature (exposed to sun) [K] 560 597 605 579 589
Maximum receiver temperature (exposed to sun) [K] 912 923 921 911 896

Average cavity air temperature (Fluent) [°C] 542 628 600 542 513
Table 8 CFD results for different dish orientation angles (4 m/s wind)

Figure 27 Variation of HTF outlet temperature [°C] with dish orientation for different wind speeds [m/s]

The CFD flow field results are presented as velocity magnitude contours (Fig.28), the temperature

distribution of the thermal plume from the receiver (Fig.29), and surface temperature contours on the
receiver tube (Fig.30); all for a wind speed of 4 m/s. Although the focus is not on the dish wake in the
current work, it is clear that only at the 45° orientation (Fig.28e), is the receiver located in the wake of
the dish. Since it is not possible to separate natural convection from forced convection, there seems to
be a complex interaction between these mechanisms at all dish orientations. This will be discussed
further in the next section.

The thermal plume trajectories shown in Fig.29 predominantly followed the flow patterns of Fig.28
as the relatively high wind speed dominated. The effect of dish orientation on receiver surface
temperatures was not considerable, as plotted in Fig.30 using the scale for all figures of the 0°
orientation for comparison. Since the cavity was deep and the highest heat source was located about a
third of the way in (see Fig.21), the highest temperature zone was relatively shielded from the effect of
the wind, hence the fairly constant radiative heat transfer losses in Tab.8.

26

a) -45° b) -22.5°

 c) 0°

d) 22.5° e) 45°

Figure 28The effect of dish orientation on the flow pattern as shown by velocity magnitude contours on the
y = 0 plane in the range 0 – 6 m/s for a wind speed of 4 m/s. a) -45° b) -22.5° c) 0° d) 22.5° e) 45°

a) -45° b) -22.5° c) 0°

 d) 22.5° e) 45°
Figure 29 The effect of dish orientation on the plume trajectory shown as temperature contours on the y = 0

plane in the range 22 – 175 °C for a wind speed of 4 m/s. a) -45° b) -22.5° c) 0° d) 22.5° e) 45°

Wind direction

Wind direction

27

a) -45° b) -22.5° c) 0°

d) 22.5° e) 45°

Figure 30 The effect of dish orientation on the temperature contours of the inner receiver surface for a wind
speed of 4 m/s. a) -45° b) -22.5° c) 0° d) 22.5° e) 45°

5.4 Comparison with literature correlations

Prakash et al (2012) developed a correlation based on numerical simulations of cubic, hemispherical
and spherical cavities (with wall temperatures ranging between 100 °C and 300 °C) with different
aperture-to-length ratios at different cavity inclinations:

𝑁𝑁𝑁𝑁𝐿𝐿 = 0.0136𝑅𝑅𝑅𝑅𝐿𝐿
1/3(1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)2.72 �𝑎𝑎

𝐿𝐿
�
0.72

, (1)

with 𝜃𝜃 the inclination angle (0° being sideways facing and 90° being downward facing, corresponding
to a dish orientation of 0°), 𝑎𝑎 the aperture size and 𝐿𝐿 the cavity depth or length. This correlation is not
directly applicable to the current study because of the lower temperature range and because the current
cavity is approximately cylindrical and long (see Fig.31) with an aperture width-to-length ratio of 0.32.
Nevertheless, a plot of this correlation for two Rayleigh numbers, defined as

𝑅𝑅𝑅𝑅𝐿𝐿 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝜌𝜌2𝐶𝐶𝑝𝑝𝑔𝑔𝑔𝑔(𝑇𝑇𝑤𝑤 − 𝑇𝑇𝑎𝑎)𝐿𝐿3/(𝜇𝜇𝜇𝜇) , (2)

is shown in Fig.33 for Rayleigh numbers 3.5E8 and 8.5E8 based on the range obtained for the current
CFD simulations. 𝑇𝑇𝑤𝑤 and 𝑇𝑇𝑎𝑎 are the average receiver inner-wall surface and ambient (upstream)
temperature respectively. 𝐶𝐶𝑝𝑝 is the specific heat at constant pressure, 𝑔𝑔 is the gravitational constant and
𝛽𝛽 is the thermal expansion coefficient assumed to be 1/𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐, where 𝑇𝑇𝑐𝑐𝑎𝑎𝑣𝑣 is the volume-averaged fluid
temperature in the cavity as calculated from the CFD solution. The other fluid properties, dynamic
viscosity, 𝜇𝜇, and thermal conductivity, 𝑘𝑘, as well as the specific heat, 𝐶𝐶𝑝𝑝, in Equation 2 are calculated
using this bulk fluid temperature, 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐, the former using Sutherland’s law.

Wind direction

28

Stine and McDonald (1989) suggested the following correlation for a natural convection Nusselt
number for a cylindrical cavity with different aperture sizes (𝑎𝑎):

𝑁𝑁𝑁𝑁𝐿𝐿 = 0.088𝐺𝐺𝐺𝐺𝐿𝐿
1/3 �𝑇𝑇𝑤𝑤

𝑇𝑇𝑎𝑎
�
0.18

(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)2.47 �𝑎𝑎
𝐿𝐿
�
𝑠𝑠

; 𝑠𝑠 = 1.12− 0.98 �𝑎𝑎
𝐿𝐿
� , (3)

with 𝐺𝐺𝐺𝐺 the Grashof number. This correlation was also plotted in Fig.32 using CFD values at wind
speeds of (4, 2 and 0.5 m/s) for 𝐺𝐺𝐺𝐺, 𝑇𝑇𝑤𝑤 and 𝑇𝑇𝑎𝑎.

Another correlation for a cylindrical cavity is that of Koenig and Marvin (1981) as reported in Wu
et al (2010), Harris and Lenz (1985) and McDonald (1995). This correlation is based on higher cavity
temperatures (ranging between 550 °C and 900 °C) but also does not take strong wind effects into
account. The correlation is

𝑁𝑁𝑁𝑁𝐿𝐿 = 0.52𝑃𝑃(𝜃𝜃)(𝐿𝐿𝑐𝑐)1.75(𝐺𝐺𝐺𝐺𝐿𝐿𝑃𝑃𝑃𝑃)

1
4; 𝑃𝑃(𝜃𝜃) = 0.707(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)2.2 , (4)

with the expression for cavity inclination: 𝑃𝑃(𝜃𝜃) valid for the range of inclinations considered here.

𝐿𝐿𝑐𝑐 is 1 for the current cavity since the aperture effective radius remains constant through the cavity
length. This correlation was also plotted in Fig.33 using CFD values at wind speeds of (4, 2 and 0.5 m/s)
for 𝐺𝐺𝐺𝐺.

