
RESEARCH ARTICLE Open Access

Machine learning reveals that
Mycobacterium tuberculosis genotypes and
anatomic disease site impacts drug
resistance and disease transmission among
patients with proven extra-pulmonary
tuberculosis
Doctor B. Sibandze1,2, Beki T. Magazi1,3, Lesibana A. Malinga1,4, Nontuthuko E. Maningi1, Bong-Akee Shey1,
Jotam G. Pasipanodya5,6* and Nontombi N. Mbelle1,3

Abstract

Background: There is a general dearth of information on extrapulmonary tuberculosis (EPTB). Here, we investigated
Mycobacterium tuberculosis (Mtb) drug resistance and transmission patterns in EPTB patients treated in the Tshwane
metropolitan area, in South Africa.

Methods: Consecutive Mtb culture-positive non-pulmonary samples from unique EPTB patients underwent
mycobacterial genotyping and were assigned to phylogenetic lineages and transmission clusters based on
spoligotypes. MTBDRplus assay was used to search mutations for isoniazid and rifampin resistance. Machine learning
algorithms were used to identify clinically meaningful patterns in data. We computed odds ratio (OR), attributable
risk (AR) and corresponding 95% confidence intervals (CI).

Results: Of the 70 isolates examined, the largest cluster comprised 25 (36%) Mtb strains that belonged to the East
Asian lineage. East Asian lineage was significantly more likely to occur within chains of transmission when
compared to the Euro-American and East-African Indian lineages: OR = 10.11 (95% CI: 1.56–116). Lymphadenitis,
meningitis and cutaneous TB, were significantly more likely to be associated with drug resistance: OR = 12.69 (95%
CI: 1.82–141.60) and AR = 0.25 (95% CI: 0.06–0.43) when compared with other EPTB sites, which suggests that poor
rifampin penetration might be a contributing factor.
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Conclusions: The majority of Mtb strains circulating in the Tshwane metropolis belongs to East Asian, Euro-
American and East-African Indian lineages. Each of these are likely to be clustered, suggesting on-going EPTB
transmission. Since 25% of the drug resistance was attributable to sanctuary EPTB sites notorious for poor rifampin
penetration, we hypothesize that poor anti-tuberculosis drug dosing might have a role in the development of
resistance.

Keywords: Stochastic gradient boosting, Spoligotypes, Number needed to screen, Attributable risk, Pharmacokinetic
variability, Acquired drug resistance

Background
South Africa has one of the highest tuberculosis and hu-
man immunodeficiency virus (TB/HIV) incidence rate
per capita, with the World Health Organization (WHO)
estimating new case incidences of 834 per 100, 000
population in 2015 and 520 in 2019 [1]. Recently, WHO
set stringent tuberculosis (TB) elimination milestones
and targets for member countries. The milestones are 10
new TB cases per million people per year by the year
2035, while the target goal is 1 case per million people
per year by the year 2050. Nonetheless, it is estimated
that 15 to 20% of all TB notified cases might have dis-
ease restricted to extra-pulmonary sites (EPTB), such as
meningeal, lymphatic, cutaneous or pericardial space.
However, the true proportion of proven TB at such ana-
tomical sites is not well described [2, 3]. In order to
meet the WHO TB elimination targets South Africa will
need to undertake more vigorous TB surveillance and
direct more resources towards EPTB efforts. However,
there are still misinformed beliefs among some public
health practitioners and TB programs that EPTB, includ-
ing childhood TB, do not constitute public health threats
because EPTB is less likely to be transmitted between
persons. It is for these and other reasons that childhood
TB was not reportable and therefore not formally cap-
tured in public records by many national TB programs
until 2012 [4]. The net effect has been to regard all TB
lesions, except for those from the bronchus, lung paren-
chyma and bronchopulmonary lymph nodes, in one ob-
scure category called EPTB and devote even fewer
resources to the disease [5–7]. As a result, Mycobacter-
ium tuberculosis (Mtb) genotypes, drug resistance pat-
terns and temporal trends associated with EPTB are not
well described in South Africa, or in the Tshwane Muni-
cipality [3].
The city of Tshwane, in Gauteng province, is the fi-

nancial hub and most densely populated municipality in
South Africa. The Tshwane Metropolitan area covers a
region of 6368 km2 and is supported by a sophisticated
network of > 25 directly observed treatment strategy
(DOTS)/TB centres and tertiary level teaching facilities
that serve a multi-ethnic and diverse population in ex-
cess of 3 million people, including migrants from across

sub-Saharan Africa (Fig. 1). This makes Tshwane an
ideal place to obtain generalizable findings on transmis-
sion dynamics of different Mtb genotypes with or with-
out drug resistance within diverse populations. The
predominant strains associated with the pulmonary
(PTB) epidemic in the Gauteng province of South Africa
are the globally prevalent, modern and re-imported Lin-
eages 4, particularly the Latin-American Mediterranean
(LAM) sublineages and the East Asian Lineage 2, which
has the moniker “Beijing” strains [2, 8–11]. Both lineages
affect geographically diverse human populations world-
wide, have been associated with rapid human-to-human
transmission and hence greater propensity for acquired
drug resistance [9, 12, 13]. On the other hand, the same
cannot be said about the more ancient East African In-
dian Lineage 3, such as EAI1_SOM families, which have
also been isolated with equal frequency in PTB patients
from Gauteng province [8, 10, 14]. Here, we wanted to
identify factors that predict drug resistance in EPTB pa-
tients in Tshwane. In order to inform policy, we specific-
ally wanted to examine the interaction between drug
resistance and TB transmission among EPTB patients in
the Tshwane metropolis.
There are several molecular tools that promote the rapid

