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Abstract

While activity-based travel demand generation has improved over the last few decades, the be-
havioural richness and intuitive interpretation remain challenging. This paper argues that it is
essential to understand why people travel the way they do and not only be able to predict the
overall activity patterns accurately. If one cannot understand the “why?” then a model’s ability
to evaluate the impact of future interventions is severely diminished. Bayesian networks (BNs)
provide the ability to investigate causality and is showing value in recent literature to generate
synthetic populations. This paper is novel in extending the application of BNs to daily activity
tours. Results show that BNs can synthesise both activity and trip chain structures accurately. It
outperforms a frequentist approach and can cater for infrequently observed activity patterns, and
patterns unobserved in small sample data. It can also account for temporal variables like activity
duration.
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1. Introduction

Agent-based models, a specific variant of activity-based models, are becoming popular in trans-
port and mobility planning as it allows the study of large urban systems with rich features. The
agent-to-agent and agent-to-environment interactions allow for emergent phenomena that help
planners identify both intended and unintended consequences. Such models require detailed de-
scriptions of the population and their travel demand.

Existing approaches to generate the daily activity patterns is data-intensive and, consequently,
often rely on inferring behaviour from small data sets. Inference includes the structure of the activ-
ity sequence, mode choice, and activity timing and location. Existing approaches make utilitarian
assumptions that are neither behaviourally rich nor intuitively accurate. Many of these approaches
also fail to take the dynamics into account. For example, if a person uses a car for early stages of
the activity chain, s/he is likely to use it again later in the chain.

The first contribution of this paper is methodological, introducing Bayesian networks (BNs) as a
viable alternative in synthesising activity and trip chains when only given a person’s demographic
variables. BNs present an opportunity to study the causal relationship between variables and,
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ultimately, counterfactuals. The focus of this paper is not on the explanatory value of BNs but
rather its novel application to travel demand synthesis. The second contribution of this paper
is the performance metrics, adapted from well-established approaches in machine learning, used
to evaluate the synthesised activity and trip chains. Instead of aggregate metrics such as overall
frequency of specific activity types, this paper delves into more detailed metrics that answer the
question “how well did we get it right for this person?”

The results show synthesised activity and trip chains with a high level of accuracy. Given the
uncertainty and erratic behaviour of individuals with regards to their travel patterns, a BN allows
one to create plausible activity chains never observed in the original data. This generative attribute
is especially valuable when having to rely on small data samples.

The most common goal for artificial intelligence (AI) is the ability to perform advanced cognitive
tasks at or beyond the human level of performance. Most production-level Al are highly specialised,
achieving exceptional prediction performance. But it frequently focuses on one job only. Instead,
we are interested in more than prediction. Our goal is to further our understanding of the nature
of an AT model: why was a particular performance achieved?

Furthermore, we are interested in how the performance will change for alternative scenarios
and, ultimately, how it will respond to interventions. If we want to move to the next level of Al,
we need to consider and evaluate interventions and, even better, counterfactuals. BNs provide a
modelling platform which can respond to stochastic and changing environments and cope sensibly
with varied sources of uncertainty (Korb and Nicholson, 2011).

The next section reviews the literature on recent advances in activity-based travel demand and
the timely opportunity for BNs, given its current applications. The remainder of the paper follows
the workflow depicted in Figure 1. Section 3 describes the data set derived from a travel diary
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Figure 1: The workflow to generate travel demand from a Bayesian network.

in Cape Town, South Africa. Section 4 then uses the training set to learn the Bayesian network
structure and estimate the posterior probabilities, ending with a description of how travel demand
is predicted from the BN. Results, presented in Section 5, show how the synthesised travel demand,
both activity and trip chains, compare against the test set. The paper demonstrates in Section 6
that one can include temporal variables like activity duration.



2. Literature review

The review here has two main components. The first portion looks at recent advances in
activity-based travel demand generation, and specifically at the tour-based mode choice models.
Secondly, we introduce a brief review of BNs and show how it allows addressing two shortcomings in
the existing body of knowledge: the dynamic nature of mode choice; and the ability to understand
causal relationships.

2.1. Activity-based models

Compared to trip-based models, the activity-based approach aims to represent the travel de-
mand of an individual over an entire 24-hour period: the sequence of activities throughout the day,
its location and duration, and the mode-specific trips connecting the activities. The data burden
is high and often rely on surveying the detailed movement of people, referred to as travel diaries,
in which people report their activity participation and movement over 24 hours, or longer.

Travel diaries reveal very diverse behaviour. Each person’s socio-demographic background,
lifestyle and needs often influence their travel choices. Because the surveying burden to collect
travel diaries is high, researchers are often left with quite small samples to infer travel behaviour.
Consequently, simplifying modelling efforts sees clustering the data into homogenous daily activity
patterns, and it remains an ongoing area of research (Hafezi et al., 2019). Guzman et al. (2017)
also simplify activity chain generation to focus only on short home-work/study-home and home-
other-home activity chains.

In their review, Rasouli and Timmermans (2014) argue that although activity-based models
have matured and addressed many of the classical four-step model shortcomings, several boxes
still need to be ticked. Their review distinguishes between three main classes of models emerging
over the past two decades. The first is constraint-based models. These do not generate or predict
household and individual activity patterns, but rather check if a given agenda (activities and trips)
is feasible within a specific space-time context.

The second class is the popular utility-maximising models. Using discrete choice, these (nested)
logit models consider decision-stages at multiple tiers. Work like that of Yagi and Mohammadian
(2008) implements a multi-level model to generate daily activity patterns. Theirs is a system of
random-utility-based, disaggregate logit and nested logit models in a decision hierarchy. First,
there is the choice of the daily activity pattern, then the time-of-day choice (including activity
duration), and finally the mode and destination choice. These models assume that the utility
function be specified a priori by the modeller and they acknowledge that model specifications vary
significantly between countries, especially between developed and developing nations. Interpreting
the results and estimated coefficients is also not very intuitive.

Ma (2015) argues that despite the popularity of discrete choice models, they have inherent
limitations. The most prominent of these limitations is that they are based on rational choice
theory and assumes a decision-maker has perfect and complete information about all the possible
alternatives. Also, it assumes the decision-maker has time and cognitive capacity to evaluate all
alternatives and (deterministically) picks the one that provides the maximum utility.

