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Zeros of primitive characters of finite groups
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Abstract. We classify finite non-solvable groups with a faithful primitive irreducible com-
plex character that vanishes on a unique conjugacy class. Our results answer a question of
Dixon and Rahnamai Barghi and suggest an extension of Burnside’s classical theorem on
zeros of characters.

1 Introduction

This work is a continuation of what we began in [16], the classification of fi-
nite non-solvable groups with a faithful primitive complex irreducible character
that vanishes on exactly one conjugacy class. In [16], we completed the work
for groups with a non-abelian composition factor isomorphic to a sporadic sim-
ple group, an alternating group, An, n � 5, or a special linear group PSL2.q/,
q � 4. In this article, we finish the classification for all finite non-solvable groups.
This is a contribution to the more general problem of the classification of finite
groups with an irreducible character that vanishes on exactly one conjugacy class
(see [3, 7, 16, 23, 26] for more work on this problem). We begin by looking at the
following problem.

Problem 1. For each quasisimple group M , classify all faithful complex irre-
ducible characters � such that there exists some prime p such that

(i) � vanishes on elements of the same p-power order,

(ii) the number of conjugacy classes that � vanishes on is at most the size of the
outer automorphism group of the group M=Z.M/,

(iii) Z.M/ is cyclic and of p-power order.

The author acknowledges the support of DST-NRF Centre of Excellence in Mathematical and Sta-
tistical Sciences (CoE-MaSS). Opinions expressed and conclusions arrived at are those of the author
and should not necessarily to be attributed to the CoE-MaSS.
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For convenience, we shall define the following property for a finite group M .
We shall say (?) holds for M if

a faithful irreducible character � ofM has properties (i)–(iii) of Problem 1: (?)

We completely solve Problem 1 in this article.

Theorem 1.1. Let M be a quasisimple group. If (?) holds for M , then M is one
of the following:

(1) M D PSL2.5/, �.1/ D 3 or �.1/ D 4,

(2) M D SL2.5/, �.1/ D 2 or �.1/ D 4,

(3) M D 3�A6, �.1/ D 9,

(4) M D PSL2.7/, �.1/ D 3,

(5) M D PSL2.8/, �.1/ D 7,

(6) M D PSL2.11/, �.1/ D 5 or �.1/ D 10,

(7) M D PSL2.q/, �.1/ D q, where q � 5,

(8) M D PSU3.4/, �.1/ D 13,

(9) M D 2B2.8/, �.1/ D 14.

Using Theorem 1.1, we classify finite non-solvable groups with a faithful prim-
itive irreducible character that vanishes on one conjugacy class. We showed in [16]
that it is sufficient to only consider automorphism groups of the groups in Theo-
rem 1.1.

Theorem 1.2. Let G be a finite non-solvable group. Then � 2 Irr.G/ is faithful,
primitive and vanishes on one conjugacy class if and only if G is one of the fol-
lowing groups:

(1) G D PSL2.5/, �.1/ D 3 or �.1/ D 4,

(2) G D SL2.5/, �.1/ D 2 or �.1/ D 4,

(3) G 2 ¹A6W22;A6W23; 3�A6W23º, �.1/ D 9 for all such G,

(4) G D PSL2.7/, �.1/ D 3,

(5) G D PSL2.8/W3, �.1/ D 7,

(6) G D PGL2.q/, �.1/ D q, where q � 5,

(7) G D 2B2.8/W3, �.1/ D 14.

The result below follows easily.
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Corollary 1.3. Let G be a finite non-abelian simple group, and let � 2 Irr.G/.
If � vanishes on exactly one conjugacy class, then one of the following holds:

(1) G D PSL2.5/, �.1/ D 3,

(2) G D PSL2.7/, �.1/ D 3,

(3) G D PSL2.2a/, �.1/ D 2a, where a � 2.

Corollary 1.3 positively answers a question posed by Dixon and Rahnamai
Barghi [7, Remark 11].