When the cavity surface temperature is not uniform and known (as in the current work), the

correlation by Abbasi-Shavazi et al (2020) is applicable:

𝑁𝑁𝑁𝑁𝐿𝐿𝑐𝑐 = 0.126�𝐺𝐺𝐺𝐺𝐿𝐿𝑐𝑐�
1
3(𝑇𝑇∗)0.11𝐴𝐴𝐴𝐴−0.52 �𝐴𝐴𝑐𝑐𝑐𝑐

𝐴𝐴𝑤𝑤
�
0.80

, (5)

where 𝐴𝐴𝐴𝐴 is the aspect ratio of the cavity (L/a in Fig.31), 𝐴𝐴𝑤𝑤 the cavity wall area and 𝐴𝐴𝑐𝑐𝑐𝑐 the

convective zone area (see Abbasi-Shavazi et al, 2020), which accounts for the stagnant zone in pure
convection (being the surface of the volumes shown in Fig.31 for the 22.5° and 45° orientations added
to the aperture area). This aperture area is where the inclination angle is incorporated into the
correlation. 𝑇𝑇∗ is calculated from:

𝑇𝑇∗ = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇∞

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇∞
 , (6)

with 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 the maximum and minimum temperatures in the cavity, which implies that

these are either measured, or computed as in the current study. This correlation was also plotted in
Fig.32 using the current CFD data but using the cavity length as characteristic length for consistency.
Note that the correlation was developed for slightly lower Grashof numbers (2.6 × 105 to 1.4 × 107) than
in the current work (1.9 × 106 to 6.9 × 107) when using their characteristic length of

𝐿𝐿𝑐𝑐 = 𝐷𝐷𝑎𝑎𝑎𝑎,⊥ + 𝐷𝐷𝑎𝑎𝑎𝑎

2
 , (6)

where 𝐷𝐷𝑎𝑎𝑎𝑎 is the aperture diameter and 𝐷𝐷𝑎𝑎𝑎𝑎,⊥its vertical projection. Furthermore, the temperature

range considered was between 355 °C and 650 °C. Although this correlation was not developed for
wind conditions, it does give non-zero convection heat loss at 90° inclination.

To compare with these correlations, the Nusselt number is calculated from the CFD results using

𝑁𝑁𝑁𝑁𝐿𝐿 = ℎ𝐿𝐿

𝑘𝑘
= 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐿𝐿

(𝑇𝑇𝑤𝑤−𝑇𝑇𝑎𝑎)𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘(𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐) , (7)

29

where the thermal conductivity is evaluated at the cavity bulk fluid temperature, 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 . 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐 is the surface
area of the cavity (see Fig.31) as calculated from the CFD model. 𝑇𝑇𝑤𝑤 is the receiver tube inner-surface
average temperature. 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the convection heat loss from the CFD defined as

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑄𝑄𝐻𝐻𝐻𝐻𝐻𝐻 − 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟 , (8)

where 𝑄𝑄𝑎𝑎𝑎𝑎𝑎𝑎 is the absorbed solar power, 𝑄𝑄𝐻𝐻𝐻𝐻𝐻𝐻 the heat transferred to the HTF, 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 the heat conducted
through the walls of the insulation and 𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟 the radiation heat loss from the receiver inner surfaces.
These values are given in Tab.8 for the 4 m/s wind speed.

The CFD Nusselt numbers are shown in Fig.32 for the different wind speeds evaluated. Note that
some of the data points are connected by straight lines to help the reader distinguish between the many
correlations being compared. Since inclination angles were simulated on both sides of the vertical, the
absolute values of inclination were taken. This neglects the fact that the wind direction has a large
influence on the convective heat losses, as confirmed when plotting the Nusselt number versus the
orientation angle in the range -45° to +45° in Fig.33. For the lowest wind speed (0.5 m/s) when natural
convection dominates, the current results are closest to the correlations of Prakash et al (2012) and
Abbasi-Shavazi et al (2020) in Fig.32. The largest deviation between the correlations and the current
data is at 90° inclination, which corresponds to the upright or 0° dish orientation. The reason is that
with the forcing wind, even this orientation experiences some convective heat losses. The correlations
of Stine and McDonald (1989) and Koenig and Marvin (1981) predicted zero convection heat losses at
the upright orientation because they only considered natural convection.

What is evident from Fig.33 is that there is not a large difference in the convection heat losses
between 2 m/s and 0.5 m/s. The reason for this is that the thermal plume is not significantly affected at
close proximity to the receiver by the low wind speeds, as confirmed in Fig.34. The role of natural
convection, or gravity-driven buoyant flow, is clear by the upward trajectory of the plume, especially
in Fig.34b).

a) b)

Figure 31 a) Receiver cavity air shape and dimensions; b) convection zone volumes for 𝐴𝐴𝑐𝑐𝑐𝑐 area calculation
(22.5° and 45° orientations)

Pavlovic and Penot (1991) determined that the Nusselt number should scale in the mixed convection

regime with 𝑅𝑅𝑅𝑅 / 𝐺𝐺𝐺𝐺 0.5 based on dimensional analysis. Together with the 𝐺𝐺𝐺𝐺 dependency of 𝑁𝑁𝑁𝑁 for
natural convection, they proposed a correlation as

𝑁𝑁𝑁𝑁𝐿𝐿 = 𝑎𝑎𝐺𝐺𝐺𝐺𝑏𝑏 �1 + 𝑐𝑐 � 𝑅𝑅𝑅𝑅
𝐺𝐺𝐺𝐺0.5�

𝑑𝑑
� , (6)

where the coefficients 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 and 𝑑𝑑 are all functions of 𝜃𝜃. To investigate to what extent mixed
convection is present, Fig.35 plots 𝑁𝑁𝑁𝑁 versus 𝑅𝑅𝑅𝑅 / 𝐺𝐺𝐺𝐺 0.5 for all the cases simulated. The figure
distinguishes between positive and negative inclination with respect to the wind direction.

L = 0.778 m

a = 0.25 m

Acav = 1.4758 m2

30

Figure 32 Nusselt number versus cavity receiver inclination angle as compared with correlations of Prakash

et al (2012), Stine and McDonald (1989), Koenig and Marvin (1981) and Abbasi-Shavazi et al (2020)

Figure 33 Nusselt number versus cavity receiver inclination angle for all wind speeds considered

Equations 1, 3 and 5 suggest that 𝑁𝑁𝑁𝑁 is a function of 𝑅𝑅𝑅𝑅𝐿𝐿

1/3, or 𝐺𝐺𝐺𝐺𝐿𝐿
1/3 since 𝑃𝑃𝑃𝑃 is relatively constant

in this study. Plotting this relationship in Fig.36 confirms that this is true with a mild influence of
inclination angle at higher Rayleigh numbers which correspond to higher orientation angle.

31

a) b)

c) d)

Figure 34 The effect of wind speed on the plume trajectory – temperature contours in the range 22 – 175 °C:
a) 2 m/s b) 0.5 m/s; and velocity magnitude contours: c) 2 m/s d) 0.5 m/s for a dish orientation of 45°

Figure 35 Nusselt number versus Re/Gr0.5

32

Figure 36 Nusselt number versus Ra1/3

6. Conclusions

The paper described the numerical simulation of heat losses from a complex geometry receiver for
a solar dish in a low-pressure recuperated Brayton cycle application. The heat loss mechanisms
considered included thermal re-radiation, natural convection due to buoyancy and external forced
convection due to wind, as well as conduction through the surrounding insulation material from where
it was also convected and radiated to the surroundings. To validate the approach, an experimental set-up
using heated air was replicated. The outlet temperature of the experiment was predicted to within 0.9%,
while the average receiver temperatures were simulated within 1.8%. Using the same approach, a solar
heat source was considered next. This heat source was generated using SolTrace and scripting to resolve
the receiver surface using meshed elements. The meshed elements were obtained from the same CFD
model as used in the subsequent conjugate heat transfer analysis. The heat source was implemented as
a volumetric heat source distribution employing user coding. Different dish orientations and different
wind speeds were considered.