The third class identified by Rasouli and Timmermans (2014) are computational process mod-
els. They argue that this class of models emerged to relax the strict and behaviourally unrealistic
assumptions of utility-maximising models and allow for more natural decision-making under un-
certainty. The rule-based approach depicts the more realistic decision heuristics of individuals.
However, they too have the limitation that rules rely on a priori assumptions of the researchers
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and model builders. Some models in this class, like TASHA (Roorda et al., 2008), draw the daily
plans and its attributes from empirical distributions.

Despite the importance of activity-based modelling systems, there is a lack of reliable evalua-
tion criteria to check if synthesised daily plans are good representations of reality. Many modelling
efforts only interpret and analyse the estimated parameters, avoiding synthesis and subsequent
testing. To overcome this problem, researchers have turned to bio-informatics inspired sequence
alignment methods (SAMs) that evaluate synthesised protein sequences. SAMs assess activity-
based models by pairwise comparing the observed sequences extracted from the diaries and their
synthesised counterparts. However, since there is much variance in an individual’s activity be-
haviour across different days, the methods are often not a true reflection of the model performance.
Or, at best, are very conservative metrics.

Liu et al. (2015) introduce a profile Hidden Markov Model (pHMM) to improve on SAM in
two ways. Firstly, SAM alone cannot capture infrequent activities and, secondly, pHMM has
position-specific metrics that analyse the entire length of the activity sequence and enhance the
rigid pairwise comparison of SAM. The two-stage stochastic approach of a basic Hidden Markov
Model starts by identifying the finite set of states for each cluster of activities at each position
in the activity sequence. Then the transition probabilities are being derived. Saadi et al. (2016)
combine their population synthesis with the pHMM, allowing them to use the Belgian travel survey
to generate individuals with their activity sequences assigned.

Rasouli and Timmermans (2014) conclude their review noting that activity-based models suffer
from both model uncertainty due to the sampling with the models, and also input uncertainty as
a result of its reliance on small empirical data sets. Their call is for research to move away from
utilitarian models towards models that are behaviourally rich, allowing the study of causality and
incorporation of imperfect perception, which plays a significant role in human decision-making
under uncertainty.

2.2. Bayesian Networks

BNs have the ability to synthesise multiple information types such as empirical data, sensors,
expert knowledge and literature. This makes it particularly useful in ecological modelling as emerg-
ing patterns on multiple scales can be fused into one systems-level model (Borsuk et al., 2004).
This integrated model equip stakeholders with an appreciation of how policy decisions propagate
across scales through the system. From a different perspective, it allows stakeholders to optimise
desired outcomes, given certain ecological scenarios (Bromley et al., 2005; Diispohl et al., 2012).

Closer to the focus of this paper, BNs have only very recently been used in the domain of
transport planning (Sun and Erath, 2015; Feygin and Pozdnoukhov, 2018; Borysov et al., 2019;
Zhang et al., 2019). BNs are successfully applied to population synthesis. Sun and Erath (2015)
generated synthetic populations for Singapore that are accurate at both household and individual
level. The value lies in the joint probability distributions that are estimated, for example the age of
the head of the household and their spouse. A number of studies replicate (Joubert, 2018) or build
on their work. Sun et al. (2018) extend their earlier work and introduce latent variables to further
refine the population synthesis procedure. Borysov et al. (2019) argue that some of the recent
machine learning approaches, in population synthesis, are not very scalable and they introduce a
deep generative modelling approach that promises to cater for many more variables to capture a
high level of detail in terms of personal details and travel preferences. Zhang et al. (2019) augment
the BN by using call detail records, allowing them to connect the individuals in the population.



Ma et al. (2017) apply BNs to model travel mode choice behaviour. They argue that, as an
alternative to the decision tree approach proposed by Arentze and Timmermans (2007), BNs can
explicitly estimate the causality structure between variables. This, in turn, leads to more flexible
relations and more intuitive interpretation of the relationships than a decision tree structure.

If the structure of the daily activity plan is known, then specific choice dimensions can be
more easily modelled. In recent work, Ma and Klein (2018) use BNs to perform location choice of
discretionary activities when a space-time prism is used to limit the location choice set. They use
BNs to identify the most likely heuristic the decision-maker will use to choose the detour factor
and location. To our knowledge this paper is the first attempt to apply BNs to synthesise daily
activity patterns.

3. Data

This research benefits from a travel survey that the City of Cape Town conducted during 2013.
The study sampled a total of 22 332 households, accounting for 63 175 individuals and representing
2.1% of the 2011 Census total (Transport for Cape Town, 2013). The questionnaire solicited
personal information about household size, age, gender, income, vehicle ownership and mobility
impairments. A subset of households (2974 after cleaning the data) in the Cape Town survey also
completed a travel diary in which each member of the household reported their detailed activity
chain of the previous day.

3.1. Demographics

Although varied, and often inconsistent, the literature suggests a variety of variables that
influence the travel behaviour of individuals. In this paper, both the literature and local knowledge
of the South African context inform the choice of demographic variables. Table 1 summarises the
complete encoding scheme and distinguishes between individual and household characteristics. The
first variable, gender, is straightforward. For this paper, we distinguish between three subgroups
based on the age of the individual, using the Census 2011 age categories. Those that are 5 years
or younger are considered an infant. Individuals from 6 to 12 years are classified as a child and
represent those typically attending primary school — people in the 13 to 23 age range fall in the
young class. Since the secondary school phase ends for the majority of learners in the 17 to 19
age range, the first subgroup, children, contains all individuals in the child and young categories.
This study ignores infants as they do not travel independently.

Individuals in the 24 to 45 age bracket fall in the early-career class and those in the 46 to 68
age bracket fall in the late-career class. The second subgroup in our data, workers, includes all
individuals in the young, early-career and late-career class. There is, indeed, an overlap with young
falling in both subgroups. The argument is that it is an age group that includes many individuals
that leave secondary school early for the job market (workers) and those that complete their
secondary and maybe even tertiary education (children). The third subgroup, retired, contain
all individuals older than 68. The children subgroup has 2281 records; the workers has 7507,
and the retired has 1031 records.

