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Abstract
An enhanced design for a solar still desalination system which has been proposed in the previously conducted study of the 
research team is considered here, and the experimental data obtained during a year are employed to develop ANN models 
for that. Different types of artificial neural network (ANN), as one of the most popular machine learning approaches, are 
developed and compared together to find the best of them to predict the hourly produced distillate and water temperature 
in the basin, which are two key performance criteria of the system. Feedforward (FF), backpropagation (BP), and radial 
basis function (RBF) types of ANN are examined. According to the results, by having the coefficients of determination of 
0.963111 and 0.977057, FF and RBF types are the best ANN structures for estimation of the hourly water production and 
water temperature in the basin, respectively. In addition, the annual error analysis done for the data not used to develop ANN 
models demonstrates that the average error in prediction of the hourly distillate production and water temperature in the 
basin varies from 9.03 and 5.13% in January (the highest values) to 4.06 and 2.07% in July (the lowest values), respectively. 
Moreover, the error for prediction of the daily water production is in the range of 2.41 to 5.84% in the year.

Keywords  Artificial intelligence · Backpropagation artificial neural network · Experiments · Feedforward artificial neural 
network · Radial basis function artificial neural network

Introduction

The environment is a vital resource that needs to be pro-
tected and conserved [1–4]. To offset the negative impact of 
anthropogenic activities associated with the extraction and 
burning of fossil fuels, alternative energy sources need to 
be exploited [5–10]. Solar energy is one of the cleanest and 

cheapest sources of energy [11–15]. Solar energy is much 
more predictable than its rival, i.e., wind energy [16–18]. It 
is widely available in most areas of the world [19–21]. Solar 
still as a type of solar technology is widely used for produc-
ing freshwater from saline water [22–24]. Such a system, 
due to its high reliability as well as usability, has attracted 
increasing attention in recent years [25–27]. In a solar still 
system, impure water in the basin is evaporated by the heat 
of the sun [28–30]. Then, evaporated water is cooled and 
collected in the water collection through [31–33]. Therefore, 
pure water is obtained from a brackish one.

Thermal analysis is an important part for modeling a 
system [34–37]. Therefore, many studies have focused on 
modeling the different types of solar stills thermally to ana-
lyze the performance of these systems. Hence, the need for 
modeling the solar still has intensified over the past several 
years, leading to the development of various thermal mod-
els. Data-driven methods as a means to improve the runtime 
of numerical modeling and design optimization with reli-
able accuracy are drawing attention towards themselves in 
this way. Machine learning (ML) has proven its capability 
in engineering simulations among data-driven approaches 
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due to being more accessible and easier to handle. Also, 
among ML algorithms, artificial neural networks (ANN) 
have a widespread acceptance in many applications such 
as diagnostic prediction, e.g., knock occurrence in internal 
combustion engines [38] and membrane degradation in fuel 
cells [39], and performance prediction, e.g., heating pumps 
[40], photovoltaic solar modules [41], and evaporative cool-
ers [42], dehumidifiers [43], and so on. Besides, contrary to 
linear regression algorithms, ANN can extract the nonlinear-
ity relationship between the input–output data.

Table 1 presents a list of the recently done investigations 
in the field of modeling the performance of a solar still using 
ML. In this table, a brief summary of each work is provided 
while a question about application of different types of ANN 
for modeling and comparing them is asked.

As answering the question in Table 1 reveals, although 
different conditions for adjusting parameters like number of 
layers and hidden neurons in each layer, as well the learn-
ing algorithm has been examined, in no study in the past, 
different types of ANN have been developed and compared 
together. Therefore, based on the identified gap, the current 
study is done, in which feedforward (FF), backpropagation 
(BP), and radial basis function (RBF) types of ANN are 
developed to estimate the values of the hourly distillate and 

water temperature in the basin, as two main characteristics of 
a solar still. The experimental data recorded by the research 
team are used as the input data for modeling. The models 
are developed, and then, by employing an error analysis, the 
best of them is found for each case. In addition, the ability 
of the best found type of ANN for each case to estimate the 
values not employed for model development is evaluated 
for different hours of a sample day, while the profiles for 
average error values in various months of a year are also 
discussed in detail.