We now look at what our results imply with regards to the classical theorem of
Burnside on zeros of characters. There have been some generalisations of Burn-
side’s theorem (see [1, 18, 22]).

Burnside’s theorem can be rewritten as follows.

Theorem 1.4 (Burnside’s theorem). Let G be a finite group, and let � 2 Irr.G/. If
�.1/ is divisible by a prime, then � vanishes on at least one conjugacy class.

Using [7, Propositions 1 (i) and 4] and Theorem 1.2, we have the following
theorem.

Theorem 1.5. Let G be a finite group whose non-abelian composition factors are
not isomorphic to 2B2.8/. Let � 2 Irr.G/ be primitive. If �.1/ is divisible by two
distinct prime numbers, then � vanishes on at least two conjugacy classes.

The non-solvable group 2B2.8/W3 is a real exception by Theorem 1.2. Hence this
extends Burnside’s theorem when the character is primitive. It would be interesting
to know if the primitivity is necessary for Theorem 1.5 to hold.

2 Preliminaries

In this section, we present some results we will need to use. A lot of work on
zeros of characters of quasisimple groups is found in [12–15,17–19]. We shall use
most of these results in this article. We need some definitions before we present
the recent work of Lübeck and Malle [15]. Let ˆn denote the n-th cyclotomic
polynomial over Q. Let m; n be positive integers. Then, by m k n, we mean that
m j n butm2 − n. If l > 2 is not dividing q, the multiplicative order of q modulo l
is denoted by dl.q/.

Theorem 2.1 ([15, Theorem 1]). Let l > 2 be a prime and M a finite quasisimple
group of l-rank at least 3. Then, for any non-linear character � 2 Irr.M/, there
exists an l-singular element g 2M with �.g/ D 0, unless either M is a finite
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group of Lie type in characteristic l , or l D 5 and one of the following holds:

(1) M D PSL5.q/ with 5 k .q � 1/, and � is unipotent of degree �.1/ D q2ˆ5,

(2) M D PSU5.q/ with 5 k .q C 1/, and � is unipotent of degree �.1/ D q2ˆ10,

(3) M D Ly and �.1/ 2 ¹48174; 11834746º,

(4) M D E8.q/ with q odd, dl.q/ D 4, and � is one character in the Lusztig
series of type D8.

Let M be a simple, simply connected algebraic group over Fp, the algebraic
closure of a finite field of characteristic p, and let F WM!M be a Frobenius
morphism such that M ´MF , the finite group of fixed points. Let M� denote
the dual group of M with corresponding Frobenius morphism F �WM� !M�.
Then M �´ .M�/F

�

is the dual group of M . Using Deligne–Lusztig theory, we
have that irreducible characters of M are partitioned into Lusztig series E.M; s�/

that are parametrised by conjugacy classes of semisimple elements s� in the dual
group M �. See [4, 6] for basic results on Deligne–Lusztig theory of complex rep-
resentations of finite groups of Lie type.

The following lemma will be essential.

Lemma 2.2 ([10, Lemma 3.2]). Let x 2M be semisimple, and let � 2 E.M; s�/

be an irreducible character of M with �.x/ ¤ 0. Then there is a maximal torus
T �M with x 2 T such that T � � CM�.s�/ for a torus T � �M � which is
a dual group of T .

For the rest of the section, we shall present some number theory results.

Lemma 2.3. Let p be a prime and f a positive integer. Then the following state-
ments hold:

(a) If q D pf > 11, then 6f C 1 < .q2 � q � 2/=9.

(b) If q D pf � 7 and q is odd, then 4f C 1 < .q2 � 1/=8.