The third individual variable deals with the level of education the individual completed, and
the fourth deals with having a driver’s license. The variable access reflects the number of private
vehicles the individual has access to, either as the owner, driver, or passenger.

An individual is considered to be employed when s/he reported to be self-employed, a seasonal
worker, employed part-time or fulltime. A person’s travelForWork variable affirms if the person’s
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Table 1: Encoding scheme for demographic variables. In the Values column the numbers in brackets represent the
number of occurrences of the specific variable value. The first block of variables relates to individual characteristics,
and the second block to household characteristics.

Code Description Values
gender Gender Female (4812); Male (4373)
ageGroup Aggregated age group based on  Infant (20); Child (690); Young (1591); Early
Census categories career (3633); Late career (2283); Unknown (473)
edu Completed education None (999); Primary (1794); Secondary (5238);
Tertiary (1217)
license Whether the individual has a Yes (3244); No (6004)
driver’s license
access The number of vehicles the per- None (4264); Single (2541); Multiple (2443)
son has access to
employed Whether the individual is em- Yes (3959); No (5289)
ployed
travelForWork Whether the individual’s work Yes (349); No (8206)
is, effectively, driving or travel-
ling
workFromHome  Whether the person works from  Yes (321); No (8342)
home
assetOne Calculated asset value Low (2437); LowMiddle (5601); HighMiddle (782);
High (428)
family Household size Single (407); Couple (1388); Small (4880); Large
(2573)
housing Type of housing for the main Informal (867); Formal (8381)

dwelling

work dictates that driving is an essential part of the work activity itself, for example, being a
driver. If a person’s work is home-based, or s/he is allowed to perform their work from home, the
workFromHome variable reflects that.

The first household variable, assetOne, represents a household’s income. Since many house-
holds choose not to provide this information, the travel survey accommodates this by estimating
the income using an asset index from Filmer and Pritchett (2001). In 2013 terms, Low income refers
to a monthly income of ZAR 3200 or below (using an exchange rate of EUR 1 = ZAR 16.70 and
USD 1 = ZAR 15.00 that equates to approximately EUR 192, or USD 213). The ceiling for the next
income class, LowMiddle, is ZAR 25600 per month (EUR 1533 or USD 1707); for HighMiddle, it
is ZAR 51200 per month (EUR 3066 or USD 3414); and high income is anything higher.

The unique record reflects both the household id and the member number. Consequently, one
can easily calculate household size which is, in line with the Jakarta study of Yagi and Moham-
madian (2008), a useful characteristic in developing countries where households tend to be larger.
The couple category reflects a two-member household. Contrary to what the name suggests, this
category also represents single-parent households with one child. A small family is considered to
be 3 to 5 members, and a large family is six members or more.

Finally, the housing variable distinguishes between formal and informal dwellings and aims to
see if the formality of a household’s main dwelling affects the travel demand.
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3.2. Travel demand

Travel-specific questions included locations of home and work activities, typical weekday trips,
mode of travel, cost of travel and time taken per trip, including walking and waiting time. For
each activity, the interviewer captured the location (at the Census main-place level) and the start
and end times. For each trip, they captured the mode. After cleaning the data, the travel diary
component represented the revealed activity chains of 9248 individuals from 2974 households —
Table 2 reports on the encoding used for both activities and trip modes.

Table 2: Encoding scheme for activity types and trip modes.

Activity type Trip mode
Code Description Code Description

h home n none
W work c private car
e education P public transport
e3 dropping/picking up kids at school W walk
s shopping o other

leisure

other

Some simplifications were made in this study to reduce the number of variable classes. Firstly,
we combined primary and secondary (el) with tertiary education (e2) into simply education (e).
Secondly, recreational visits to friends (v) were recoded as leisure (1) activities. Thirdly, activities
with a medical purpose (m) were combined with other activities (o).

On the trip side, we joined all modes of public transport (p). The different public transport
offerings in the City of Cape Town include the local authority’s MyCiTi Bus Rapid Transit (BRT),
the provincial commuter bus services operated by Golden Arrow Bus Services, the national rail
services provided by Metrorail, and the paratransit service known in South Africa as minibus taxis.
The minibuses are 15 to 25-seater vehicles and are the primary public transport mode, accounting
for just more than 50% of all public transport trips.

As an illustration, Figure 2 uses Sankey diagrams (R Core Team, 2019; Allaire et al., 2017;
Chang, 2018) to show the proportions of people having specific activity chain configurations and
distinguishes between the children (Figure 2a) and workers (Figure 2b). Consider the children
diagram in Figure 2a. One can infer from the diagram that approximately 35% of children went
from home (h) to school (e). The thickness of the grey line connecting the home (h) bar at
the far left to the education bar (e) second from left represent the proportion. From those that
went to school, the majority then went back home (h in the third column of activities). One can
represent the activity chains of these individuals by the string h-e-h. A small proportion, about
5%, left school for a variety of other activities. Quite a large proportion, +35%, stayed at home
all day as their only other activity is none, encoded as n. This worrying figure is, unfortunately,
commensurate with the high youth unemployment rate in South Africa.

Comparing the two subfigures, one can observe that children had simpler (shorter) activity
chains with, at most, 6 activities in the chain, while workers had, at most, 9. Lines become
thinner as one progress from left to right, representing smaller proportions of people with longer



\X 1o

. =1
. -
=3 =2
W
L

Do

LB

—w

Hn
— 0

—s

(a) Activity chains of the children subset.

g,

)

e | D
=0 e
]
—
-

—0 —e3
—w

=—h
—1

—e3

(b) Activity chains of the workers subset.

8

—e3
—o
—h

Figure 2: Sankey diagram showing the activity chains. In the diagram, n on the first echelon refers to non-travelers.



and more complex activity chains. This is aligned with Liu et al. (2015) who confirm that, in
human behaviour, one often see higher frequencies of shorter activity sequences.

3.3. Training and test sets

The remainder of this paper is only concerned with workers and leaves the travel demand
prediction for the children and retired subgroups for future work. While this paper distinguishes
between these three subgroups, nothing prohibits a person to extract different subgroups along
spatial or demographic attributes and estimate unique Bayesian networks for each. Comparing
the resulting networks may then allow decision-makers to evaluate policy implications for more
targeted (sub)groups.