The investigated solar still and experiments

As indicated, in this study, an enhanced design for the solar 
still system, which was originally introduced by Sohani et al. 
[1], is investigated, and the experimental data for that are 
employed as the input data for obtaining different types of 
ANN model.

The experiments are conducted on the test rig located at 
51.4 degrees E, 35.7 degrees N in Tehran, Iran [54]. Fig-
ure 1 schematically represents the experimental test rig, 
containing a solar still unit placed on the wheels by rods 
with varying lengths. The rods’ variable length can change 

Table 1   A quick introduction of the related recent works done in the topic of this investigation

Study Year A brief description Were different types of ANN 
considered and compared 
together?

Abujazar et al. [44] 2018 A feedforward type of ANN was developed to determine the values of pure water 
production of a solar still system

No

Wang et al. [45] 2019 A tubular type of solar still was considered, and the simulation of that was done 
by ML. The water production rate of the solar still was taken into account as the 
modeled parameter

No

Mashaly et al. [46] 2019 Different kinds of ML including one ANN structure were examined and evaluated 
for modeling the performance of a solar still. The system was an almost simple 
passive design

No

Sharshir et al. [47] 2019 A pyramid solar still was considered, and the distillate production and energy 
efficiency indicator at each hour were predicted by means of ML

No

Chauhan et al. [48] 2019 The amount of water production in a solar still was considered as an output, and it 
was predicted by ANN

No

Bahiraei et al. [49] 2020 A novel design for a solar still which worked based on nanofluid concept and in 
which thermoelectric units were used, was proposed, and then, ANN was utilized 
to estimate the performance

No

Nazari et al. [50] 2020 ANN was employed, and a number of technical performance parameters of a solar 
still including water production and efficiency values were modeled

No

Chauhan et al. [51] 2020 By the aid of ANN, the thermophysical characteristics of the wet air in the solar 
still were determined

No

Essa et al. [52] 2020 Harris Hawks optimizer in combination with ANN was utilized to provide a model 
for estimation of water production of a solar still

No

Elsheikh et al. [53] 2021 A stepped type of solar still was investigated, and the performance of that was 
simulated using ANN. The distillate production was the output of modeling, and 
the results of operation of the proposed design were compared with a conven-
tional technology for solar stills

No
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the distance between the collector and wheels and, eventu-
ally, the slope. As can be seen, the solar still unit consists 
of a feed-water tank, a solar still, and a 3 m2 flat-plate solar 
collector, of which two last items are linked together through 
plumbing. A pump is also taken into account to sustain the 
energy enough in the network grid during the experiments. 
In addition to the water tank above the solar collector, two 
reservoirs to accumulate salty water and freshwater are 
accommodated close to the solar still, not shown in Fig. 1.

The solar still with an area of 1.4 m2 comprises a basin, 
glass, polycarbonate box, isolation cover, and the half-pipe 
to collect freshwater. The bottom side of the tested solar still 
is painted in the color of black to maximize the absorption of 
solar radiation. The flat-plate solar collector insulated with 
glass wool and the steel pipe are chosen to provide a long-
term life during the test period while maintaining a high 
heat transfer rate.

The experiments were carried out during a year. They 
start from 8 in the morning and continue up to 16 in fall and 
winter (October to March), and up to 18 in the spring and 
summer (April to September). Other details including the 
time resolution and the employed measurement devices are 
completely similar to the previous recent investigation of the 
research group, i.e., reference [1], and found there.

Artificial neural network

Modeling means finding a means to obtain the value 
of an output based on the effective input parameters 
[55–57], and artificial neural network (ANN) is one of 

the robust techniques for this purpose [58–60]. ANN is 
made by  the connection of a number of computational 
units, which are called neurons. Every neuron is composed 
of a net and a transform function. The input goes and is 
multiplied by a mass. Then, the outcome is fed into the 
transform function, and the output is introduced as the 
final given value.