The following conclusions can be drawn from the study:

• For the solar heat source considered with a receiver inlet air temperature of 657 °C and a
mass flow rate of 0.06 kg/s, the optical efficiency was 70% and the efficiency of converting
the absorbed solar radiation to the heat transfer fluid varied between 40% and 50%
depending on the dish orientation and wind speed.

• The thermal radiation heat loss from the cavity remained relatively constant at about 30%
for all conditions considered, driven by the high temperatures of the cavity surface (in the
range 730-750 °C).

• The variation in thermal efficiency was therefore due to convection heat losses, which varied
between 10% and 16% depending on wind speed and dish orientation.

• Correlations from literature for convection heat losses from open cavities compared
favourably with the current results.

Detailed results of temperature and heat transfer distributions as determined in this paper allow for
the accurate estimation of optical and thermal efficiencies, and will aid in the development of improved
receivers for parabolic dishes.

33

Acknowledgements
The authors would like to acknowledge the support of the University of Pretoria (South Africa) and

the South African Department of Science and Innovation for student bursary support. Additionally, the
Centre for High Performance Computing (CHPC) in South Africa is acknowledged for computational
resources. This work is based on the research supported by the National Research Foundation (NRF) of
South Africa (Grant Number 109311) as well as the Technology Innovation Agency of South Africa
(TIA).

References
Abbasi-Shavazi, E., Torres, J.F., Hughes, G., Pye, J., 2020, Experimental correlation of natural

convection losses from a scale-model solar cavity receiver with non-isothermal surface temperature
distribution, Solar Energy, Vol. 198, pp. 355-375.

Bejan, A., 2006. Advanced Engineering Thermodynamics, 3rd ed., New York: John Wiley & Sons, Inc.
Bergman, T.L., Lavine, A.S., Incropera, F.P., Dewitt, D.P., 2011, Fundamentals of Heat and Mass

Transfer, seventh ed. John Wiley and Sons.
Brooks, M.J., Du Clou, S., Van Niekerk, J.L., Gauché, P., Leonard, C., Mouzouris, M.J., Meyer, A.J.,

Van der Westhuizen, N., Van Dyk, E.E., Vorster, F., 2015, SAURAN: A new resource for solar
radiometric data in Southern Africa, Journal of Energy in Southern Africa, Vol. 26, pp. 2-10,
(sauran.ac.za).

Çengel, Y.A., Ghajar, A.J., 2015. Heat and Mass Transfer: Fundamentals & Applications, 5th edition,
New York: McGraw-Hill Education, pp. 442-500.

Clausing, A.M., Lister, L.D., Waldvogel, J.M., 1989, Combined convection from isothermal cubical
cavities with a variety of side-facing apertures. International Journal of Heat and Mass Transfer,
Vol. 32 (8), pp. 1561-1566.

Craig, K.J., Le Roux, W.G., Meyer, J.P., 2015a, Computational Fluid Dynamics Analysis of Parabolic
Dish Tubular Cavity Receiver, 3rd Southern African Solar Energy Conference (SASEC 2015), 11-13
May 2015, Kruger Park, South Africa.

Craig, K.J., Marsberg, J., Meyer, J.P., 2015b, Combining Ray Tracing and CFD in the Thermal Analysis
of a Parabolic Dish Tubular Cavity Receiver, SolarPACES 2015, 13-16 October 2015, Cape Town,
South Africa, AIP Conference Proceedings 1734, 030009 (2016); doi: 10.1063/1.4949061.

Harris, J.A., Lenz, T.G., 1985, Thermal performance of solar concentrator/cavity receiver systems.
Solar Energy, Vol. 34 (2), pp. 135-142.

Heller, P., Pfänder, M., Denk, T., Tellez, F., Valverde, A., Fernandez, J., et al., 2006, Test and
evaluation of a solar powered gas turbine system, Solar Energy, Vol. 80, pp. 1225-1230.

Le Roux, W.G., Bello-Ochende, T., Meyer, J.P., 2014, The efficiency of an open-cavity tubular solar
receiver for a small-scale solar thermal Brayton cycle, Energy Conversion and Management, Vol. 84,
pp. 457-470.

Le Roux, W.G., 2015. Thermodynamic optimisation and experimental collector of a dish-mounted
small-scale solar thermal Brayton cycle, Thesis: University of Pretoria.

Le Roux, W.G. and Meyer, J.P., 2016, Modeling the small-scale dish-mounted solar thermal Brayton
cycle, SolarPACES 2015, 13-16 October 2015, Cape Town, South Africa, AIP Conference
Proceedings 1734, 060002-1–060002-8; doi: 10.1063/1.4949144.

Le Roux, W.G., 2018, Feasibility study of a hybrid small-scale dish-mounted solar thermal Brayton
cycle with cogeneration, Proceedings of the 16th International Heat Transfer Conference, IHTC-16,
August 10-15, 2018, Beijing, China, IHTC16-24185.

Le Roux, W.G. and Sciacovelli, A., 2019, Recuperated solar-dish Brayton cycle using turbocharger
and short-term thermal storage, Solar Energy, Vol. 194, pp. 569-580.

Li, Zhigang, Tang, Dawei, Du, Jinglong, Tie Li, 2011, Study on the radiation flux and temperature
distributions of the concentrator-receiver system in a solar dish/Stirling power facility, Applied
Thermal Engineering, Vol. 31, pp. 1780-1789.

Lovegrove, K., Taumoefolau, T., Paitoonsurikarn, S., Siangsukone, P., Burgess, G., Luzzi, A.,
Johnston, G., Becker, O., Joe, W., Major, G., 2003, Paraboloidal dish solar concentrators for multi-
megawatt power generation. In: Proceedings of the International Solar Energy Society (ISES) Solar
World Conference, Goteborg, Sweden.

34

Mancini, T., Heller, P., Butler, B., Osborn, B., Schiel, W., Goldberg, V., Buck, R., Diver, R., Andraka,
C., Moreno, J., 2003, Dish-stirling systems: An overview of development and status, Journal of Solar
Energy Engineering, Vol. 125, pp. 135-151.

McDonald, C.G., 1995, Heat loss from an open cavity. Sandia Laboratory, Report SAND95-2939.
Mills, D., 2004, Advances in solar thermal electricity technology. Solar Energy, Vol. 76, pp. 9-31.
Moghimi, M.A., Craig, K.J., Meyer, J.P., 2015, A novel computational approach to combine the optical

and thermal modelling of linear Fresnel collectors using the finite volume method, Solar Energy, Vol.
116, pp. 407-427.

Pavlovic, M.D., Penot, F., 1991, Experimental in the mixed convection regime in an isothermal open
cubic cavity, Experimental Thermal and Fluid Science, Vol. 4, pp.648-655.

Prakash, M., Kedare, S.B., Nayak, J.K., 2009, Investigations on heat losses from a solar cavity receiver,
Solar Energy, Vol. 83, pp. 157-170.