As is common in machine learning when one builds a data-driven model to predict, one would
split the travel survey data into a training set and a test set.

Each record in the data set represents an individual: its demographic variables and travel
demand. The sampling regime applied in this paper does not keep households intact but samples
80% of the records, each with equal probability, into the training set. The balance makes up the
test set. Table 3 provides an overview of the representation of unique demographic profiles in the
test set. When only taking into account the four variables directly influencing the travel chain, a
total of 36 unique profiles were found in the test set. We only display the top 10 and bottom 5
unique profiles. Interestingly, in the top 3 demographic profiles, individuals don’t have access to a
vehicle, or have a driver’s licence.

Table 3: Unique demographic profiles and representation in the test set.

Demographic Profile

access licence ageGroup employed counts
None No Early career  Yes 172
None No Early career No 147
None No Young No 135
Multiple  Yes Early career  Yes 118
None No Late career No 106
Multiple  Yes Late career Yes 92
Single Yes Early career Yes 81
Single No Young No 61
Single No Early career Yes 57
None No Late career Yes 52
None Yes Early career No 5
Multiple No Late career Yes 3
None Yes Young Yes 3
Single Yes Young Yes 1
None Yes Young No 1

Congruent with the workflow depicted in Figure 1, the Bayesian network structure is learned
using only the training set.



4. Bayesian networks

Bayesian networks (BNs) are directed acyclic graphs (DAGs) containing nodes and arcs. The
nodes represent quantities of interest, or variables, and the arcs quantify the relationships — which
could be causal, but not necessarily — between the arcs (Jensen, 1996). During the modelling phase
of a BN, the structure of a BN can be elicted from experts, or it can be machine learned (Korb
and Nicholson, 2011). Similarly, parameterisation can be done by experts or machine learned.
This makes BN a good modelling choice in data sparse problem domains as expert knowledge
can supplement the data. Even when data are plenty, the expressive representation of conditional
dependencies in BNs provide transparency and insight into model predictions.

Structural learning is unsupervised, as the ground truth is unknown. The objective of struc-
tural learning is to discover all direct probabilistic relationships in a tree structure (a graph with-
out cycles). Two families of structural learning are constraint-based and score-based learning.
Constraint-based learning aims to optimise the qualitative aspect of the BN structure and score-
based learning aims to optimise the quantitative aspect.

4.1. Score-based structural learning

We focus on score-based learning and use the minimum description length (MDL) as the score:
that is, find the structure that minimises the MDL. MDL operates under the logic that regularities
within the data can be compressed, meaning certain symbols can be used to describe the data in a
more compact way than the actual data. Highly regular data can therefore be highly compressed
(Griinwald, 2005). MDL consists of two parts:

MDL(B, D) = DL(B) + DL(D|B) (1)

where B is the model and D is the observed data. DL(B) represents the structural complexity
(number of bits) of the suggested model and DL(D|B) represents the model’s capacity to encode
data, which is none other than the error (Griinwald, 2005). Equation 1 states that the MDL score
is the sum of the complexity of the model and the complexity of the errors, which the learning
algorithm aims to minimise simultaneously. Generally, if the model is highly accurate it will need
much description (as it will have many terms) but the resulting error will be small. Conversely, if
the model is very simple, its description will be very short but we will need a lot of information to
describe its errors. A fully unconnected network will translate to the minimum value for DL(B)
and a fully connected network will translate the minimum value for DL(D|B). Thus obtaining
minimum MDL finds the right balance between the two extremes.

A search algorithm explores the space of possible BNs to find a structure that minimises the
MDL score. The challenge is that the number of possible networks explodes with the number of
nodes and an exhaustive search becomes intractable. Search algorithms use operators such as arc
addition, deletion, and reversal to filter across the search space in order to find the structure that
optimises the MDL score. Apart from the large computational cost associated with the search,
it also suffers from local minima. The Tabu algorithm (Teyssier and Koller, 2012) is a greedy
search method that keeps a collection of the previously used operators in memory. These operators
are tabu and cannot be reversed in succeeding steps. The combination of a greedy search with a
deterioration of the MDL score guides the search algorithm out of the local minima. The search
space can be further constrained by forbidding certain directed links. These restrictions can be
based on causality, or time dependency. For example, the node gender cannot be conditioned by
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Figure 3: Learned Bayesian network structure.

the node licence. Having a licence does not influence the probability to be a certain gender, but
it can be the other way around. Similarly, the third trip in the activity diary cannot influence the
first or second trip.

4.2. BN structural learning setup

In line with the data types described in Section 3, two classes of variables were created: demo-
graphics and travel demand. The demographics class contains 11 variables pertaining to personal
information and the travel demand class contains a trip and activity variable for each step in the
chain. We model 6 chain steps as the last 3 steps contain only very few observations as indicated
in Figures 6d and 7d. Each of the 23 variables is represented in the BN as a node. The mutual
exclusive states for each node are the values listed in Tables 1 and 2. The Tabu algorithm is applied
to the training set!.

The output of structural learning is directed links between nodes with associated conditional
probability distributions. Figure 3 illustrates the Bayesian network structure as machine-learned
from the input data alone; without expert input. An interesting observation is that only four
demographic nodes are directly linked to the travel chain: access, 1icense, ageGroup and whether
you are employed or not. Access, license, ageGroup influence the first trip’s mode of transport,
denoted by trip 1, and employed influences act 2 and act 3, which describe the second and
third activity types. Intuitively this makes sense: whether the person has access to a vehicle, a
license and his/her age group influences what type of transport the person will take. Whether
the person is employed or not is the most influential variable on the activities the person will
undertake. Furthermore, they only influence the start of the travel chain, which from thereon is
linked sequentially. This too is insightful as it captures the known phenomena that is often hard
to capture in existing mode choice models. For example, if you went to work by car, the car is
already there and you are subsequently much more likely to again use the car for later trips.