In order to build neural networks in this work, the devel-
oped codes in MATLAB software program are employed. 
The developed codes are the ones which have been pre-
viously used in the past investigations of the authors to 
simulate the performance of other energy systems using 
ANN, such as [41, 42], and [43]. The codes work based on 
the flow chart presented in Fig. 2.

In this study, the following items are considered as the 
effective input parameters of ANN:

•	 Ambient temperature,
•	 Wind speed,
•	 The radiation received from the sun,
•	 Depth of water in the basin,

Outputs are also:

•	 Water temperature in the basin,
•	 Distillate production,

which are the two key performance criteria of the sys-
tem. In addition,

•	 Coefficient of determination (R2)
•	 Mean absolute error (MAE)

Fig. 1   Schematic of the 
enhanced design for solar still 
desalination system which is 
investigated in this study [1]
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are considered as the error-related parameters by 
which the prediction ability of different types of ANN is 
evaluated.

More details, including the working principles and dif-
ferences of the three considered types of ANN, in addi-
tion to the definition of R2 and MAE have been described 
in several works in the literature like [61–64]. For this 
reason, here for not making the research item lengthy 
with repetitive explanations, only a general description is 
provided while the references are suggested to find more 
information.

Results and discussion

Results of this study are presented and discussed here. For 
this purpose, initially, uncertainty evaluation for the con-
ducted experiments is done in the first part of this section. 
After that, error analysis is carried out in the second part  
of this section to find the best ANN structure for distillate 
production and water temperature in the basin, and next, 
the prediction accuracy of the best found ANN types to 
estimate the values of the two mentioned criteria in addi-
tion to the cumulative water productivity is evaluated in 
the third part of this section for a sample day, and in the 
fourth part of this section  during a year.

Uncertainty evaluation for the conducted 
experiments

For the parameters measured during the experiments, the 
relative uncertainty values are computed, which are listed 
in Table 2. Table 2 indicates that the average uncertainty 
values for radiation received from the sun, ambient tem-
perature, water temperature in the basin, distillate pro-
duced by the solar still, and wind speed are 0.037, 0.932, 
0.336, 1.305, and 0.048%, respectively. Those values are 
close to other experimental studies in the literature, includ-
ing Dumka et al. [65] and Kabeel and Abdelgaied [66], 

which suggests that the done experiments have enough 
accuracy and could be utilized for developing different 
ANN models.

Error analysis for different developed ANN models

Having got assured from the accuracy of the conducted 
experiments, developing ANN models with the three men-
tioned structures is carried out using MATLAB software 
program, and models to predict water temperature in the 
basin and produced distillate are found. Following similar 
fashion as the previously done studies by authors, including 
[42, 43], and [41], for each structure, a variety of adjusting 
parameters, including the number of neurons in different lay-
ers, training algorithms, the share of training, validation, and 
test data, and so on, are examined, and the best one for the 
water temperature in the basin and the produced distillate is 
found for each structure. After that, the best model for each 
of the two mentioned parameters is determined using mean 
absolute error (MAE) and coefficient of determination (R2), 
as the two widely used error-related criteria for evaluating 
ANN models.

The results are reported in Table 3 for the water tempera-
ture in the basin and in Table 4 for the produced distillate. 
As seen, with MAE and R2 of 3.56% and 0.963111, FF type 
of ANN is chosen as the best prediction way for the water 
temperature in the basin among the available items, whereas 

Table 2   Evaluation of the accuracy of the experiments using average 
relative uncertainty values

Measured parameter Average rela-
tive uncertainty 
value/%

Radiation received from sun 0.037
Ambient temperature 0.932
Water temperature in the basin 0.336
Distillate produced by solar still 1.305
Wind speed 0.048

Table 3   Values of the mean absolute error (MAE) and coefficient of 
determination (R2) for the three different ANN types developed in 
this study for prediction of water temperature in the basin

For each type, the value for best of that is reported. The bold row 
shows the best ANN type

ANN type Mean absolute error/% Coefficient of 
determination 
(R2)