Let q; n � 2 be integers. Suppose that .q; n/ ¤ .2; 6/, and if n D 2 assume that
q C 1 is not a power of 2. Then, by Zsigmondy’s theorem [27], a Zsigmondy prime
divisor l.n/ always exists. The Zsigmondy prime divisor is defined as a prime l.n/
such that

l.n/ j qn � 1 but l.n/ −
n�1Y
iD1

.qi � 1/:

Lemma 2.4. Let q D pf for some prime p and a positive integer f . Suppose that
a is a positive integer and b; c are non-negative integers.

(a) If q � 1 D 2c and q C 1 D 2a3b , then q D 3; 5 or 17.
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(b) If q � 1 D 2a and q C 1 D 2b5c , then q D 3 or 9.

(c) If q � 1 D 2a5b and q C 1 D 2c , then q D 3.

Proof. (a) If b D 0, then q D 3. Otherwise, we have

2 D 2a.3b � 2c�a/;

so a D 1 and 3b � 1 D 2c�a. By Zsigmondy’s theorem, there is a Zsigmondy
prime l j 3b � 1 except when b � 2. If b D 1, then q D 5, and if b D 2, then
q D 17.

(b) If c D 0, then q D 3. If c � 1, then a > b. Now

2 D 2b5c � 2a D 2b.5c � 2a�b/:

Since b � 1, we have that b D 1 and 5c � 2a�b D 1, that is, 5c � 1 D 2a�1. By
Zsigmondy’s theorem [27], there exists a Zsigmondy prime l j 5c � 1 unless when
c D 1. Hence q C 1 D 10, and so q D 9.

(c) If b D 0, then q D 3. If b � 1, then

2 D 2c � 2a5b D 2a.2c�a � 5b/:

Hence a D 1 and 2c�1 � 5b D 1, which implies that 5b C 1 D 2c�1. By [11, IX,
Lemma 2.7], b D 1, which can only happen when q D 11. This is a contradiction
since q C 1 D 12 ¤ 2c .

3 Quasisimple groups with a character vanishing on elements
of the same order

In this section, we prove Theorem 1.1. In view of [16, Theorem 1.2], it is suffi-
cient to only consider quasisimple groupsM such thatM=Z.M/ is isomorphic to
a finite simple group of Lie type distinct from PSL2.q/.

Theorem 3.1. LetM be a quasisimple group such thatM=Z.M/ is a finite simple
group of Lie type over a field of characteristic p distinct from PSL2.q/. If (?)
holds for M , then M is one of the following:

(1) M D PSU3.4/, �.1/ D 13,

(2) M D 2B2.8/, �.1/ D 14.

3.1 Classical groups

We shall show that Theorem 3.1 (1) holds with a series of propositions.
We first show that the Steinberg character of a classical group of Lie type fails

to satisfy (?).



198 S. Y. Madanha

Lemma 3.2. Let M be a finite simple classical group of Lie type over a field of
characteristic p, distinct from PSL2.q/. Then the Steinberg character � of M
fails to satisfy (?).

Proof. Suppose that p D 2. Then � is of 2-defect zero, and so � vanishes on every
2-singular element of M . In particular, � vanishes on an involution. By [24, III,
Theorem 5], M has an element of order 2r for some odd prime r except when
M Š PSL3.4/. The character table of PSL3.4/ exhibited in the Atlas [5] confirms
our conclusion for this special case. We may assume that M has an element g of
order 2r with r as above. Then � vanishes on g and so vanishes on two elements
of distinct orders, contradicting (i) of (?).

Now we suppose that p is odd. Then � is of p-defect zero, and so � vanishes on
every p-singular element of M . In particular, � vanishes on a unipotent element
of order p. Now M has an element g of order pr , where r is a prime number,
since the size of the connected component of a prime graph of M containing p is
at least 2 by [25, Theorem 1]. Hence �.g/ D 0, and the result follows.