identification of drug resistance patterns of Mtb complex dir-
ectly from clinical specimen and allow the analysis of mo-
lecular clock within and against the reference [2, 15]. These
genotyping technologies can assign Mtb isolates into distinct
clusters or groups based on their relatedness with respect to
time (phylogeny), geography and other characteristics, in
order to ascertain and compare disease transmission between
groups. Mtb genotyping is relatively simple, readily available
and now affordable. It includes the analyses of IS6110 DNA
fingerprints, large sequence polymorphisms, spacer oligo-
nucleotide typing (spoligotyping), mycobacterial interspersed
repetitive units/variable-number tandem-repeats (MIRU/
VNTR), single nucleotide polymorphism (SNP) and more re-
cently, whole-genome sequencing (WGS). Of these, MIRU/
VNTR and spoligotyping are the most readily accessible and
widely used in developing countries because both have large
global reference databases and computational tools that allow
assignment of isolates in the major Mtb complex lineages
[12, 13, 16–18]. When combined with spatio-temporal data,
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MIRU/VNTR and spoligotyping are considered the gold
standard for identifying and tracking chains of transmission.
More importantly, both have become indispensable for TB
epidemiology studies of drug resistance within communities
and across the world [5, 7, 14, 16, 19, 20]. The optimal TB
treatment duration for the different anatomic sites, including
cutaneous TB, meninges and pericardial spaces, is unknown
[5]. Furthermore, there are very few data on the effect of the
standard six-to-nine-month combination therapy on ac-
quired drug resistance and patients’ outcomes for these
different anatomic sites constituting EPTB. Here we use
spoligotyping to identify TB transmission patterns and to

characterize clinical Mtb isolates obtained from EPTB
sites in patients treated in the Tshwane metropolitan of
South Africa.
The goal of this study was to use agnostic machine

learning (ML) algorithms to determine if there are clear
patterns among the different anatomic sites impacting
drug resistance and/or genotypic clustering of Mtb iso-
lates in affected individuals. Ensembles of ML, such as
least absolute selection shrinkage operator, classification
regression trees (CART) and random forests, when
coupled with stochastic gradient boosting allows identifi-
cation of weak base learners and detection of nonlinear

Fig. 1 Geographic location of tuberculosis (TB) services and directly observed treatment strategy (DOTS) centers in Tshwane municipality of
South Africa
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dependencies in data, including in pharmacometric fields
[21–24]. We hypothesized that the majority of EPTB
cases will be clustered, with significant proportions bear-
ing drug resistance, which would indicate high rates of
transmission of drug resistance in Tshwane. Alterna-
tively, high drug resistance without relationships to clus-
tering would support the ‘pharmacokinetic variability
driven de novo acquired resistance’ hypotheses [5, 7, 25,
26], where inadequate drug exposures at sites of TB in-
fection lead to selection for drug resistant and drug tol-
erant strains which eventually leads to therapy failure
[20, 21]. Here we used ML to examine patterns that
were predictive of drug resistance. We specifically exam-
ined whether the different EPTB disease sites, the geo-
graphic areas of where the patients came from and
period when the patients had disease were also predict-
ive of TB transmission in Tshwane.

Methods
Study design
Eligible consecutive clinical samples from EPTB anatom-
ical sites were submitted for diagnosis confirmation by
respective DOTS/TB facilities to the National Health La-
boratory Services (NHLS). NHLS is the single and inte-
grated laboratory network that covers all public health
facilities in South Africa. In Tshwane, NHLS is affiliated
with the Department of Medical Microbiology at the
University of Pretoria, where microscopy, culture and
drug susceptibility testing (DST) of clinical specimens
from Tshwane DOTS/TB facilities as well as other
nearby provinces, including Limpopo and Mpumalanga,
are performed (Fig. 1). All 75 culture positive isolates
identified within the six-month study period between
July 1st, 2014 and January 31st, 2015 were eligible for
enrolment. Isolates that grew nontuberculous mycobac-
teria or Mycobacterium bovis were excluded. Patients’
demographics and clinical data were collected from the
specimen request forms. Since the analysed isolates were
de-identified and constituted of routinely collected data,
the study was not considered human subject research
(UP ethical inquiry 143/2015).

Definition of terms
The case of TB (RVCT) nomenclature and the approach
used by the US Centers for Disease Control and Preven-
tion (CDC) was used to assign collected specimen iso-
lates to EPTB anatomic sites for comparison purposes
(https://www.cdc.gov/tb/programs/rvct/rvct-form.pdf).
According to RVCT, EPTB comprises of pleural, peri-
toneal, lymphatic, meningeal, genitourinary, laryngeal
and unclassified group called ‘other’. We modified the
RVCT and replaced laryngeal with cutaneous and then
added a ‘disseminated’ category, given the high incidence
of those sites in our cohort. Disseminated TB denotes

isolates from blood or bone marrow specimens, while pa-
tients with a positive isolate from sputum and an EPTB
site were grouped separately and denoted ‘PTB/EPTB’. If
isolates were obtained from more than one EPTB sites,
only the dominant site was recorded. Number needed to
screen (NNS) was defined as the number of people that
needed to be screened to prevent one TB transmission
event or one drug resistance occurrence, based on the as-
sumption that all drug resistance events in the study were
acquired during therapy. Isolates that were resistant only
to either rifampin or isoniazid were categorized as mono-
resistant, while those resistant to both were categorized as
multidrug resistant TB (MDR-TB).
Spoligotyping examines 43 unique spacer sequences that

are interspaced between repetitive sequences in a specific
region of difference within the Mtb genome. The presence
or absence of each of the 43 variable spacers generates
strain-specific fingerprints. In this study, isolates were
clustered if there was an exact match in all 43 spacers.
Cluster name and isolate lineage assignments were made
by comparison of fingerprints to international databases:
https://www.miru-vntrplus.org/MIRU/index.faces, http://
www.pasteur-guadeloupe.fr:8081/SITVIT2/index.jsp [18].
The isolates with unmatched genetic profiles were consid-
ered nonclustered or orphan strains. The clustering rate
was calculated using the following formula: (nc − c)/n,
where nc is the total number of clustered isolates, c is the
number of isolate clusters, and n is the total number of
isolates. Recent transmission of TB infection was pre-
sumed to have occurred when a case had an identical spo-
ligotyping pattern to another case in the cohort during the
six-month study period.