BP 5.91 0.942567
FF 3.56 0.963111
RBF 4.47 0.956798

Table 4   Values of the mean absolute error (MAE) and coefficient of 
determination (R2) for the three different ANN types developed in 
this study for prediction of the produced distillate

For each type, the value for best of that is reported. The bold row 
shows the best ANN type

ANN type Mean absolute error/% Coefficient of 
determination 
(R2)

BP 5.25 0.934615
FF 5.17 0.934889
RBF 2.82 0.977057

5



	

the foremost ANN for the produced distillate is RBF. RBF is 
able to estimate the produced freshwater by MAE of 2.82% 
and R2 of 0.977057.

Hourly performance of the best found ANN models

It has been revealed that FF ANN and RBF ANN offer the 
highest accuracy for estimation of water temperature in the 
basin and produced distillate, respectively. Considering this 
point, in this part, the hourly performance of the best found 
ANN models for the prediction of the two mentioned crite-
ria is investigated here. The data recorded on September 9, 
2019, which have not been utilized as the input data of the 
created ANN models, and they could be also found in [1], 
are used for this goal.

Figure 3 illustrates the values for hourly produced dis-
tillate. Based on this figure, the error in prediction of the 
freshwater production by the system goes down by getting 
close to the hour with the peak temperature and irradiance 
levels, i.e., 13. For instance, at 9, the best ANN model 
gives the value of 259.3 mL for the produced distillate, 

while the experimental measurements reveal the actual 
water production is 5.69% more, i.e., 274.9 mL. None-
theless, the error reaches to almost a half, i.e., 2.49% at 
13. At 13, the predicted and measured values are 1305.8 
and 1339.2 mL, respectively. The absolute error increases 
again in the afternoon where it has the values of 4.72, 
5.33, and 11.91% at 16, 17, and 18, respectively.

The general variation trend of error for the water tem-
perature in the basin is quite similar to the produced distil-
late as Fig. 4 demonstrates. Nonetheless, in this case, in 
contrast to water production, the error at the beginning and 
the end of the day is not very higher than the middle of 
that. At 8, 13, and 18, the absolute error values for predic-
tion are 3.96, 2.50, and 3.06%, whereas the corresponding 
values for the freshwater production are 16.30, 2.49, and 
11.91%, respectively.

Moreover, the error for all the hours is lower than 4.5%, 
which indicates that the provided model has a high accu-
racy level for all hours of the day. Such error level for 
prediction is very acceptable since it leads to only almost 
2 °C difference between the actual and estimated values. 

(a)

(b)

8 9 10 11 12 13 14 15 16 17 18
Experiments 7.5 274.9 417.7 790.4 1007.4 1339.2 1035.8 875.4 636.4 369.4 176.5

The best ANN model 6.3 259.3 404.8 771.4 989.0 1305.8 1002.2 855.7 606.3 349.7 155.5
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Fig. 3   Evaluation of the prediction ability of the best ANN model to estimate the produced distillate for each hour of the sample day, i.e., Sep-
tember 9, 2019, a the experimental and predicted values; b the absolute error

6



As the examples, at 8, 13, and 18, the best ANN model 
predicts the water temperature in the basin 37.5, 70.3, 
and 55.5 °C, while the actual values are 39.0, 72.1, and 
57.3 °C, respectively.

In order to provide a better outlook into the prediction 
accuracy of the best ANN models, the estimated and actual 
values of the cumulative distillate production are compared 
together for different hours of the sample day in Fig. 5a. 
Furthermore, the corresponding error profile is given in 
Fig. 5b. The information provided in Fig. 5 reveals that by 
passing more time from the beginning of the investigated 
time period, i.e., 8, the absolute error significantly declines 
and it approaches a constant level around noon. At 9, the 
absolute error is 5.63%, while it reaches more than half at 
12, i.e., 2.64%, and after that it almost stays constant at that 
level. In addition, it is worth mentioning the values for 8 are 
so small that they are shown 0.00 L by two digits in Fig. 5a. 
However, they are not really zero and they have small values, 
and for that reason, the error for cumulative water produc-
tion is not zero.