Prakash, M., Kedare, S.B., Nayak, J.K., 2012, Numerical study of natural convection loss from open
cavities, International Journal of Thermal Sciences, Vol. 51, pp. 23-30.

Shuai, Yong, Xin-Lin Xia, He-Ping Tan, 2008, Radiation performance of dish solar concentrator/cavity
receiver systems, Solar Energy, Vol. 82, pp. 13-21.

Slootweg, M., Craig, K.J., Meyer, J.P., 2019, A computational approach to simulate the optical and
thermal performances of a novel complex-geometry solar tower molten salt cavity receiver, Solar
Energy, Vol. 187, pp. 13-29.

Slootweg, M., 2019, Numerical performance analysis of novel solar tower receiver, MEng dissertation,
University of Pretoria (http://hdl.handle.net/2263/70354)

Stine, W.B., McDonald, C.G., 1989, Cavity receiver convective heat loss. In: Proceedings of the
International Solar Energy Society (ISES) Solar World Conference, Kobe, Japan.

Visser, W.P.J., Shakariyants, S.A. and Oostveen, M., 2011. Development of a 3 kW microturbine for
CHP applications. Journal of Engineering for Gas Turbines and Power 133, pp. 042301:1-8.

Wang, Wujun, Xu, Haoxin, Laumert, B., Strand, T, 2014, An inverse design method for a cavity
receiver used in solar dish Brayton system, Solar Energy, Vol. 110, pp. 745-755.

Wang, W., Laumert, B., Xu, H., Strand, T., 2015, Conjugate heat transfer analysis of an impinging
receiver design for a dish-Brayton system. Solar Energy, Vol. 119, pp. 298-309.

Wendelin, T., Dobos, A., 2013. SolTrace: a ray-tracing code for complex solar optical systems.
Technical Report NREL/Tp-5500-59163.

Wolff, T.M., Le Roux, W.G., Meyer, J.P., 2018, Heat loss analysis for an open-cavity tubular solar
receiver, Proceedings of the 16th International Heat Transfer Conference, IHTC-16, August 10-15,
2018, Beijing, China, IHTC16-24010.

Wolff, T.M., 2020, Initial testing of a collector for a solar-dish Brayton cycle, MEng dissertation,
University of Pretoria, to be submitted.

Wolmarans, J.R., Craig, K.J., 2019, One-way fluid-structure interaction of a medium-sized heliostat
using scale-resolving CFD simulation, Solar Energy, Vol. 191, pp. 84-99.

Wu, Shuang-Ying, Xiao, Lan, Cao, Yiding, Li, You-Rong, 2010, Convection heat loss from cavity
receiver in parabolic dish solar thermal power system: A review, Solar Energy, Vol. 84, pp. 1342-
1355.

Yuan, J.K., Ho, C.K., Christian, J.M., 2015, Numerical simulation of natural convection in solar cavity
receivers, Journal of Solar Energy Engineering, Vol. 137, 031004-1-10.

Appendix A: Transformation from mesh element to SolTrace primitive
geometry

Due to a lack of proper documentation on the transformation of primitive geometries in SolTrace, the
following description is provided, with an irregular triangle being used as an example.

The information needed to define a typical flat irregular triangle in SolTrace is the coordinates, aim points,
the rotation around the z-axis, as well as the coordinates of each corner of the triangle on an x-y-plane. The problem
with this way of defining the element aperture is that one is unable to clarify how the transformation occurs
without documentation. If one assumes that the translation occurs after the rotation around the origin, there are
still at least 12 different ways of rotating the element. This is if one assumes that the rotation occurs using either

35

one of the two conventions: the Euler angle or the Tait-Bryan angle rotations (both providing six possible
sequences of rotation axes).

This documentation provides the reader with the procedure of transforming the element, where it lies in its
position, which one would analyse to the position where one could obtain the information needed as input for
SolTrace.

(a) (b)

Figure A.1 The transformation of a mesh element to a SolTrace primitive irregular triangle illustrated
with the image on the left: (a): displaying the translation to the origin; and the picture on the right: (b):
displaying the rotation around the origin.

One needs to define a reference point for the object to start. This reference point around which the object will
rotate is needed. For simplicity, the authors decided to use the centroid of the triangle as reference point by taking
the average of the coordinates of the three corners of the triangle. The defined reference point will be used as input
values for the x-, y- and z-coordinates in the SolTrace System Stage section. The element is then translated to the
origin point by subtracting the reference point’s coordinates from each corner’s coordinates. This is formulated in
Equation (A-1) and illustrated in Figure A.1a as follows:

�
𝑥𝑥
𝑦𝑦
𝑧𝑧
�
translate

= �
𝑥𝑥
𝑦𝑦
𝑧𝑧
�
corner

− �
𝑥𝑥
𝑦𝑦
𝑧𝑧
�
ref

 (A-1)

The normal vector of the triangle plane can now be calculated by having the cross-product of the two vectors

that move from one corner to the other two corners. For simplicity, it is assumed that the corner one used as the
point of origin is labelled 1, and the other two corners are labelled 2 and 3. The cross-product, which also
represents the normal vector of the plane, is then calculated as follows:

𝑣⃗𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 〈𝑥𝑥1 − 𝑥𝑥2,𝑦𝑦1 − 𝑦𝑦2, 𝑧𝑧1 − 𝑧𝑧2〉 × 〈𝑥𝑥2 − 𝑥𝑥3,𝑦𝑦2 − 𝑦𝑦3, 𝑧𝑧2 − 𝑧𝑧3〉 (A-2)

The aim points that will be used in SolTrace are then calculated as follows:

�
𝑥𝑥
𝑦𝑦
𝑧𝑧
�
aim

= �
𝑥𝑥
𝑦𝑦
𝑧𝑧
�
ref

+ �
𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦
𝑣𝑣𝑧𝑧
�
normal

 (A-3)

With the coordinates and aim points calculated, the next step is to rotate the geometry. In this instance, rotation

is defined by three variables, 𝜙𝜙, 𝜈𝜈 and 𝜓𝜓. Consider the illustration given in Figure A.1b:
• 𝜙𝜙 represents the angle of rotation about the z-axis, also known as roll;
• 𝜈𝜈 represents the angle of rotation about the y-axis, also known as pitch;

𝜓𝜓
𝜈𝜈

𝜙𝜙

36

• 𝜓𝜓 represents the angle of rotation about the x-axis, also known as yaw.
First, it is assumed that there is no rotation about the z-axis. Therefore, one can assume that the value

corresponding to the rotation around the z-axis (𝜙𝜙) is zero. The other two variables are calculated as follows:
The normal vector’s (𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 𝑥𝑥 and 𝑧𝑧 components are used to form a new vector that represents the vector

that would form after the pitch rotation takes place. The new vector, represented as 𝑣𝑣𝜈𝜈, is constructed as a unit
vector as follows:

𝑣𝑣𝜈𝜈 = 〈𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑥𝑥,0,𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑧𝑧〉

�𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑥𝑥2+𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑦𝑦2+𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑧𝑧2
 (A-4)

The angle 𝜈𝜈 is then calculated as follows:

𝜈𝜈 = sin−1 � 𝑣𝑣𝜈𝜈,𝑥𝑥

�𝑣𝑣𝜈𝜈,𝑥𝑥2+𝑣𝑣𝜈𝜈,𝑧𝑧2
� (A-5)

One could use the following equation to calculate the yaw angle (𝜓𝜓):

𝜓𝜓 = − cos−1(𝑣𝑣𝜈𝜈 ∙ 𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) (A-6)

With the angles of rotations calculated, one can calculate the rotation matrices for each axis. These are

represented with the following three forms of rotation matrices:

𝑅𝑅𝑧𝑧(𝜙𝜙) = �

cos𝜙𝜙 − sin𝜙𝜙 0
sin𝜙𝜙 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 0

0 0 1
�

𝑅𝑅𝑦𝑦(ν) = �
cos 𝜈𝜈 0 sin 𝜈𝜈

0 1 0
− sin 𝜈𝜈 0 cos 𝜈𝜈

�

𝑅𝑅𝑥𝑥(𝜓𝜓) = �
1 0 0
0 cos𝜓𝜓 − sin𝜓𝜓
0 sin𝜓𝜓 cos𝜓𝜓

�

(A-7)

With the separate rotation matrices calculated, one can calculate one overall rotation matrix as follows:

𝑅𝑅(𝜙𝜙, 𝜈𝜈,𝜓𝜓) = 𝑅𝑅𝑧𝑧(𝜙𝜙)𝑅𝑅𝑦𝑦(𝜈𝜈)𝑅𝑅𝑥𝑥(𝜓𝜓) (A-8)

The transformed coordinates on the x-y-plane can now be calculated using the rotation matrix and the

coordinates of the transformed triangle. This is done using the following equation:

�
𝑥𝑥
𝑦𝑦
𝑧𝑧
�
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

= � 𝑅𝑅(𝜙𝜙, 𝜈𝜈,𝜓𝜓) � �
𝑥𝑥
𝑦𝑦
𝑧𝑧
�
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 (A-9)

This equation is used for each corner of the triangle. The transformed coordinates are then used as the x- and

y-coordinates in the aperture editor. One will note that the z-coordinate will be zero or close to zero. This is to be
expected, since the triangle aperture is meant to be rotated onto the x-y plane.

37

Appendix B: Experimental conduction heat loss
The values used for the calculation of the conduction heat losses through the top, bottom and side walls of

the receiver are shown in Tab.B.1.

 Property Side 1 Side 2 Side 3 Side 4 Top Bottom
Average receiver wall temperature (measured) [K] 943.8 944.8 946.7 946.7 926.9 959.8
Average insulation surface temperature (measured)

[K]
324.3 351.9 347.5 357.4 346.3* 385.1*

Average heat transfer area [m2] 0.307 0.307 0.307 0.307 0.185 0.122
Average insulation conductivity (calculated)

[W/m.K]
0.106 0.108 0.108 0.109 0.107 0.112

Average insulation thickness [m] 0.1 0.1 0.1 0.1 0.1 0.05
Average conduction heat loss rate (calculated) [W] 202.3 197.4 199.1 197.1 115.7 157.2
Table B.1 Summary of conduction heat losses (*calculated based on average side heat transfer coefficient)

38

Additional material (to be made available online)

Appendix C: Code for parsing mesh file of complex geometry and
generating input files for SolTrace simulation

The following Python code is used to parse the .msh file of the complex geometry surface mesh, which will
be simulated in SolTrace, as well as to generate the input files needed for running the SolTrace code given in
Appendix D.

-*- coding: utf-8 -*-
"""
This file parses the assigned .msh file, and converts it to the required input files needed for a SolTrace
simulation

@author: M Slootweg
"""

import os
import numpy as np
import pandas

def soltrace_transform(x,y,z,face_section):
 """
 The triangular element defined in space is transformed to values that can be used as input for SolTrace
 :param x: The x-positions of the triangular element
 :param y: The y-positions of the triangular element
 :param z: The z-positions of the triangular element
 :param face_section: face section value is added as part of the output
 :return: A list of values in the order that is consistent with the input needed for SolTrace.
 """

 inflation_factor = 1.0

 x_mid = (x[0]+x[1]+x[2])/3
 y_mid = (y[0]+y[1]+y[2])/3
 z_mid = (z[0]+z[1]+z[2])/3

 z_rotate = 0

 x_new = x - x_mid
 y_new = y - y_mid
 z_new = z - z_mid

 vec_norm = np.cross([x_new[0]-x_new[1],y_new[0]-y_new[1],z_new[0]-z_new[1]],[x_new[0]-
x_new[2],y_new[0]-y_new[2],z_new[0]-z_new[2]])
 vec_norm = vec_norm/np.linalg.norm(vec_norm)

 x_aim = vec_norm[0] + x_mid
 y_aim = vec_norm[1] + y_mid
 z_aim = vec_norm[2] + z_mid

 R = np.linalg.inv(Rot_RPY(vec_norm))
 vector_new = np.array([x_new,y_new,z_new])
 vector_transform = np.mat(R) * np.mat(vector_new)
 vector_transform = vector_transform*inflation_factor

 x_transform = np.array(vector_transform[0,:]).ravel()
 y_transform = np.array(vector_transform[1,:]).ravel()

 x_transform_new = np.array([x_transform])
 y_transform_new = np.array([y_transform])

 area_matrix = np.transpose(np.r_[x_transform_new, y_transform_new, np.ones((1,3))])
 area = np.abs(0.5*np.linalg.linalg.det(area_matrix))

return(np.array([x_mid,y_mid,z_mid,x_aim,y_aim,z_aim,z_rotate,x_transform[0],y_transform[0],x_transform[1],
y_transform[1],x_transform[2],y_transform[2],area,face_section]))

def file_len(fname):
 with open(fname) as f:
 for i, l in enumerate(f):
 pass
 return i + 1

root = os.getcwd()
mesh_file = "example.msh")
file_name = os.path.join(root, mesh_file)

f = open(file_name)

39

eof = file_len(file_name)
current_pos = 1
node_num = 0
face_num = 0
sec_num = 0
nodes = []
X = []
Y = []
Z = []
faces = []
BCs = []

new_line = f.readline()

while current_pos <= eof:
 if new_line.startswith("(2"):
 dimensions = float(new_line[3])
 print("Dimensions = " + str(dimensions))
 new_line = f.readline()
 current_pos += 1

 elif new_line.startswith("(10"):
 if float(new_line[5]) == 0:
 nodes_info = []
 in_brac1 = new_line[new_line.find("(")+1:new_line.rfind(")")]
 in_brac2 = in_brac1[in_brac1.find("(")+1:in_brac1.rfind(")")]
 temp_node_info = map(str,in_brac2.split())
 for ind in temp_node_info:
 nodes_info.append(int(ind,16))
 new_line = f.readline()
 current_pos += 1
 elif float(new_line[5]) != 0:
 new_line = f.readline()
 current_pos += 1
 sec_num += 1
 while not new_line.startswith("))"):
 temp_node = list(map(float,new_line.split()))
 node_num+=1
 if dimensions == 2:
 nodes.append([sec_num, node_num, temp_node[0], temp_node[1]])
 X.append(temp_node[0])
 Y.append(temp_node[1])
 elif dimensions == 3:
 X.append(temp_node[0])
 Y.append(temp_node[1])
 Z.append(temp_node[2])
 nodes.append([sec_num, node_num, temp_node[0], temp_node[1], temp_node[2]])
 new_line = f.readline()
 current_pos += 1