Special linear groups

Let M D GLn.Fp/, and let F be the standard Frobenius map. The conjugacy
classes of F -stable maximal tori of GLn.Fp/ and SLn.Fp/ are parametrised by
conjugacy classes of Sn. Recall that conjugacy classes of Sn are parametrised by
cycle shapes. If T � GLn.Fp/ corresponds to �D .�1;�2; : : : ;�m/ 2 Sn such that
�1 � �2 � � � � � �m, then jT j D jT F j D

Qm
iD1.q

�i � 1/, and if T � SLn.Fp/,
then .q � 1/jT j D .q � 1/jT F j D

Qm
iD1.q

�i � 1/.

Lemma 3.3 ([12, Lemmas 3.1 and 4.1]). Let � ` n be a partition and T a cor-
responding F -stable maximal torus of SLn.Fp/ or SUn.Fp/. Assume that either
all parts of � are distinct, or q � 3 and at most two parts of � are equal. Then
T D T F contains regular elements.

Lemma 3.4 ([12, Lemma 3.2]). Let H � PGLn.Fp/ or H � PGUn.Fp/ be a re-
ductive subgroup containing F -stable maximal tori corresponding to cycle shapes
�1; �2; : : : ; �r . If no intransitive or imprimitive subgroup of Sn contains elements
of all these cycle shapes, then H D PGLn.Fp/ or H D PGUn.Fp/, respectively.

To use this result, we note that M is connected reductive with a Steinberg en-
domorphism F WM!M and M ´MF . If T � � CM�.s�/, then, since T � is
connected, we have that T � � CıM�.s�/, a reductive subgroup of M� (see [20,
Theorem 14.2]).

Table 1 shows Zsigmondy primes li for the corresponding tori Ti . Note that
elements of order li in the torus Ti are regular elements. It was shown in [18]
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M jT1j jT2j l1 l2

An .qnC1 � 1/=.q � 1/ qn � 1 l.nC 1/ l.n/
2An (n � 3 odd) .qnC1 � 1/=.q C 1/ qn C 1 l.nC 1/ l.2n/
2An (n � 2 even) .qnC1 C 1/=.q C 1/ qn � 1 l.2nC 2/ l.n/

Bn; Cn (n � 3 odd) qn C 1 qn � 1 l.2n/ l.n/

Bn; Cn (n � 2 even) qn C 1 .qn�1 C 1/.q C 1/ l.2n/ l.2n � 2/

Dn (n � 5 odd) qn � 1 .qn�1 C 1/.q C 1/ l.n/ l.2n � 2/

Dn (n � 4 even) .qn�1 � 1/.q � 1/ .qn�1 C 1/.q C 1/ l.n � 1/ l.2n � 2/
2Dn (n � 4) qn C 1 .qn�1 C 1/.q � 1/ l.2n/ l.2n � 2/

Table 1. Tori and Zsigmondy primes for classical groups of Lie type.

that almost all characters of simple groups vanish on elements of order l1 or l2
whenever l1 and l2 exist.

Since PSL3.2/ Š PSL2.7/ and PSL2.7/ is considered in [16, Theorem 1.2], we
may assume that n D 3 and q � 3 for the following result.

Proposition 3.5. Let M be a quasisimple group such that M=Z.M/ D PSL3.q/,
where q � 3. Then every non-trivial faithful irreducible character of M fails to
satisfy (?).

Proof. Using explicit character tables in the Atlas [5], we may assume that q � 13.
First consider Z.M/ ¤ 1. Now, jZ.M/j D 3, 3 j .q � 1/, and by (?), � vanishes
on a 3-element. Note that unipotent characters are not faithful when Z.M/ ¤ 1.
Hence we may assume that � is not unipotent. Then � lies in the Lusztig series
E.M; s�/ of a semisimple element s� in the dual group M � D PGL3.q/. Let T1
and T2 be tori ofM corresponding to the partitions .3/ and .2/.1/, respectively. By
Lemma 3.3, the tori T1 and T2 contain regular elements. We claim that � vanishes
on regular elements either in T1 or in T2. Otherwise, by Lemma 2.2, CM�.s�/

contains conjugates of the duals T �1 and T �2 . This means that the corresponding
reductive subgroup CıM�.s�/ contains T �1 and T �2 . Using Lemma 3.4, we have
that Cı