Laboratory testing methods
Isolates identified as M.tb were recovered by subcultur-
ing 0.1 ml of the MGIT culture and on Löwenstein-Jan-
sen (LJ) slants to rule out contamination. The slants
were placed on their sides and left at room temperature
for 24 h and thereafter incubated at 37 °C for 6 weeks.
For genomic DNA extraction from Mtb, the isolates
were swept off from LJ slants and centrifuged at 10,000 g
for 15 min. The supernatant was discarded, and the pel-
let was re-suspended in 100 ml of sterile distilled water.
The isolates were then heat-killed at 95 °C for 20 min in
a water bath. This was followed by sonication for 15 min
and centrifugation at 13,000 g for 8 min. The super-
natant containing-DNA was used for spoligotyping and
the Genotype MTBDRplus line-probe assay (Hain Life-
Sciences, Nehren, Germany) while the remainder was
stored at − 20 °C.
The Genotype MTBDRplus v2 assay was performed to

search for mutations associated with rifampin and iso-
niazid resistance according to the manufacturer’s in-
structions. Briefly, PCR (50 μL/tube; 40-cycle program)
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was performed using the HotStar Taq DNA Polymerase
(Qiagen, Cambridge, MA, United States of America).
The PCR products were hybridized following the manu-
facturer’s instructions. After hybridization, membrane
strips were attached to the evaluation sheet, read, and
interpreted manually. Spoligotyping was performed as
previously described by Kamerbeek and colleagues [27].
The results were analysed using the BioNumerics Soft-
ware ver. 7.5 (Applied Maths, Kortrijk, Belgium). We
assigned each study isolate spoligotype pattern a Spoli-
gotype International Type (SIT) number using the most
current international spoligotyping databases comprising
of 111,635 clinical isolates [28].

Classification and regression tree (CART) modelling with
stochastic gradient boosting
Stochastic gradient boosting was used to identify weak base
learners, determine meaningful pairwise interactions and
the percent of variance attributable to those interactions,
variable important scores for those variables and identify
thresholds for decision-making [29–33]. Important vari-
ables define the most influential predictors, including both
linear and nonlinear rules that appear in the predictive
model [33]. We used the methods of Leo Breiman [34], a
pioneer in ML algorithms and artificial intelligence, and Je-
rome Friedman [30]. Multivariate adaptive regression spline
(MARS) models for binary targets in classification problems
implemented in TreeNet version 8.3 software were also
used for graphic visualization. Details of the modelling ap-
proaches that use these ML algorithms and tools for
pharmacokinetics and pharmacodynamics (PK/PD) ana-
lyses, pharmacometrics and for general decision-making
purposes in the clinic has been published before and
reviewed within [21–23, 25, 35, 36]. Optimal CART for
drug resistance and clustering outcomes were also graphic-
ally depicted for illustrative purposes. The variable import-
ance scores from Random forest were used to rank and
identify variables most predictive of acquired drug resist-
ance or clustering. CART and MARS in TreeNet were used
to identify thresholds for continuous variables applied to
clinical decision-making, as we have done in the past [21].
Similarly, both algorithms were used to group categorical
variable that were considered similar, based on GINI cri-
teria. Five-fold cross validation was used with all models
which included all patients’ clinical characteristics shown in
Table 1 and Mtb isolates’ spoligotypes. Area under the re-
ceiver operating characteristic curve, misclassification rates
and the F1-statistics were used for model comparison. Par-
simony was also used to select the final models.

Statistical analysis
Output from the gradient boosting ML were used to cal-
culate attributable risk (AR), NNS and in multivariate lo-
gistic regression models. Newcombe/Wilson scores with

continuity correction were used in computing AR 95%
confidence intervals (CI) [37], otherwise exact binomial
methods of Klopper-Pearson were employed. The
STATA (College Station, Texas) and GraphPad software
(San Diego, California) were used for statistical analysis.
Fisher’s exact test was used to compare proportions,
while the Kruskal–Wallis test compared median values
between groups. All tests were two-sided and set at an
alpha of 5%.

Results
Of the 75 unique and consecutive isolates submitted,
from eight out of the 25 DOTS/TB facilities in Tshwane
we excluded from further analysis five (7%) isolates be-
cause they grew Mycobacterium bovis. All excluded iso-
lates were from children < 16 years. Of the remaining 70
(93%) isolates, there were 28 females (40%). The overall
proven EPTB incidence was 4.43 (95% CI: 3.72–5.23)
per 100,000 population per year in Tshwane (Fig. 2a).
Even though the ages varied widely from 1 year to 85
years, only five (7.14%) samples were from children < 16
years (Table 1). Detailed demographic, clinical and geno-
typing data in Table 1 show that women were signifi-
cantly overrepresented among patients with the East-
Africa-Indian genotypes or lineage 3. Figure 2b shows
that the most frequently encountered proven EPTB dis-
ease sites were pleural and lymphatic, each accounting
for 29% (95% CI: 18–41%), and cutaneous TB which
accounted for 14% (95% CI: 7–25%), while peritoneal
and meningeal TB each accounted for only 7% (95% CI:
2–16%) of the cases. The associations between major
Mtb lineages, EPTB disease sites or DOTS/TB facilities
were not statistically significant.