 elif new_line.startswith("(13"):
 print(str(new_line[5]))
 if float(int(new_line[5],16)) == 0:
 face_info = []
 in_brac1 = new_line[new_line.find("(")+1:new_line.rfind(")")]
 in_brac2 = in_brac1[in_brac1.find("(")+1:in_brac1.rfind(")")]
 temp_face_info = map(str,in_brac2.split())
 for ind in temp_face_info:
 face_info.append(int(ind,16))
 new_line = f.readline()
 current_pos += 1
 else:
 face_info2 = []
 in_brac1 = new_line[new_line.find("(")+1:new_line.rfind("(")]
 in_brac2 = in_brac1[in_brac1.find("(")+1:in_brac1.rfind(")")]
 temp_face_info = map(str,in_brac2.split())
 for ind in temp_face_info:
 face_info2.append(int(ind,16))
 sec_num2 = float(face_info2[0])
 face_type = float(face_info2[3])
 element_type = float(face_info2[4])
 new_line = f.readline()
 current_pos += 1
 while not new_line.startswith("))"):
 if element_type == 4:
 temp_face = map(str,new_line.split())
 temp_face2 = []
 for ind in temp_face:
 temp_face2.append(int(ind,16))
 if len(temp_face2) != 0:
 face_num+=1
 len1 = np.sqrt((X[temp_face2[0]-1]-X[temp_face2[2]-1])**2 + (Y[temp_face2[0]-1]-
Y[temp_face2[2]-1])**2 + (Z[temp_face2[0]-1]-Z[temp_face2[2]-1])**2)
 len2 = np.sqrt((X[temp_face2[1]-1]-X[temp_face2[3]-1])**2 + (Y[temp_face2[1]-1]-
Y[temp_face2[3]-1])**2 + (Z[temp_face2[1]-1]-Z[temp_face2[3]-1])**2)
 if len1 > len2:
 faces.append([sec_num2, face_num, face_type, 3, temp_face2[0], temp_face2[1],
temp_face2[3]])

40

 face_num+=1
 faces.append([sec_num2, face_num, face_type, 3, temp_face2[1], temp_face2[2],
temp_face2[3]])
 else:
 faces.append([sec_num2, face_num, face_type, 3, temp_face2[0], temp_face2[2],
temp_face2[3]])
 face_num+=1
 faces.append([sec_num2, face_num, face_type, 3, temp_face2[0], temp_face2[1],
temp_face2[2]])
 new_line = f.readline()
 current_pos += 1

 elif element_type == 3:
 temp_face = map(str,new_line.split())
 temp_face2 = []
 for ind in temp_face:
 temp_face2.append(int(ind,16))
 if len(temp_face2) != 0:
 face_num+=1
 faces.append([sec_num2, face_num, face_type, 3, temp_face2[0], temp_face2[1],
temp_face2[2]])

 new_line = f.readline()
 current_pos += 1

 else:
 new_line = f.readline()
 current_pos += 1

 elif new_line.startswith("(45"):
 temp_arr = new_line.split()
 if temp_arr[2] == "wall":
 in_brac1 = new_line[new_line.find(" ")+2:new_line.find(")")]
 id_zone_name = in_brac1.split()[2]
 id_zone = in_brac1.split()[0]
 BCs.append([id_zone,id_zone_name])
 new_line = f.readline()
 current_pos += 1
 else:
 new_line = f.readline()
 current_pos += 1

nodes = np.array(nodes)
faces = np.array(faces)
BCs = np.array(BCs)

print("")
print("Start boundary selection:")
print("")
k=0
BC_select = []
if BCs.any:
 print("Select boundaries to be simulated:")
 print(" ")
 for k in range(len(BCs)):
 print(k+1 , ". " , BCs[k][1])
else:
 print("There are no boundaries which are classified as walls.")

print(" ")
BC_select = input("Select the boundaries to be simulated in list form[]: ")

BC_select = eval(BC_select)
Boundaries = np.array([[0,"heliostat"],[0,"flat_aperture"]])
for i in BC_select:
 Boundaries = np.append(Boundaries,[BCs[int(i)-1][:]],axis=0)

section_list = [row[0] for row in Boundaries[2:]]
section_list = [float(i) for i in section_list]

print(" ")
print("Which of the selected boundaries is to be used as heat source/absorber?")
Absorber_select = input("Select in list form[]: ")

Absorber_select = eval(Absorber_select)
Absorber_boundaries = []
for i in Absorber_select:
 Absorber_boundaries = np.append(Absorber_boundaries,[BCs[int(i)-1][0]],axis=0)

Absorber_boundaries = [int(i) for i in Absorber_boundaries]

optic_properties = pandas.read_csv('optical_property_set.csv')
optic_properties = optic_properties.values

print(" ")
print("Start assigning optical properties to boundaries:")
print(" ")
k=0

41

if optic_properties.any:
 print("Select from the following optical properties list:")
 print(" ")
 for k in range(np.shape(optic_properties)[0]):
 print(k+1 , ". " , optic_properties[k][0])
else:
 print("There are no boundaries which are classified as walls.")

print(" ")
optic_select = []
optics = [np.zeros(np.shape(optic_properties)[1])]
for i in range(np.shape(Boundaries)[0]):
 optic_select = (input(str(Boundaries[i][1])+" : "))
 optics = np.append(optics,np.array(optic_properties)[[int(optic_select)-1]],axis=0)
optics = np.delete(optics, (0), axis=0)

boundary_optics = np.append(Boundaries,optics,axis=1)

full_optics_list = [row[1].lower() for row in boundary_optics[0:]]
INDEX = []
for index in enumerate(full_optics_list):
 if index[1] == "aperture":
 INDEX.append(index[0])

aperture = []
other_boundary_optics = []
i = 0
for row in boundary_optics:
 if i in INDEX:
 aperture.append(row)
 else:
 other_boundary_optics.append(row)
 i += 1

other_boundary_optics_list = [row[0] for row in other_boundary_optics[2:]]
other_boundary_optics_list = [float(i) for i in other_boundary_optics_list]
aperture_list = [row[0] for row in aperture]
aperture_list = [float(i) for i in aperture_list]