M�.s
�/ D PGL3.Fp/, that is, CM�.s�/ D PGL3.q/, and so � is unipotent,

contradicting our assumption that � is not unipotent. Hence � vanishes on regular
elements in T1 or in T2. Suppose that � vanishes on regular elements in T1. Note
that jT1j is divisible by a Zsigmondy prime l1 and T1 contains regular elements of
order l1. Since gcd.l1; 3/ D 1, � vanishes on at least two elements of distinct or-
ders, contradicting (?). We may thus assume � vanishes on regular elements in T2.
If q C 1 is not a power of 2, then jT2j is divisible by a Zsigmondy prime l2. By
the same argument as above, we may infer � vanishes on at least two elements of
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distinct orders, contradicting (?). Suppose q C 1 is a power of 2. This means that
jT2j is even, and hence T2 contains elements of even order by [15, Remark 2.2].
Hence � also vanishes on an element of even order, and the result follows.

Suppose M D PSL3.q/. Then � is not the Steinberg character by Lemma 3.2.
By [19, Theorem 2.1], � vanishes on regular elements in T1 or in T2. Suppose that
� vanishes on regular elements of T1. Note that jT1j is divisible by a Zsigmondy
prime l1. If jT1j is divisible by two distinct primes, then the result follows by
[15, Remark 2.2]. Suppose that jT1j is a prime power. Then jT1j D

q2CqC1
gcd.3;q�1/ must

be prime by [21]. Suppose

jT1j D
q3 � 1

.q � 1/ gcd.3; q � 1/
D

q2 C q C 1

gcd.3; q � 1/
D l1:

Then G has
l1 � 1

3
D

q2 C q � 2

3 � gcd.3; q � 1/
conjugacy classes whose elements are of order l1. Now

jOut.M/j D 2 � gcd.3; q � 1/ � f:

By Lemma 2.3, jOut.M/j < 6f C 1 � q2Cq�2
9

, and (ii) of (?) fails to hold. Sup-
pose � vanishes on regular elements in T2. By [19, Theorem 2.1], � vanishes on
elements of order q C 1. If q is odd, then q C 1 is even. In particular, q C 1 is not
a prime. By [18, Theorem 5.1], � vanishes on an element of prime order which
means that � vanishes on two elements of distinct orders, contradicting (?). Hence
we may assume that q is even so that q C 1 is odd. We may assume that q C 1
is prime by the above argument. Since jT2j D

q2�1
gcd.3;q�1/ and q�1

gcd.3;q�1/ ¤ 1, we
have that jT2j is divisible by at least two primes. Hence there exists a prime l such
that l j .q � 1/ which entails the existence of an l-singular regular element in jT2j
by [15, Remark 2.2]. By [19, Theorem 2.1], � vanishes on this l-singular element.
Hence � vanishes on two elements of distinct orders, and the result follows.

Proposition 3.6. Suppose that M is quasisimple such that M=Z.M/ Š PSLn.q/,
n � 4 and q � 2. Then every non-trivial faithful irreducible character of M fails
to satisfy (?).

Proof. Firstly, suppose that n � 4 and q D 2. For M isomorphic to PSL4.2/ or
PSL5.2/, we have explicit character tables in the Atlas [5], and for M=Z.M/ iso-
morphic to PSL6.2/ or PSL7.2/, we obtain explicit character tables in Magma [2].
Hence we may assume that n � 8. Then we have 3 D q C 1. Now .q C 1/4 j jT j