The obtained values shown in Fig. 5 demonstrate that the 
best ANN model to predict the hourly distillate is able to 
provide high accuracy for the daily freshwater production 
of the solar still. It estimates this criteria 6.70 L, while the 
experimental value is only 0.22 L more, i.e., 6.92 L.

Monthly performance of the foremost ANN models

In addition to September, for January, February, March, 
April, …, November and December, sample days are consid-
ered to evaluate the prediction ability of the best found ANN 
models during a year. For each month, a day had been kept, 
which was not fed into the developed codes to obtain ANN 
models. The average monthly error (i.e., the average for the 
sample day in each month) for the produced distillate and 
water temperature in the basin are reported in Figs. 6 and 
7, respectively. In addition to these two profiles, the values 
of error in prediction of the daily water production are also 
given for different months of a year in Fig. 8.

The profiles depicted in Figs. 6–8 show that the error 
in the estimation of the hourly distillate production, water 

(a)

(b)

8 9 10 11 12 13 14 15 16 17 18
Experiments 39.0 43.8 47.0 54.6 64.5 72.1 68.5 65.0 62.4 60.1 57.3

The best ANN model 37.5 41.9 45.8 52.8 62.8 70.3 66.6 63.6 61.0 58.8 55.5
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Fig. 4   a Evaluation of the prediction ability of the best ANN model to estimate water temperature in the basin for each hour of the sample day, 
i.e., September 9, 2019, a the experimental and predicted values; b the absolute error
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temperature in the basin, and the daily freshwater pro-
duction are in the ranges of 4.06–9.03%, 2.07–5.13%, 
and 2.41–5.84%, respectively. As a result, by employ-
ing the best found ANN models, it is guaranteed that the 

performance of the investigated solar still is predicted 
with less than 10% error, which is a considerable outcome. 
Additionally, for all the cases, the hotter temperature and 

(a)

(b)

8 9 10 11 12 13 14 15 16 17 18
Experiments 0.00 0.28 0.69 1.48 2.49 3.83 4.87 5.74 6.38 6.75 6.92

The best ANN model 0.00 0.26 0.67 1.44 2.43 3.73 4.73 5.59 6.20 6.55 6.70
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Fig. 5   a Evaluation of the prediction ability of the best ANN model to estimate the cumulative produced distillate for each hour of the sample 
day, i.e., September 9, 2019, a the experimental and predicted values; b the absolute error

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
The best ANN model 9.03 8.35 7.97 6.69 6.18 4.55 4.06 4.88 5.39 7.65 8.11 8.59
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Fig. 6   Monthly average error profile for prediction of the hourly distillate production
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solar irradiance a month has, the more accurate the best 
ANN model works. July has the best precision, whereas 
the highest error is seen for January.

Conclusions

By taking advantage of obtained experimental data during 
a year, the performance of an enhanced design of a solar 
still system was simulated using artificial neural network 
(ANN) modeling approach. Three types of ANN, namely 
feedforward (FF), backpropagation (BP), and radial basis 
function (RBF) structures, were examined to find the best 
of them to estimate the hourly values of the freshwater 
production and water temperature in the basin.

It was found that FF and RBF types of ANN were the 
foremost ones to predict the hourly distillate production 
and water temperature in the basin, respectively. Therefore, 
because of different behavior of different performance of 
criteria in a solar still desalination technology, various 
types, and not only one structure, should be examined to 

obtain the highest possible prediction accuracy. In addi-
tion, the hourly and monthly evaluation of the prediction 
of the two mentioned criteria in addition to the cumula-
tive distillate showed the potential of the best found ANN 
structures for accurate prediction of the performance crite-
ria of a solar still. Therefore, application of them to reduce 
the computational time and cost of the numerical modeling 
approaches is highly recommended.

In addition, using the developed ANN models to find 
proper control strategies for the system and applying other 
ML approaches for modeling and comparing them with the 
results of this study could be suggested.
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