Figure 4a illustrates the posterior distributions associated with each node. At this stage, no
evidence (also called instantiation) is entered into the network and the posterior distributions
merely resemble dataset frequencies. In Figure 4b, the node employed is instantiated to yes.
The evidence employed = yes gets propagated throughout the network and all other probability
distributions downstream from that node are updated. This is clear in the node act 2 in which
the probability for act 2 = w is updated from 23.2% (Figure 4a) to 45.2% (Figure 4b). Again,

L All BN modelling are performed in Bayesialab v9.2.1 (http://bayesialab.com/)
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this is intuitive as knowing that someone is employed increases the probability that w will appear
as the first activity in the activity chain. In Figure 4c¢ we instantiate the node trip 1 with car,
¢, and it has has a similar interpretation: if it is known that trip 1 was made by car, c, then
the certainty that the person is employed is 82.2%. Furthermore, it is most likely (90%) that the
person has a license.

4.8. Sampling synthetic chains from the BN

Although inference insights as described in Section 4.2 is of great interest, it is not the main
objective of this research. We are interested in sampling synthetic chains which propagated from
unseen demographic profiles. The BN model provides us with posterior probability distributions
to sample from in the following way. Consider the example illustrated in Figure 5 for the travel
demand of an early-career female, say Lilly, who is employed but who has neither a license nor
access to a private car. Instantiated variables—those for which we have evidence—are illustrated
with diagonal shaded lines as per the key in Figure 4. A demographic profile is entered as evidence
into the BN (Figure 5a). This evidence gets propagated throughout the rest of the network by

access trip 1 trip 2 trip 2
X a act 3
license n oos pos
yes [00s h 72
no (227222721000 e ‘w m'r
3 Jo2% 0%
Es 23 3 Joos
G 1 | foor
agelaroup employed o R employed " 1 joos
oung [00% yes [2222222210.0% yes [ZZ272221000% ves 2227010005 © 1% b
early career [7777277100.0% no [0.0% no [0.0% no [0.0%
late career [0.0%
(a) Step 1. (b) Alternative 1 (c) Alternative 2 (d) Step 3. (e) Step 4.

for step 2. for step 2.

Figure 5: Sequential sampling from the Bayesian network.

updating the posterior probabilities accordingly.

Given Lilly’s demographics and the fact that all activity chains start at home, h, the first step is
to sample the first trip. From the updated posterior probabilities there is a near-equal probability
to not travel at all (36.3%) or to use public transport (42.3%). There are less probable modes like
walking (11.4%) or some other mode (8.8%). If the weighted random draw sees Lilly not travelling,
so trip 1 is n, the posterior probabilities in Figure 5b is updated to reflect the new evidence. If
Lilly is not travelling, there is a 100% that there will not be an activity 2, and also no trip 2. The
activity chain therefore is completed and is only made up of the home activity, h. The trip chain
is, similarly, denoted only by n.

Conversely, if Lilly’s first trip is sampled to be by public transport, denoted by p as shown in
Figure 5c¢, then the subsequent activities and trips look quite a bit different in terms of the updated
posterior probabilities. With the new evidence of travelling by public transport, there is 85.2%
chance that the activity to which Lilly travels is work, w, and a 10.4% chance that it is some other
activity, o. Trip 1 also influences trip 2 and so we see there is 93.8% chance that the second trip
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will also be by public transport. For the remainder of the illustration, assume that Lilly’s first trip
was by public transport, p.

Having evidence that Lilly is employed and that the first trip is by public transport, one can
sample both activity 2 and trip 2, independently from one another as they do not influence one
another. That is, there is no causal relationship between them in the BN structure. Say, given
its high priority, that the second activity is work, w, and the second trip is by public transport, p
(Figure 5d), one can now sample the third activity. From Figure 5d we note that there is now a
90.7% chance that Lilly will return home, h, and a 17.9% chance that se will attend to a second work
activity, w. There are also unlikely shopping (0.1%), leisure (0.3%) or other (1.0%) activities. Say,
at this point, that one samples the third activity to be home, h (Figure 5e), then the subsequent
trips are most likely to be to not travel (96.1%), n, and therefore it suggests the end of Lilly’s day.
However, there are small probabilities suggesting she may continue with other activities and travel
to them via car (0.2%), public transport (0.5%), walking (0.9%), or some other mode (0.3%). If
one samples the no-travel option, then the sampled activity chain for Lilly would end, and we
denote the activity chain portion as h-w-h, and the trip chain as p-p.

For each individual one starts off by providing only the demographic evidence. As one pro-
gressively sample the next trip or activity, and provide that, in turn, as evidence, the posterior
probabilities are updated and influences the sampling of subsequent trips or activities. That is, the
evidence propagates through the BN. This allows one the opportunity to, given different pseudo
random seeds, generate multiple synthetic activity chains for each individual for which you have
demographic evidence. In this paper we synthesised 100 activity chains for each person in the test
set.

5. Results and discussion

In the literature the results are often aggregated. For example, Guzman et al. (2017) only
reports the overall number of activity chains of a specific type, and not whether the specific
person’s activity chain was correctly estimated.

The profile approach of Liu et al. (2015) can be applied to validate activity-based transportation
models. But here, too, the focus is on getting it right overall. How well does this person’s activity
chain compare to known clusters, i.e. typical and frequently observed clusters. In line with this
practice, we also report aggregated results first and then move on to more detailed methods of
evaluating the proposed BN methodology.

5.1. Better than random?

To test our approach, we split the observed activity chains into a training set, which represented
80% of the observations, a total of 7507 individuals, and a test set representing the balance of 1501
individuals. As a first result we also consider an aggregate comparison by taking 100 bootstrap
samples, each sample having 1501 chains, from the training set. For each sample we observe the
frequency that specific activity and trip chain configurations occur and compare it against the test
set. The results for the bootstrapped samples of the activity chains are shown in Figures 6a and 6b.
As an example, consider the h-w-h activity chain. In the test set there were 314 occurrences while
there were between 253 and 328 occurrences across the 100 samples, with the median being 288
occurrences. The dotted diagonal line represents ideal behaviour, so the closer the median value is
to the diagonal, the better. Less frequently observed activity chains are visualised in more detail
in Figure 6b.
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Figure 6: Comparison of the frequency of occurrences for specific activity chain configurations. The observations
(z-axis) refer to the test set while the simulated (y-axis) values refer to the range over the 100 samples.
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Similarly, we generated 100 samples from the BN and again observed the number of occurrences
for each chain configuration. The results for the activity chains are visualised in Figure 6¢ with
the less frequently observed activity chains shown in more detail in Figure 6d.