for a torus T corresponding to the partition .n � 8/.2/.2/.2/.2/. It follows thatM
is of 3-rank at least 4. Hence, by Theorem 2.1, � vanishes on a 3-singular element.
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On the other hand, by [19, Theorem 2.1], if n is even, � vanishes on an element of
order qn=2 C 1 or an element of order qn�1 � 1, and if n is odd, then � vanishes
on an element of order qn � 1 or an element of order q.n�1/=2 C 1. Note that,
in all of the aforementioned cases, the order of elements on which � vanishes,
exceeds 3. Each such order is either relatively prime to 3 or is 3-singular. In the
former case, � vanishes on an element that is not of prime order. Using [18, The-
orem 5.1], � vanishes on an element of prime order. Hence � vanishes on at least
two elements of distinct orders, contradicting (?).

Suppose that M D SLn.q/, n � 4, q � 3, with Z.M/ ¤ 1. By (?), jZ.M/j

is a power of a prime l that divides q � 1, and � necessarily vanishes on an l-
element. We claim that � also vanishes on an l1-element or an l2-element. Sup-
pose the contrary. First note that � is not a unipotent character since � is faithful
in M . Hence � lies in the Lusztig series E.M; s�/ of a semisimple element s� in
the dual group M � D PGLn.q/. Let T1 and T2 denote maximal tori correspond-
ing to the partitions .n/ and .n � 1/.1/. Note that T1 and T2 contain regular ele-
ments by Lemma 3.3. By Lemma 2.2, CM�.s�/ contains conjugates of the dual
tori T �1 and T �2 . The corresponding reductive subgroup CıM�.s�/ contains T �1
and T �2 . Using Lemma 3.4, we infer that Cı

M�.s
�/ D PGLn.Fp/, and so s� is

central. Hence s� D 1, and � is unipotent, thus contradicting the assumption that
� is not unipotent. Hence our claim is true, and the result follows.

Suppose thatM D PSLn.q/, n � 4, q � 3. First suppose that n D 4 and q � 3.
We have an explicit character table for PSL4.3/ in the Atlas [5], and for PSL4.4/
and PSL4.5/, we obtain an explicit character table in Magma. Assume that q � 7.
Note that, for jT1j and jT2j, the Zsigmondy primes l1 and l2 exist, respectively.
By the proof of [19, Theorem 2.1], � is of l1-defect zero or l2-defect zero, and so
� vanishes on elements of order l1 or l2. Then

jT1j D
q4 � 1

.q � 1/ gcd.4; q � 1/
D
.q C 1/.q2 C 1/

gcd.4; q � 1/

is divisible by two distinct primes. Also,

jT2j D
q3 � 1

gcd.4; q � 1/
D
.q � 1/.q2 C q C 1/

gcd.4; q � 1/

is divisible by two distinct primes since q�1
gcd.4;q�1/ ¤ 1. Hence � vanishes on two

regular elements of distinct orders.
Suppose n D 5, q � 3. Assume that � is not unipotent. Let T1, T2 and T3 be tori

ofM corresponding to the partitions .5/, .4/.1/ and .3/.2/, respectively. These tori
contain regular elements by Lemma 3.3. We claim that � vanishes on regular ele-
ments in at least two of these tori. Otherwise, CM�.s�/ contains conjugates of the
dual tori T �i and T �j of Ti and Tj , respectively, i ¤ j , 1 � i; j � 3, where � lies



202 S. Y. Madanha

in the Lusztig series E.M; s�/. The corresponding reductive subgroup CıM�.s�/

contains T �i and T �j . It follows from Lemma 3.4 that Cı
M�.s

�/ D PGL5.Fq/, that
is, � is unipotent, a contradiction. The claim is thus true. Now, for jT1j and jT2j,
note that the corresponding Zsigmondy primes l1 and l2 exist, respectively. Hence
� vanishes on at least two elements of distinct orders l1, l2 or some positive integer
that divides jT3j.