Mycobacterium tuberculosis spoligopatterns clustering and
inferred transmission
The majority of Mtb isolates, 57/70 (81%), occurred in
clusters that varied in size from two to 25 isolates. The
largest cluster comprised 25 (36%) isolates belonging to
the Beijing clade, an East Asian lineage also called
lineage 2 (Fig. 3a). Mtb isolates from the three major lin-
eages 2, 3 and 4 were in chain of transmission for 98, 67
and 70% of the isolates, respectively (Fig. 3b). Thus, the
Beijing strains were significantly more likely to occur
within a chain of EPTB transmission when compared a
Euro-American strain: odds ratio (OR) = 10.11 (95% CI
1.56–116). On the other hand, 12/13 (92%) of unclus-
tered isolates were orphans in the international spoligo-
typing databases, while the remaining isolate belonged
to the X2 clade, which is of the Euro-American lineage.
Table 2 shows that there was no significant association
between clustering and the variety of demographic and
clinical factors, including notably drug resistance and
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DOTS/TB facilities, in bivariate analyses based on stand-
ard statistical tests.
Next, we applied stochastic gradient ML algorithms to

identify the important variables that predicted clustering
and to determine if there were nonlinear associations
that could explain genotypic clustering patterns (Fig. 3c-
d). The results shown in Fig. 3c revealed that specific
EPTB disease site and DOTS/TB facilities as well as any
drug resistance were ranked important variables and that
nonlinear interaction between these accounted for al-
most 45% of clustering variance. The usual factors de-
scribed in TB epidemiology, such as age, were either less
prominent or scored zero (in the case of patients’

gender). The pooled isolates from disseminated TB,
lymphadenitis, meningitis, EPTB/PTB and cutaneous TB
disease site were less likely to be clustered compared to
those not from the same TB disease sites: OR = 0.23
(95% CI: 0.10–0.99) and the attributable risk (AR) was
0.18 (95% CI: 0.01–0.40). The OR and AR for clustering
improved to 0 (95% CI: 0–0.45) and 0.26 (95% CI: 0.10–
0.47), respectively, if DOTS/TB facilities were also used
in the combination screening (Fig. 3d). If these two fac-
tors are used as screening tools the overall NNS to pre-
vent transmission of one TB case would be 3.91 (95%
CI: 2.14–10.32). The sensitivity for the CART shown in
Fig. 3d was 0.56 (95% CI: 0.43–0.68), while the positive

Table 1 Demographic and clinical characteristics of all patients

Variable ALL Lineage of Mycobacterium tuberculosis isolate P-value

Level N = 70
(%)

Orphan, n =
12 (%)

2
(East Asian); n = 25 (%)

3
(East-African Indian); n = 6 (%)

4
(Euro-American); n = 27 (%)

Demographic

Sex Female 28 (40%) 5 (42%) 5 (20%) 5 (83%) 13 (48%) 0.021

Male 42 (60%) 7 (58%) 20 (80%) 1 (17%) 14 (52%)

Age Median
(range); years

34 (1–82) 33.5 (12–61) 36 (1–60) 38.5 (32–82) 33 (9–50) 0.492

Age
groups

Pediatric (<16y) 5 (7%) 1 (8%) 3 (12%) 0 1 (4%) 0.684

Adult (>16y) 65 (93%) 11 (92%) 22 (88%) 6 (100%) 26 (96%)

TB/DOTS
Facilities

Folang 1 (1%) 0 1 (4%) 0 0 0.328

Kalafong 26 (37%) 4 (33%) 8 (32%) 5 (83%) 9 (33%)

Mamelodi 10 (14%) 1 (8%) 2 (8%) 1 (17%) 6 (22%)

Potchefstroom 4 (6%) 0 0 0 4 (15%)

Pretoria West 4 (6%) 1 (8%) 2 (8%) 0 1 (4%)

Skinner 2 (3%) 1 (8%) 0 0 1 (4%)

Steve Biko 14 (20%) 3 (33%) 6 (24%) 0 4 (15%)

Tshwane 9 (13%) 1 (8%) 6 (24%) 0 2 (7.41%

Clinical

Disease
site

Pleural effusion 20 (29) 2 (17) 4 (16) 3 (50) 11 (41) 0.489

Lymphadenitis 20 (29) 4 (33) 11 (44) 1 (17) 4 (15)

Cutaneous TB 10 (14) 3 (25) 1 (4) 1 (17) 5 (19)

Peritoneal
effusion

5 (7) 0 3 (12) 0 2 (7)

Meningeal TB 5 (7) 1 (8) 2 (8) 1 (17) 1 (4)

Disseminated 4 (6) 1 (8) 2 (8) 0 1 (4)

Genitourinary 2 (3) 0 0 0 2 (7)

Other 4 (6) 1 (8) 2 (8) 0 1 (4)

DR RIF/INH
susceptible

59 (84) 9 (75) 22 (88) 5 (83) 23 (85) 0.125

RIF
monoresistant

6 (9) 3 (25) 0 0 3 (11)

INH
monoresistant

3 (4) 0 2 (8) 0 1 (4)

MDR-TB 2 (3) 0 1 (4) 1 (17) 0

RIF Rifampin; INH Isoniazid; MDR-TB Multidrug resistant tuberculosis; DR Drug resistance
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predictive value was 0.74 (95% CI: 0.60–0.85). However,
both the specificity and negative predictive values were
poor. Nonetheless, when combined, these data show that
disease site and DOTS/TB facilities, i.e., geographic in-
formation systems, can be used in combination with iso-
lates genotypes to identify situations where TB
transmission is taking place, even for paucibacillary
forms of the diseases such as EPTB.