Results for the bootstrap and BN #rip chains are given in Figure 7. As expected, the bootstrap
samples generally agree with the observed activity chains. The BN samples follow a very similar
pattern. The number of people who stay home, denoted by h in Figure 6a and n in Figure 7a, is
underestimated. So too are the cohort of people who only travel to work, denoted by h-w-h, and
those who use public transport (p) for both the outbound and returning trip. This concurs with
Figures 6d and 7d, which illustrates that the majority of respondents in the dataset has no trip,
or a predictable home-work-home travel diary. These aggregated results is aligned with results
reported in literature. Consequently, our results support the choice by, for example Guzman et al.
(2017) and Hafezi et al. (2019), that non-travellers and those with predictable, short activity chains
make up the bulk of the population. But what if we want to move beyond the typical person and
their travel patterns on a typical day?

The end use of the sampling data urges us to look into more detail than the overall performance:
If we want to perform agent-based modelling, we need to have confidence in modelling all agents,
with their inherent variability, and not only the majority.

5.2. Detail performance analysis

When considering detail performance, we investigate each chain independently in terms of ac-
curacy and then the performance analysis become analogous to classification performance analysis.
This allows one to turn to standard machine learning metrics to evaluate the models’ output.

5.2.1. Performance Metrics

To explain the detailed metrics, some ma- Test sot
chine learning terminology is introduced for
more clarity. Consider the Sankey diagram in
Figure 8 that is a simplification of the complete il
test set and sample 1 for the activity chains.
We denote with § = {1,...,4} the joint set of 49.9% »
activity chain configurations observed in both
the test set and the first sample. Here we sim-
plified it to only |S| = 4 configurations where 7
s =1,s € S represents the stay-at-home activ-
ity chain, h, and s = 2 the home-work-home 20.9% s wwh 18.8%
activity chain, h-w-h. For the first sample the
aggregate results look fairly good since 47.0%
of all the activity chains in the sample were 6.7%
h, compared to the 49.9% observed in the test
set. 22.5% | [other L25s o2 34

And this is where one needs to scratch
deeper, below the surface. We let x; ; denote
the number of individuals in the test set who Figure 8: Illustrative Sankey diagram to explain more
had an activity chain i € S while the predicted detailed machine learning metrics.

Sample 1

h 47.0%

h-w-h
» T23 - 132
24 - x3.3 |:|"'C‘h 51%

= S V.

oher  29.1%

4,4
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activity chain for those same individuals was j € S. As an example, x; 2 would represent the num-
ber of individuals who had an activity chain of h in the test set, yet we predicted that they would
have a h-w-h activity chain in the sample.

To calculate the detailed metrics, we firstly define true positive (TP) to be the number of
individuals that had and activity chain ¢ € S in both the test set and the sample, z;;,i € S.
In the given example, the true positives for h would be z1; = 390, and for h-w-h it would be
x99 = 104. Next we define false positives (FP) as the number of individuals for which we predicted
an activity chain of, for example, h, yet we observed them to have some other activity chain
that was not h. Using h again, as an example from Figure 8, the false positives would then be
To1+2x31+241 = 116+62+138 = 316. More generally, one can express false positives for activity
chain j € S using (2).

FPi= ) ay VjeS (2)
icli#j

Thirdly, we define true negatives (TN) for an activity chain i € S in which we are interested as

the number of individuals for which we observed an activity chain other than i in the test set, and

we also predicted those individuals to have some other activity chain other than i. In the case of

h in Figure 8 the true negatives would be x99+ %23+ %24+ 232+ 233+ T34+ Ta2+T43+Ta4 =

104+54+89+4+20+ 14+ 714 17+ 112 = 436. More generally one can express true negatives
for activity chain i € S using (3).

TNi= > > VieS (3)

kES ki j€S, j4i

Finally, we define false negatives (FN) for an activity chain ¢ € S in which we are interested as
the number of individuals for which we actually observed them to have activity chain i in the test
set, yet we predicted them to have some other activity chain in the sample. From the simplified
example in Figure 8 the false negatives would then be x12 + x13 + 214 = 103 + 34 + 222 = 359.
More generally one can express false negatives for activity chain i € S using (4).

FNi= > ay VieS (4)
JES,j#i
And with these four definitions one can now introduce the metrics. Accuracy sums true positive
(TP) and true negative (TN) predictions and normalise it with the total number of individuals in the
test set. Reporting on accuracy alone might provide a false sense of good performance, especially
when the training set is imbalanced. To report more critically on prediction performance, three
questions of importance require attention:

e What percentage of your predictions were correct?

TP+ TN

A==——""=
accuracy (A) > test cases

e What percent of the positive cases did you catch?

TP

recall (R) = m
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e What percent of positive predictions were correct?

TP

- _ 7
TP + FP ()

precision (P)

One method to combine recall and precision is the F-score, which is defined as the weighted
harmonic mean of recall and precision, and calculated using (8).

2 x (recall x precision)

F-score (F) = (8)

recall + precision

5.2.2. Levenshtein distance

In information theory, Hamming distance is the number of corresponding positions in two equal
length strings that are different (MacKay, 2003). We need to relax the equal length assumption
as chain lengths differ. The Levenshtein distance (Sarkar et al., 2016) does not require the equal
length assumption and provides a metric to compare observed and sampled chains in terms of
values and length. In short, the Levenshtein distance returns the number of edits required to
change one string into the other string. The edits can be substitutions, deletions or insertions.
Consider the following two trip chains: trip; = c-w-w, tripo = w-w-p. The Levenshtein distance
between these two trips is 4 as 4 edits are required to change trip; to match trips. The edits are
indicated below:

trip; = W—w
tripe = w—w
The Levenshtein distance between two strings a,b (of length |a| and |b| respectively) is given
by lev, p(lal, |b]) where

max(i, j) if min(i,j) =0,
leva (i, §) = levay(i=1,5) +1 (9)
oA min q levy (3,5 — 1) +1 otherwise.

levmb(i — 1,j - 1) + 1(ai7gbj)

The Levenshtein ratio can be calculated by normalising the raw distance (Sarkar et al., 2016).
Consider two strings a and b. The ratio is:

levg (i, j)

al + 1o 10)

levRatio, 1, =
A Levenshtein ratio of 1 indicates a perfect match between the two sequences whereas 0 indicates
zero overlap between the two sequences. We use the Levenshtein ratio as another proxy for ac-
curacy. A ratio of one represents true positives (2) and all ratios smaller than one represent true
negatives (3).
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Table 4: Activity chain results. The activities are denoted as h (home); w (work); s (shopping); e (education); 1 (leisure); o (other); and e3
(dropping off or picking up children at school).