X = np.array(X)
Y = np.array(Y)
Z = np.array(Z)

root = os.getcwd()

file_name = os.path.join(root, "boundary_optics.txt")

with open(file_name, "w") as fh:
 for i in range(np.shape(boundary_optics)[0]):
 boundary_stuff = ','.join(map(str, boundary_optics[[i]].ravel()))
 fh.write(str(boundary_stuff))
 fh.write("\n")

file_name = os.path.join(root, "receiver_coordinates.txt")

k = 0
absorber_element_list = []
absorber_element_coordinates = []

with open(file_name, "w") as fh:
 for i in range(0,int(faces[-1,1]),1):
 if faces[i,0] in other_boundary_optics_list:
 x = []
 y = []
 z = []
 for j in range(int(faces[i,3])):
 x.append(X[int(faces[i,4+j])-1])
 y.append(Y[int(faces[i,4+j])-1])
 z.append(Z[int(faces[i,4+j])-1])
 sol_trans = ','.join(map(str, soltrace_transform(x,y,z,faces[i,0])))
 fh.write(str(sol_trans))
 fh.write("\n")
 for l in Absorber_boundaries:
 if faces[i,0] == int(l):
 absorber_element_list.append(k)
 absorber_element_coordinates.append([x,y,z])
 k += 1

file_name = os.path.join(root, "absorber_element_coordinates.txt")

with open(file_name, "w") as fh:
 for i in absorber_element_coordinates:
 absorber_element = ','.join(map(str, i))
 fh.write(str(i))
 fh.write("\n")

file_name = os.path.join(root, "absorber_element_list.txt")

42

with open(file_name, "w") as fh:
 for i in absorber_element_list:
 fh.write(str(i))
 fh.write("\n")

file_name = os.path.join(root, "aperture_coordinates.txt")

with open(file_name, "w") as fh:
 for i in range(0,int(faces[-1,1]),1):
 if faces[i,0] in aperture_list:
 x = []
 y = []
 z = []
 for j in range(int(faces[i,3])):
 x.append(X[int(faces[i,4+j])-1])
 y.append(Y[int(faces[i,4+j])-1])
 z.append(Z[int(faces[i,4+j])-1])
 sol_trans = ','.join(map(str, soltrace_transform(x,y,z,faces[i,0])))
 fh.write(str(sol_trans))
 fh.write("\n")

print("")
print("Script finished succesfully")

Appendix D: SolTrace script

The code presented here is used to simulate a complex geometry receiver for a parabolic dish. The input files
generated using the code of Appendix C are used as input files. This code is written in the LK scripting language,
which is the supported language in SolTrace.

/*
Script for a parabolic dish and complex geometry receiver
*/

/* **
 Python Commands
 ** */

// Import commands from spreadsheet or text file

// The simulation_list.txt contains information which is used as summary of the inputs needed. These input
// values are assigned to variables.

py_file = open('simulation_list.txt', 'r');

xrow = [];
j = 0;
simulation_list = [];
line="";

while (read_line(py_file, line))
{
 xrow = split(line, ',');
 simulation_list[j] = xrow[0];
 j = j + 1;
}
outln(simulation_list);
x = to_real(simulation_list[0]);
y = to_real(simulation_list[1]);
z = to_real(simulation_list[2]);
amount_of_rays = to_real(simulation_list[3]);
dni_value = to_real(simulation_list[4]);
heliofield_file = simulation_list[5];
simulate_dish = to_real(simulation_list[6]);
simulate_receiver = to_real(simulation_list[7]);
project_name = simulation_list[8];
element_hit_file = to_real(simulation_list[9]);
ray_data_file = to_real(simulation_list[10]);
amount_of_seeds = to_real(simulation_list[11]);

/* **
 SOLTRACE SCRIPT OF PS10 HELIOSTAT FIELD
 ** */

ProjectName = project_name;

/* **
 configure Direct Normal Irradiance
 ** */

I_n = dni_value;

43

outln("DNI = "+I_n);

/* **
 configure Sun Shape
 ** */

Sun.useldh = false;

Sun.x = s[0];
Sun.y = s[1];
Sun.z = s[2];
Sun.shape = 'p';
Sun.halfwidth = 4.65;
sunopt(Sun);

/* **
 configure an optical property data set
 ** */

fileID=cwd() + '\\boundary_optics.txt';
py_file = open(fileID, 'r');

xrow = [];
j = 0;
optical_properties = [];
line="";

while (read_line(py_file, line))
{
 xrow = split(line, ',');
 optical_properties[j][0] = to_real(xrow[0]);
 optical_properties[j][1] = xrow[1];
 optical_properties[j][2] = xrow[2];
 optical_properties[j][3] = to_real(xrow[3]);
 optical_properties[j][4] = to_real(xrow[4]);
 optical_properties[j][5] = to_real(xrow[5]);
 optical_properties[j][6] = to_real(xrow[6]);
 optical_properties[j][7] = to_real(xrow[7]);
 optical_properties[j][8] = to_real(xrow[8]);
 optical_properties[j][9] = to_real(xrow[9]);
 optical_properties[j][10] = to_real(xrow[10]);
 j = j + 1;
}
no_optics = j;

clearoptics(); // remove any optical properties currently defined

for (j=0; j<(no_optics); j++)
{
 k = 1;
 i = 0;
 while (j > i)
 {
 if (optical_properties[j][2] == optical_properties[i][2])
 k = 0;
 i++;
 }
 if (k == 1)
 {
 addoptic(optical_properties[j][2]); // adds element to current stage
 general_optics_front.refl = optical_properties[j][3];
 general_optics_front.trans = optical_properties[j][4];
 general_optics_front.errslope = optical_properties[j][5];
 general_optics_front.errspec = optical_properties[j][6];
 general_optics_back.refl = optical_properties[j][7];
 general_optics_back.trans = optical_properties[j][8];
 general_optics_back.errslope = optical_properties[j][9];
 general_optics_back.errspec = optical_properties[j][10];

 opticopt(optical_properties[j][2], 1, general_optics_front);
 opticopt(optical_properties[j][2], 2, general_optics_back);
 }
}

/* **
 Import receiver elements
 *** */
clearstages(); // clear the system

aiming_height = 2.897;
deviation = 0.14875;
rim_height = 0.09755;
c = 1/(2*aiming_height);

if (simulate_receiver == 1)
{
 fileID=cwd()+ '\\receiver_coordinates.txt';

44

 py_file = open(fileID, 'r');

 xrow = [];
 j = 0;
 receiver_coordinates = [];
 line="";

 while (read_line(py_file, line))
 {
 xrow = split(line, ',');
 receiver_coordinates[j][0] = to_real(xrow[0]);
 receiver_coordinates[j][1] = to_real(xrow[1]);
 receiver_coordinates[j][2] = to_real(xrow[2]);
 receiver_coordinates[j][3] = to_real(xrow[3]);
 receiver_coordinates[j][4] = to_real(xrow[4]);
 receiver_coordinates[j][5] = to_real(xrow[5]);
 receiver_coordinates[j][6] = to_real(xrow[6]);
 receiver_coordinates[j][7] = to_real(xrow[7]);
 receiver_coordinates[j][8] = to_real(xrow[8]);
 receiver_coordinates[j][9] = to_real(xrow[9]);
 receiver_coordinates[j][10] = to_real(xrow[10]);
 receiver_coordinates[j][11] = to_real(xrow[11]);
 receiver_coordinates[j][12] = to_real(xrow[12]);
 receiver_coordinates[j][13] = to_real(xrow[13]);
 receiver_coordinates[j][14] = to_real(xrow[14]);
 j = j + 1;
 }
 no_receiver_elements = j;
 outln("Number of receiver elements "+no_receiver_elements);

 addstage('single_stage');

 // we need to set the current stage to be active so we can add elements to it
 activestage('single_stage');