Predictors of EPTB drug resistance
The majority, 59/70 (84%), of the isolates were suscep-
tible to both rifampin and isoniazid, while two (3%) iso-
lates were MDR. However, rifampin resistance was
observed in disproportionately large proportions of iso-
lates, 8/70 (11%), which is rather unusual, since isoniazid
monoresistance was observed in only 3/70 (4%) isolates
(Fig. 2c). Nonetheless, Table 3 shows that there was no
association between drug resistance and most demo-
graphic and clinical factors examined, including cluster-
ing (p = 0.419) or Mtb spoligotypes (p = 0.737) for any
resistance, based on straightforward frequentist tests.
The exception was between rifampin resistance and the
disease site: p = 0.036.
ML analyses revealed the differential impact of the in-

teractions between disease site and Mtb genotypes on
any drug resistance and especially MDR-TB/rifampin
monoresistance (Fig. 4a/b). Firstly, disease sites charac-
terized by sanctuary states, i.e., lymphadenitis, meningitis
and cutaneous TB, were significantly more likely to be
associated with any drug resistance: OR = 12.69 (95% CI:
1.82–141.60) and AR = 0.25 (95% CI: 0.06–0.43), when
compared to EPTB in other sites. Secondly, with regards
to MDR-TB and/or rifampin monoresistance, the top
predictor was lymphadenitis and cutaneous TB disease,
which means that meningitis was excluded. This is not
surprising since rifampin does not penetrate well into
the blood-brain barrier and the current doses given are
so low that virtually none gets into the cerebrospinal
compartment. The sensitivity and specificity of using
disease site as proxy to identify isolates likely to be

Fig. 2 Population estimates of extrapulmonary tuberculosis (EPTB)
and proportion with drug resistance in Tshwane by age group and
sex in 2015. Figure 2a show that the estimated EPTB incidence
stratified by age and gender. As shown the estimates in females was
3.54 (95% CI: 2.68–4.60), while that in males was 5.31 (95% CI: 4.24–
6.58) per 100, 000 populations for the year 2015. Figure 2b show the
proportion of total isolates (N = 70) by anatomic EPTB and within
each category the percent of isolates with resistance to either
rifampin or isoniazid or both. As shown, none of the isolates from
peritoneal specimen, disseminated (i.e., blood or bone marrow) and
other specimen samples were drug resistant. Figure 2c stratifies drug
resistance by age, and as shown one out of the 5 isolates from
children were drug resistant, and that same isolate was also
rifampin resistance
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MDR-TB or rifampin monoresistant are 1.00 (95% CI:
0.68–1.00) and 0.64 (95% CI: 0.52–0.75), respectively.
When information about likely Mtb genotypes is added,
as shown in Fig. 4d, the specificity improves to 0.84
(95% CI: 0.71–0.92). These data show that for every four
patients (95% CI: 2.11–10.64) with TB lymphadenitis or
cutaneous TB, we would expect one or more to have
MDR-TB and/or rifampin monoresistance when com-
pared to those with TB in other sites. This means that
screening patients using drug susceptibility tests and

changing the treatment regimens would prevent therapy
failure and reduce transmission of drug resistant TB.

Discussion
This study focused on characterizing clinical Mtb iso-
lates in real-world settings and hence has limitations
compared to observational studies, including inadequate
sample size, imprecise and some missing information
(e.g. HIV infection status). First, we only used spoligo-
types to assign clusters, which limits and biases the

Fig. 3 Clustering and chains of Mycobacterium tuberculosis transmission. The number of clusters and the sizes of each cluster are shown in Fig.
3a, while the proportion of patients from each the major genotype lineages (2, 3 and 4) in a chain of transmission are depicted in Fig. 3b (there
were no isolates from lineage 1 enrolled in study). Variable importance scores and proportion of the variance explained by interactions between
variables were obtained from stochastic gradient modeling of between 200 and 2000 classification and regression trees (CART) are shown in Fig.
3c, while the optimal and sample tree from those models is shown in Fig. 3d. Disease site was the most important variable at the apex with
100%, while DOTS/TB Facility was second with 92% relative to disease site. However, between variables interactions explained 21% of the
variance for disease site and 19% for DOTS/TB Facility (Fig. 2c) which means that there are important nonlinear interactions accounting clustering
variance. Figure 3d shows disease site and DOTS/TB Facility interactions significantly influence clustering, even though each individual variable
was not statistically significant in Table 2 based on Fischer’s exact test. As shown in, isolates from disseminated diseases, lymph nodes, meninges,
EPTB/PTB and skin were significantly less to be clustered; 32/43 (74%) versus 25/27 (93%), when compared to the rest of disease site. The receiver
operating characteristics curve. (ROC) for this single node is 0.744 (95% confidence interval [CI] 0.590–0.991). The model is reproducible as
demonstrated by the test ROC of 0.688 and error rate of < 3% on the training model
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clustering resolution and might potentially over-estimate
clustering rates. The second limitation relates to a small
sample size and misclassification of EPTB disease sites,
which has notoriously confounded comparison of EPTB
incidences between studies [38]. Previous studies have
identified disease site-specific risk factors, including

those with certain Mtb genotypes, drug resistance and
meningeal TB which we could not reproduce in our
study, since only five (7%) meningeal TB and 1 (1%)
pericardial TB isolates were enrolled [39–43]. Nonethe-
less, we used validated RVCT methods to allow compari-
sons between studies. Third, the Mtb isolates were not

Table 2 Association between demographic and clinical factors with M. tuberculosis genotypes clustering

Clustering Univariate

Variable Level Unclustered, n = 13 (%) Clustered, n = 57 (%) P-value Odds ratio (95% CI)