Bootstrapping Bayesian network
Occurences (Cyumulative
Chain in test set occurence A(B) P(7) F (8 LS A P F LS
h 749 49.9% 50.1% 50.0% 48.8% 0.64 54.0% 54.2% 52.5% 0.66
h-w-h 314 70.8% 68.0% 21.0% 20.0% 0.61 75.3% 39.5% 36.6% 0.69
h-s-h 117 78.6% 85.0% 7.6% 7.9% 0.58 85.4% 8.9% 9.1% 0.58
h-e-h 100 85.3% 87.0% 6.7% 7.0% 0.58 90.9% 26.8% 23.7% 0.58
h-1-h 49 88.5% 92.8% 3.2% 4.1% 0.57 93.1% 3.6% 4.7% 0.54
h-o-h 35 90.9% 94.6% 1.9% 3.6% 0.57 92.2% 2.6% 4.0% 0.56
h-o-w-o-h 20 92.2% 97.3% 1.2% 5.3% 045 98.6% 3.9% 9.4% 0.53
h-e3-h 11 92.9% 98.6% 0.9% 9.9% 0.52 97.4% 1.2% 6.2% 0.48
h-w-w-h 10 93.6% 98.2% 0.7% 7.0% 0.51 98.8% 2.1% 12.2% 0.59
h-o-w-h 7 94.1% 99.1% 0.6% 12.3% 0.52 99.5% 0.0% - 0.59
h-w-h-1-h 5 94.4% 99.6% 0.0% - 0.44 99.4% 0.1% 14.3% 0.52
h-w-w-w-h 5 94.7% 99.4% 0.9% 23.0% 0.43 99.5% 0.2% 20.0% 0.51
h-w-o-h 1 95.0% 99.7% 0.0% - 0.43 99.9% 0.0% - 0.53

Table 5: Trip chain results. The trips are denoted as n (none); p (public transport); w (walk); ¢ (car); and o (other).

Bootstrapping Bayesian network
Occurences (Cymulative
Chain in test set occurence A(B) P((7) F (8 LS A P F LS
n 749 49.9% 50.0% 49.9% 48.6% 0.47 54.0% 54.2% 52.5% 0.51
PP 233 65.4% 74.7% 15.5% 14.8% 0.27 77.4%  24.5% 23.1% 0.36
w-w 140 74.8% 82.5% 8.9% 9.2% 0.24 83.6% 13.2% 13.4% 0.26
c-c 132 83.5% 82.7% 8.8% 9.4% 0.25 86.1% 25.1% 26.9% 0.43
0-0 104 90.4% 86.6% 7.0% 7.3% 0.23 87.1% 9.4% 9.6% 0.26
c-c-c-c 23 93.0% 97.0% 1.4% 52% 0.17 97.2% 5.1% 6.8% 0.35
c-c-c 20 93.3% 97.7% 0.9% 5.5% 0.20 97.7% 3.4% 72% 0.32
P-P-P-P 14 94.2% 98.2% 0.8% 7.5% 0.19 98.3% 2.2% 8.9% 0.30
w-p 7 94.7% 99.2% 0.3% 15.0% 0.25 98.6% 0.6% 9.5% 0.29

WW-W-W 6 95.1% 99.2% 0.3% 16.7% 0.17 99.2% 0.5% 15.5% 0.18
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5.2.3. Results

The dataset contains 139 unique activity chains in the training set and 157 unique activity
chains in the test set. Similarly, it contains 103 unique trip chains in the training set and 53 unique
trip chains in the test set. We only consider the chains which cover 95% of occurrences in the test
set and report on them in Tables 4 and 5. The tables show the accuracy (A), precision (P), F-score
(F') and average Levenshtein ratio (LS) metrics for each chain and for both the bootstrapping and
BN models. The reported value in each case is the mean calculated over the 100 samples. For some
low occurrence chains, the F-score could not be calculated because no true positive cases exist for
these instances. The BN model consistently shows better performance than bootstrapping. For the
activity chain h-e-h which represents individuals travelling to education and back home, the BN
precision score is 20% better than bootstrapping. We observed low precision and F-score metrics
which might cast doubt on the model’s performance. For example, for the activity h-w-h, the BN
model precision is 39.5%. It should be taken into account that accuracy is defined as those chains
which were sampled perfectly. An observed chain h-w-h which was predicted as h-w-w will be
regarded as completely inaccurate, when in reality, the first part of the chain was indeed correct.
This is where the Levenshtein ratio provides insight into the degree of overlap between the observed
and sampled chains. We therefor report on the average Levenshtein similarity ratio as well.

5.8. Discussion

One problem with a frequentist approach is that you can only synthesise chains that were
observed in the original data. This holds for many rule-based (tree structure) and bootstrapping
approaches. The BN, on the other hand, sample from posterior probabilities that allows one to
synthesise activity chains that are likely or plausible, yet may not have been explicitly observed in
the data. This is especially valuable, and important, when one has to understand behaviour from
rich but very small data sets like travel diaries.

6. Introducing temporal variables

Up to this point, the paper focused on the generative ability of BNs to produce structurally
sound activity and trip chains but neglected the temporal dimension. It is entirely plausible to
argue that a person with an extended, 10-hour work activity in her/his activity chain will have a
shorter activity chain with fewer activities. The quicker the activities, the more a person can fit
into their time budget and the longer the length of the trip/activity. But is this supported by the
data? Or, a more important question, can the Bayesian network approach accommodate this?

This section has two objectives. First, to introduce activity durations as temporal variables
into the Bayesian network and explore if and how they affect the network structure. Secondly, we
want to demonstrate that complexity increases only marginally when adding more variables.