 Receiver_details.virtual = false;
 Receiver_details.multihit = true;
 Receiver_details.tracethrough = false;
 Receiver_details.x = 0;
 Receiver_details.y = 0;
 Receiver_details.z = 0;
 Receiver_details.ax = 0;
 Receiver_details.ay = 0;
 Receiver_details.az = 1;
 Receiver_details.zrot = 0;

 stageopt('single_stage',Receiver_details);

 for (j=0; j<(no_receiver_elements); j++)
 {
 addelement(); // adds element to current stage
 receiver_details.en = true;
 receiver_details.x = receiver_coordinates[j][0];
 receiver_details.y = receiver_coordinates[j][1];
 receiver_details.z = receiver_coordinates[j][2] + aiming_height - deviation;
 receiver_details.ax = receiver_coordinates[j][3];
 receiver_details.ay = receiver_coordinates[j][4];
 receiver_details.az = receiver_coordinates[j][5] + aiming_height - deviation;
 receiver_details.zrot = receiver_coordinates[j][6];
 receiver_details.aper =
['i',receiver_coordinates[j][7],receiver_coordinates[j][8],receiver_coordinates[j][9],receiver_coordinates[
j][10],receiver_coordinates[j][11],receiver_coordinates[j][12],0,0];
 receiver_details.surf = ['f',0,0,0,0,0,0,0,0];
 for (k=0; k<(no_optics); k++)
 {
 if (receiver_coordinates[j][14] == optical_properties[k][0])
 {
 receiver_details.optic = optical_properties[k][2];
 }
 }
 receiver_details.comment = receiver_coordinates[j][13];

 elementopt(j, receiver_details);
 }

 receiver_coordinates = [];

}

/* **
 add dish and receiver cover
 ** */

element_count = j;
receiver_height = 0.9162;
receiver_width = 0.614;
receiver_apperture_width = 0.400;
receiver_rim_width = (receiver_width-receiver_apperture_width)/2;

45

receiver_rim_pos = receiver_apperture_width/2+(receiver_width-receiver_apperture_width)/4;

if (simulate_dish == 1)
{

 addelement();
 dish_details.en = true;
 dish_details.x = 0;
 dish_details.y = 0;
 dish_details.z = 0;
 dish_details.ax = 0;
 dish_details.ay = 0;
 dish_details.az = 1;
 dish_details.zrot = 0;
 dish_details.aper = ['c',4.8,0,0,0,0,0,0,0];
 dish_details.surf = ['p',c,c,0,0,0,0,0,0];
 dish_details.optic = optical_properties[0][2];
 elementopt(element_count,dish_details);
 element_count = element_count+1;
}

/* **
 start the trace
 ** */

for (seed=1; seed<(amount_of_seeds+1); seed++)
{

 traceopt({ 'rays'= amount_of_rays , 'maxrays' = 10*amount_of_rays , 'seed'=seed , 'cpus'=7 ,
'include_sunshape'=true , 'optical_errors'=true});
 trace();

 T_area = ((sundata(){"xmax"})-(sundata(){"xmin"}))*((sundata(){"ymax"})-(sundata(){"ymin"}));

 /* **
 Write all Ray Data to File
 ** */

 Inters=nintersect();

 if (ray_data_file == 1)
 {

 j=0;
 k=0;
 TEMP = "PosX,PosY,PosZ,Element,Stage,RayNumber";
 fileID=cwd() + '\\' + ProjectName + '\\trace_results_seed_'+seed+'_rays_'+amount_of_rays;

 if (file_exists(fileID))
 {remove_file(fileID);}
 file = open(fileID,'w');
 write_line(file,TEMP);
 while (j < Inters)
 {
 temp=raydata(j);
 if (temp[6]!=0)
 {
 TEMP = temp[0]+","+temp[1]+","+temp[2]+","+temp[6]+","+temp[7];
 write_line(file,TEMP);
 k = k+1;
 }
 j=j+1;
 }
 close(fileID);
 }

 /* **
 Write Element Hits in stage to File
 ** */

 if (element_hit_file == 1)
 {
 T_area = ((sundata(){"xmax"})-(sundata(){"xmin"}))*((sundata(){"ymax"})-(sundata(){"ymin"}));
 DNI = to_real(I_n);
 Power_Per_Ray = DNI*T_area/sundata(){"nrays"};

 py_file = open('absorber_element_list.txt', 'r');

 xrow = [];
 j = 0;
 absorber_list = [];
 line="";

 while (read_line(py_file, line))
 {
 xrow = split(line, ',');
 absorber_list[j] = to_real(xrow[0]);
 j = j + 1;

46

 }
 no_absorber_elements = j;
 outln("Number of tested absorber elements "+no_absorber_elements);

 curr_stage = activestage('single_stage');
 elem_num = nelements();
 j=0;
 fileID=cwd() + '\\' + ProjectName +
'\\Element_Hit_Results_seed_'+seed+'_rays_'+amount_of_rays;
 if (file_exists(fileID))
 {remove_file(fileID);}
 file = open(fileID,'w');
 outln("number of elements = ",elem_num);

 for (k=0; k<(no_absorber_elements); k++)
 {
 j = absorber_list[k];
 area = to_real(elementopt(j){"comment"});
 elem_hits = rayhits(0,j,1);
 Elem_Watts = (Power_Per_Ray*elem_hits)/(area); //[W/m2]
 write_line(file,Elem_Watts);
 }
 close(fileID);

 j=0;
 fileID=cwd() + '\\' + ProjectName +
'\\Element_Hit_Results_seed_'+seed+'_rays_'+amount_of_rays+'_part_2';
 if (file_exists(fileID))
 {remove_file(fileID);}
 file = open(fileID,'w');

 for (k=(no_absorber_elements-1); k>=0; k--)
 {
 j = absorber_list[k];
 area = to_real(elementopt(j){"comment"});
 elem_hits = rayhits(0,j,1);
 Elem_Watts = (Power_Per_Ray*elem_hits)/(area); //[W/m2]
 write_line(file,Elem_Watts);
 }
 close(fileID);
 }
}

	1. Introduction
	1.1 Background
	1.2 Heat losses from dish cavity receivers
	1.3 Complex geometry dish receiver modelling
	1.4 Modelling approaches
	1.5 Layout of paper

	2. Validation case
	2.1 Experimental set-up and results
	2.2 CFD analysis of validation case
	2.2.1 Computational domain
	2.2.2 Computational model of receiver
	2.2.3 Computational mesh
	2.2.4 Computational settings

	2.3 Results of validation case

	3. Solar heat source using ray tracing
	3.1 Complex geometry modelling in SolTrace
	3.2 Ray-tracing model set-up
	3.3 Ray and mesh independence study
	3.4 Interpolation of heat source into CFD model

	4. Upright orientation CFD results
	5. Effect of dish orientation and wind speed on heat transfer
	5.1 Inclination of cavity receiver
	5.2 Solving strategy for different dish orientations
	5.3 Results for different dish orientations and wind speeds
	5.4 Comparison with literature correlations

	6. Conclusions
	Acknowledgements
	References
	Appendix A: Transformation from mesh element to SolTrace primitive geometry
	Appendix B: Experimental conduction heat loss
	Additional material (to be made available online)
	Appendix C: Code for parsing mesh file of complex geometry and generating input files for SolTrace simulation
	Appendix D: SolTrace script