Demographics

Sex Female 6 (46%) 22 (39%) 0.789 Referent

Male 7 (54%) 35 (61%) 1.36 (0.41–4.49)

Age groups Adults
(> 17 y)

12 (92%) 53 (93%) 1.000 Referent

Children
= < 16 y

1 (8%) 4 (7%) 0.91 (0.09–8.85)

TB/DOTS Facilities Folang 0 1 (2%) 0.735 1--

Kalafong 5 (38%) 21 (37%) 0.53 (0.05–5.21)

Mamelodi 1 (8%) 9 (7%) 1.13 (0.06–21.08)

Potchefstroom 0 4 (7%) 1--

Pretoria West 1 (8%) 3 (5%) 0.38 (0.02–8.10)

Skinner 1 (8%) 1 (2%) 0.13 (0–4.00)

Steve Biko 4 (31%) 10 (18%) 0.31 (0.03–3.38)

Tshwane 1 (8%) 8 (14%) Referent

Clinicals

Any drug resistance Susceptible 10 (77%) 49 (86%) 0.416 Referent

Resistance 3 (23%) 8 (14%) 0.54 (0.12–2.42)

INH mono-resistance Susceptible 13 (100%) 52 (91%) 0.576 1--

Resistance 0 5 (9%)

MDR/RIF* Susceptible 10 (77%) 49 (91%) 0.179 Referent

Resistance 3 (23%) 5 (9%) 0.34 (0.07–1.66)

Disease site Disseminated 1 (8%) 3 (5%) 0.540 Referent

Lymph nodes 4 (31%) 16 (28%) 1.33 (0.11–16.48)

Meninges 1 (8%) 4 (7%) 1.33 (0.06–31.12)

EPTB/PTB 1 (8%) 2 (4%) 0.67 (0.02–18.06)

Pericardium 0 1 (2%) 1--

Peritoneum 0 5 (9%) 1--

Pleura 2 (15%) 18 (32%) 3 (0.20–44.36)

Genitourinary 0 2 (4%) 1--

Cutaneous TB 4 (31%) 6 (11%) 0.5 (0.04–6.68)

Beijing Clade Yes 0 25 (44%) 0.003 --1

No 13 (100%) 32 (56%)

Euro-American No 12 (92%) 31 (54%) 0.011

Yes 1 (8%) 26 (46%) 10.06 (1.23–82.64)

East-Africa-India No 13 (100) 51 (89) 0.221

Yes 0 6 (11%) --1

MDR-TB Multidrug resistant tuberculosis; RIF Rifampin; INH Isoniazid; EPTB Extra-pulmonary TB
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serialized, and information on drug therapy received, TB
drug doses and period of isolates’ collection relative to
TB therapy, was not available. This made inference and
distinction of primary transmitted resistance from ac-
quired resistance in our study difficult [44]. Incomplete
medical history on the laboratory request form also

made it difficult to determine which isolates were from
patients immunosuppressed with HIV or concomitant
immunosuppressive agents used for rheumatological dis-
eases. Nonetheless, with ML modelling which is more
suitable with missing data or highly complex data struc-
ture, we were able to demonstrate that routinely

Table 3 Association between demographic and clinical factors with drug resistance

Any resistance Rifampin, MDR-TB

Variable Level Pan-susceptible, n = 59 (%) Resistant, n = 11 (%) P-value Pan-susceptible, n = 59 (%) Resistant, n = 8 (%) P-value

Demographic

Sex Female 24 (41%) 4 (36%) 0.789 24 (41%) 2 (25%) 0.393

Male 35 (59%) 7 (64%) 35 (59%) 6 (75%)

Age groups Adults
(> 17 y)

55 (93%) 10 (91%) 0.785 55 (93%) 7 (88%) 0.563

Children
= < 16 y

4 (7%) 1 (9%) 4 (7%) 1 (12%)

TB/DOTS
Facilities

Folang 1 (2%) 0 0.958 1 (2%) 0 0.856

Kalafong 21 (36%) 5 (45%) 21 (36%) 4 (50%)

Mamelodi 9 (15%) 1 (9%) 9 (15%) 0

Potchefstroom 4 (7%) 0 4 (7%) 0

Pretoria West 3 (5%) 1 (9%) 3 (5%) 1 (12%)

Skinner 2 (3%) 0 2 (3%) 0

Steve Biko 11 (19%) 3 (27%) 11 (19%) 2 (50)

Tshwane
District Hosp.

8 (14%) 1 (9%) 8 (14%) 1 (13%)

Clinical

Genotypes Beijing 22 (37%) 3 (27%) 0.737 22 (37%) 1 (12%) 0.350

Cas_KILI 4 (7%) 0 4 (7%) 0

EAI1_SOM 1 (2%) 1 (9%) 1 (2%) 1 (12%)

LAM11_ZWE 2 (3%) 0 2 (3%) 0

LAM3 4 (7%) 0 4 (7%) 0

LAM4 2 (3%) 1 (9%) 2 (3%) 1 (12%)

LAM9 2 (3%) 1 (9%) 2 (3%) 1 (12%)

S 3 (5%) 0 3 (5%) 0

T1 3 (5%) 0 3 (5%) 0

X1 4 (7%) 1 (9%) 4 (7%) 0

X3 2 (3%) 1 (9%) 2 (3%) 1 (12%)

Unclustered Orphan/X2 10 (17% 3 (27%) 0.419 10 (17%) 3 (38%) 0.168

Disease
Site

Disseminated 4 (7%) 0 0.134 4 (7%) 0 0.036

Lymph nodes 16 (27%) 4 (36%) 16 (27%) 4 (38%)