Adding temporal variables allows one to calculate the total diary duration for utility-earning
activities by merely summing over all of them. While we will only demonstrate activity duration in
this section, one can in future extend this to include trip durations as well. We argue that having
the total chain duration adds valuable inference capabilities and explainability to the model. For
example, it allows one to estimate the overall time our illustrative Lilly spends outside her home.
As a young female dependent on public transport, the out-of-home time may be a proxy for her
risk to become a victim of gender-based violence and can contribute to policy decision-making.

In the travel survey, people reported the start and end-times of their activities. For the first
(home) activity, they only state the time they departed and, similarly, for the last activity of their
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day, they only give the arrival time. Consequently, for all other activities that make up the chain,
we calculated and captured the activity duration as a continuous variable. When introducing
continuous variables into a BN, one must first discretise the values into bins. The software we
used, BayesiaLab, has the functionality to optimise the bin intervals through several activities, one
being a Genetic Algorithm. For the City of Cape Town travel survey, the optimised bins were
[0,0.5], (0.5,2], (2,5] , (5,8], (8,10], > 10 hours. Although the discretisation was machine-learned,
it surprisingly corresponded with typical activity durations.

6.1. Structural learning

The next step is to learn a structure from the data. We impose the same temporal restrictions
introduced in Section 4. We denoted the duration of the second activity by dur 2, the third activity
by dur 3, etc. Figure 9 illustrates the resulting machine-learned structure. It is noteworthy that

access trip 1 trip 2 trip 3 trip 4 trip 5 trip 6

license

ageGroup  employed — dur 2 dur 3 dur 4 dur 5 dur 6 dur 7

Key:
demographic variable ©
travel variable O
temporal variable O

Figure 9: Learned Bayesian network structure with temporal variables included.

not all the temporal links (for example, from act 5 to dur 5) manifested from the learning process.
Congruent with BN theory, one can combine machine-learned and expert inputs to establish the
structure by placing localised prior links between nodes. Chickering et al. (2013) refer to this
method as structural prior learning. The temporal patterns one sees in the early stages of the
chain (act 2 and act 3) influenced our choice for priors, resulting in the uniform BN structure
shown in Figure 10. What is insightful in the network is that the type of activity affects its
duration, as one would expect. But the duration of an activity does not influence later activities.
Instead, only activities influence subsequent activities in the chain, which is a change from the
earlier machine-learned network in Figure 3 without the temporal variables.

Still, the posterior probabilities estimated from the data make intuitive sense. Consider Lilly
again, the early career female without a license and no access to a private car. When synthesising
her partial activity chain, one follows the same procedure as discussed in Section 4.3 and illustrated
in Figure 5. Now, with the temporal variables included in the Figure 10 network, one might sample
trip 1 to be public transport (p); and then act 2 as work (w) and trip 2 to as public transport
(p) again. Knowing both act 2 and trip 2 allows one to sample act 3 to be home (h) again
in this illustration. Figure 11la shows the evidenced variables. With act 2 evidenced as work
(w), we see an activity duration (dur 2) distribution with a median of 8-10 hours. The duration
distribution for act 3 is most likely not to exist, implying that home (h) will be the last activity
in Lilly’s chain.
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Figure 10: Bayesian network resulting from structural prior learning.
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Figure 11: Illustrating how evidenced activity variables affect the posterior probability distribution of those activities’
duration.

If, however, Lilly’s second activity was sampled to be some other (o) activity, like buying her
bus ticket, the posterior probability distribution of the second activity (dur 2) is heavily skewed
towards a much shorter event (Figure 11b). Also, if her act 3 is work (w), its duration distribution
(dur 3) is most likely to be around 8-10 hours, which is plausible for a full day’s work.

The more variables one add, like the temporal activity durations here or trip durations that
we leave for future work, the more degrees of freedom one adds that has to be accounted for when
measuring the accuracy of the synthesised chains. The purpose here was primarily to demonstrate
that one indeed can address the important temporal aspect of activity-based travel demand, only
adding marginal complexity, and without losing the intuitive explanatory power of the network. A
more exhaustive network will require more data to maintain the accuracy we reported in this paper.
If, like Yin et al. (2018), one has access to large call data records or geospatial positioning system
(GPS) data from telemetry devices, additional temporal variables can be added with confidence.

7. Conclusion

This paper responded to the call of Rasouli and Timmermans (2014) that travel demand models
need to become more behaviourally rich. More specifically, this paper introduced BNs, which allow
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for causal interpretation, to synthesise daily travel demand patterns in the form of activity and
trip chains. We look at both activity sequences and the modes connecting them, i.e. trip chains.

The approach allows one to not merely follow a frequentist approach in which one only looks
at the typical and most common activity chains. We did not do any a priori clustering of records
based on, for example, demographics as was done in Liu et al. (2015). Instead, we included both
frequent and low-frequency observations to influence the synthesis.

To evaluate the approach, this paper also moved beyond aggregate analysis. We introduced a
number of machine learning metrics that have not achieved much traction in the transport domain
as in more progressive fields.

One can further evaluate the BN by comparing synthesised and observed travel sequences from
an unseen population, such as a survey from a different city.

Two specific areas of future research are now open. Firstly, BNs lend itself to use combinations
of data-driven and expert inputs for both the structure and conditional probabilities. For exam-
ple, looking at the demographics representation in Table 3, one can choose to keep the machine
learned conditional probabilities for highly represented demographic profiles, and refine the lower
represented profiles with expert knowledge. The opportunity here is to focus specifically on the
low-frequency observations and incorporate expert input that are not easy to capture in small-scale
surveys. The value for both academia and practitioners is that when equity becomes part of the
overall metrics, understanding the behaviour behind the less frequently observed travel patterns
may provide valuable insight to decision-makers. Specifically developing countries challenged with
high levels of economic and mobility inequality can find value in such flexible approaches.

Secondly, we did not look at joint activity scheduling within households. This is in line with
the concern raised by Rasouli and Timmermans (2014). But Sun and Erath (2015) and Sun et al.
(2018) have shown that BNs can easily be constructed in hierarchies so that within-household
decision-making can be accommodated.
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