Meninges 4 (7%) 1 (9%) 4 (7%) 0

EPTB/PTB 3 (5%) 0 3 (5%) 0

Pericardium 1 (2%) 0 1 (2%) 0

Peritoneum 5 (8%) 0 5 (8%) 0

Pleura 19 (32%) 1 (9%) 19 (32%) 0

Genitourinary 2 (3%) 0 2 (3%) 0

Cutaneous TB 5 (8%) 5 (45%) 5 (8%) 5 (63%)

MDR-TB Multidrug resistant tuberculosis; EPTB Extra-pulmonary TB; PTB Pulmonary TB
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collected laboratory and clinical data can be used to
screen patients and identify risk groups where acquired
drug resistance is most likely to occur. Gradient boost-
ing allows identification of weak predictors, nonlinear
relationships and thresholds in the data space [32],
which is like the proverbial “finding a needle in a hay-
stack”. In this case one uses giant magnets to find that
needle. Sensitivities and specificities > 84% are reason-
able and acceptable, given that the information required
for initial screening (i.e., identifying disease site as
lymphadenitis, cutaneous TB or meningitis) can be

ascertained by history and clinical examination. More-
over, ROC values ~ 70% with cross validation some-
how reassures us that results such as these are likely
to be reproducible with similar populations. Unlike
most EPTB studies performed at large specialized
hospitals [45, 46], our study has minimal referral bias,
hence the other strength of this study is that the iso-
lates were from primary DOTS/TB facilities and not
from patients treated at tertiary specialized facilities.
There are three notable findings from our study with

important public health policy and TB control efforts

Fig. 4 Predictors of drug resistance in Mycobacterium tuberculosis isolates from extra-pulmonary sites. The variable importance scores and
proportion of the variance explained by interactions between the variables that were obtained from stochastic gradient modeling for any drug
resistance are shown in Fig. 4a, while those for MDR-TB/Rifampin monoresistance are shown in Fig. 4b. Multivariate adaptive regression trees
(MARS) for binary outcomes with two-way interactions detection were made in the TreeNet software. The optimal representative classification
and regression trees (CART) are shown in Fig. 4c for any resistance and in Fig. 4d for MDR-TB/Rifampin monoresistance. The primary node
(disease site) for any drug in Fig. 4c is almost identical to that for MDR-TB/Rifampin monoresistance in Fig. 4d, the difference being addition of
meninges to the former group. The sensitivity for both is 0.72 (95% CI: 0.56–0.84). However, positive predictive value for the former is 0.44 (95%
0.32–0.57) and for the latter is 0.36 (95% 0.25–0.48). The MDR-TB/Rifampin monoresistance group necessarily excludes the three isoniazid
monoresistance isolates, hence the overall number of isolates analyzed in Figs. 4c/d are 67 and not 70
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that target reduction of both disease transmission and
drug resistance. The findings are certainly applicable in
the Tshwane metropolitan area and have potential rele-
vance across similar urban populations in South Africa
and across the sub-Sahara African metropolis. The first
key finding is the hierarchical and nonlinear association
between key EPTB disease sites (mainly lymphatic, cuta-
neous TB and meningeal) and spoligotypes (mainly to
impact both disease transmission and drug resistance).
The association between Beijing strains and both TB dis-
ease transmission and drug resistance has been well de-
scribed in South Africa and across the world and the
results have been mixed [9–11, 15, 47–49]. Our study
demonstrates that those relationships are conditional,
complex and characterized by several nonlinear interac-
tions (Figs. 3 and 4). For example, two-way interactions
between EPTB disease site and another variable ex-
plained > 20% of the variance in clustering and almost
10% of drug resistance. This means that unless those
nonlinear relationships are fully examined, the purported
factors driving either transmission or drug resistance will
be highly biased or wrong. In fact, for both clustering
and drug resistance, the impact of Mtb genotypes is of
second order, suggesting that some mycobacterial geno-
types have increased propensity to act on some EPTB
disease sites and less likely on others. The differential
impact of EPTB disease site on any drug resistance
(shown in Fig. 4c) and on MDR-TB/rifampin monoresis-
tance (shown in Fig. 4d), is revealing and consistent with
standard PK/PD principles underlying drug resistance
emergence [25, 50–52]. PK variability between individ-
uals mean that some patients will have faster drug clear-
ances than others when given the same drug dose.
Therefore, inadequate drug exposures at the site of in-
fection, which occurs because of PK variability or sub-
optimal drug doses or poor drug penetration into
protected sites such as meningeal or pericardial spaces,
leads to selection of drug resistant or drug tolerant iso-
lates. The selected mutants eventually acquire putative
mutations in time. In other words, acquired drug resist-
ance (ADR) occurs de novo during therapy primarily be-
cause of inadequate dosing or with unoptimized therapy
regimens. The WHO recommends the same standard-
ized and uniform therapy regimens and doses used for
PTB for EPTB, with the caveat of experts’ opinions that
varying longer therapy durations be given for meningeal
and bone/joints disease sites [53]. Indeed, these same
guidelines are used in Tshwane. As shown in Figs. 4c-d,
the standard WHO recommended EPTB treatment regi-
men is associated with drug resistance in certain EPTB
sites such as lymphatic, cutaneous TB and meningeal
site. In this study, the attributable risk for both any re-
sistance and MDR-TB and/or rifampin monoresistance
were substantial: 0.25 and 0.64, respectively. The

corollary suggestion from this specific finding is that the
majority resistance observed in our study is more likely
acquired during therapy rather than being ‘pre-existing’
or primary. The NNS for targeted screening among
EPTB patients based on disease sites for any resistance
was 4 and for MDR-TB and/or rifampin monoresistance
was 2, which is even more efficient and effective than
widely recommended population screenings for active
TB in congregate settings or among select risk groups,
such as patients with diabetes mellitus or HIV [54]. For
example, the NNS HIV infected patients to find one ac-
tive TB case in regions with low TB incidences is 25
(ranges 11–144) and in high TB incidence regions is 10
(ranges 5–22), while that for prisoners is 520 (ranges
69–427) and 43 (ranges 21–123), respectively.
Secondly, even though the proportion of EPTB disease

sites were similar to previous observations, the overall
incidence of proven EPTB of 4.43 per 100,000 popula-
tions was lower than expected. There were 8034 micro-
biologically confirmed PTB cases in Tshwane in 2015,
an estimated incidence rate of 254 (95% CI: 249–260)
cases per 100,000 population [1]. Confirmed PTB status
was based on positive GeneXpert MTB/RIF assay, cul-
tures, line probe assays and microscopy smears, which
probably overestimated confirmed PTB cases by accept-
ing nontuberculous mycobacteria cases, based micros-
copy smears. Hoogendoorn et al. reviewed charts of
patients treated and notified for clinical EPTB in the
predominantly rural Limpopo province, for 10 months of
2013 [3]. Of the 336 patients diagnosed, only 57% had
good evidence for stated diagnoses. Nonetheless, the
overall estimated incidence of clinical EPTB in that
study was 27.92 (95% CI: 24.80–31.23) and that for clin-
ical meningeal TB was 2.56 (1.70–3.70) per 100,000 pop-
ulations per year. Meningeal TB comprised 9.82% (95%
CI: 6.86–13.52) of EPTB in Limpopo and 9.04% (95% CI:
6.94–11.54) in Soweto, per year [3, 46]. Our estimates of
EPTB incidence in Tshwane is six-fold lower than those
reported from Limpopo; however, proven meningeal TB
comprised 7.14% (2.36–15.89) of cases in Tshwane, sug-
gesting that the meningeal TB proportions were similar
between these disparate South African studies. In the
US, EPTB as a proportion of total TB cases has been
steadily increasing as TB elimination efforts are acceler-
ated and the WHO TB elimination targets getting real-
ized. From 7.6% in 1962 at the peak of the epidemic
when TB incidence was 28.6 per 100, 000 population,
EPTB increased to 15.7% in 1993 with the HIV resur-
gence and was 30.9% % in 2017 when the reported TB
was 2.8 per 100, 000 population [55]. Contrary to the ex-
planations given by Hoogendoorn and others, we actu-
ally hypothesize that with the widespread use of
laboratory methods to prove EPTB, the incidence will in-
crease consistent with observations in the US, where
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majority of EPTB reported are proven TB. We argue that
several cases currently reported as clinical EPTB by Hoo-
gendoorn and others in South Africa and elsewhere in low-
resources settings could be due to other bacterial infections
or due to systemic inflammation from HIV infection.
EPTB is generally paucibacillary in nature which means

that usually there are not enough Mtb bacilli in tissues
from which cultures can be obtained; histology samples
are not easy to obtain and therefore not routinely col-
lected. Culture positivity and histology examination of
clinical samples, which are the gold standards for confirm-
ing EPTB, are notoriously low (about 15% in high TB bur-
den areas) and inconsistent when compared against
clinically suspected TB cases. Investments in improved
diagnostics to confirm EPTB or ML algorithms that are
trained on large clinical data to predict EPTB, will not
only save lives by reducing unnecessary TB treatments,
but will also be cost-effective because of the reduction of
TB transmission and ADR. Both interventions will accel-
erate meeting WHO TB elimination targets.
Finally, with regards to the heterogeneity of the Mtb

spoligotypes causing EPTB, the general predominance of
the Beijing clades (lineage 2) and the Euro-American
lineage 4 within the Tshwane metropolis are in concord-
ance with the work of others [19]. This is not surprising
since lineages 2 and 4 are thought to be the most suc-
cessful strains among all the Mtb complex organisms in
causing all forms of TB disease, including PTB [13, 18,
20]. Previous reports have associated Mtb lineages of
Beijing clade with major outbreaks in different parts of
the world and was shown to disseminate more rapidly
and caused more-severe disease than other strains [21–
23]. Moreover, several other epidemiological data sug-
gest that certain Mtb genotypes, such as the W-Beijing
genotypes, are more transmissible than others [20–22].
Our study found that the Beijing strains within a chain
of EPTB transmission was statistically significant when
compared to the Euro-American and East African Indian
strains which might support the variable virulence hy-
potheses [23, 24].

Conclusion
The majority of Mtb strains circulating in the city of
Tshwane metropolis belong to the East Asian (predom-
inantly Beijing clade), Euro-American and East-African
Indian lineages. Each of these are likely to be clustered,
suggesting on-going transmission of both drug-
susceptible and drug-resistant EPTB. However, the pro-
portion attributed to transmission was significantly
higher with the East Asian lineage compared to the
other lineages, which might support the variable viru-
lence hypothesis. On the other hand, the proportion of
drug resistance, especially rifampin resistance, attribut-
able to certain sanctuary EPTB sites, including lymph

nodes, meninges and cutaneous TB, was significantly
higher, 25% (95% CI: 6–43%), when compared with
other EPTB sites. This observation suggests that low ri-
fampin exposures, due to poor penetration into those
sites or inadequate rifampin doses, significantly contrib-
ute to ADR, which is also consistent with PK/PD princi-
ples of pharmacokinetics variability. Moreover, the
significant nonlinear relationship between EPTB sites,
Mtb genotypes and drug resistance (particularly MDR-
TB and/or rifampin monoresistance) observed, is con-
sistent with prior clinical observations. Together, these
data suggest that inadequately treated EPTB is contrib-
uting to drug resistance and overall poorer outcomes.
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