We may assume that � is unipotent. Then � vanishes on elements of order l1
or l2 by the proof of [19, Theorem 2.1]. It is sufficient to show that � vanishes on
an l-singular element with l ¤ 5, an odd prime and gcd.l1; l/ D gcd.l2; l/ D 1.
Let q be even, and note that q � 3. If gcd.5; q � 1/ D 1, then there exists an
odd prime l ¤ 5 such that l divides .q � 1/ and M is of l-rank at least 3 and
gcd.l1; l/ D gcd.l2; l/ D 1. Hence � vanishes on an l-singular element by The-
orem 2.1. If gcd.5; q � 1/ ¤ 1, then there exists an odd prime l ¤ 5 such that
l j .q C 1/, and so gcd.l1; l/ D gcd.l2; l/ D 1. Note that M is of l-rank 2. Then,
by the proof of [12, Proposition 3.8], � vanishes on an l-singular element. Assume
that q is odd. Suppose that gcd.5; q � 1/ D 1. Then there exists an odd prime
l ¤ 5 such that either l j .q � 1/ or l divides .q C 1/, gcd.l1; l/ D gcd.l2; l/ D 1
and M is of l-rank 2 with the following exception:

q � 1 D 2a; a � 1 and q C 1 D 2b5c ; b � 1; c � 0:

Then, by the proof of [12, Proposition 3.8], � vanishes on an l-singular element
for the former case. For the exceptions, q D 3 or 9 by Lemma 2.4. If q D 3, then
using Magma [2] to calculate the character table of PSL5.3/, we conclude that �
does not satisfy (?). Let q D 9. In this case, we look at the orders of T1 and T2.
Now we have jT1j D 95�1

9�1
D 112 � 61 and jT2j D 94 � 1 D 25 � 5 � 41. Since � is

either of l1-defect zero or of l2-defect zero, � vanishes on at least two elements
of distinct orders. Assume that gcd.5; q � 1/ D 5. If there exists an odd prime
l ¤ 5 such that l j .q � 1/ or l j .q C 1/, then M is of l-rank at least 2 and by the
proof of [12, Proposition 3.8], � vanishes on an l-singular element. Hence the only
exception we have is when q � 1 D 2a5b and q C 1 D 2c . By Lemma 2.4, q D 3,
which does not satisfy gcd.5; q � 1/ D 5. Hence the result follows.

Suppose that n D 6. Then � vanishes on elements of order l1 or l2 by the
proof of [19, Theorem 2.1]. If gcd.6; q � 1/ D 1, then there exists an odd prime
l j .q � 1/ such that the l-rank ofM is 5. It follows that � vanishes on at least two
elements of distinct orders by Theorem 2.1 and since gcd.l1; l/ D gcd.l2; l/ D 1.
Let gcd.6; q � 1/ D 2. Then q is odd. If q ¤ 3, then there exists an odd prime
l such that l j .q � 1/ or l j .q C 1/. In this case, M is of l-rank at least 3, and
we are done. If q D 3, then using Magma [2] to calculate the character table of
PSL6.3/, we conclude that � does not satisfy (?). Let gcd.6; q � 1/ D 3 or 6.
Then the 3-rank of M is 4, and the result follows.
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Suppose that n D 7. Then � vanishes on elements of order l1 or l2 by the
proof of [19, Theorem 2.1]. We first consider q even. If gcd.7; q � 1/ D 1, then
there exists an odd prime l such that l j .q � 1/ and the l-rank of M is 6. If
gcd.7; q � 1/ ¤ 1, then since q is even, there exists an odd prime l ¤ 7 such
that l j .q C 1/ and the l-rank of M is 3. Assume that q is odd. Suppose that
gcd.7; q � 1/ D 1. Then there exists an odd prime l such that either l j .q � 1/
or l j .q C 1/ unless q D 3. If q ¤ 3, then we have an odd prime l and M is of
l-rank at least 3. If q D 3, then using Magma [2] to calculate the character table of
PSL7.3/, we can conclude that � fails to satisfy (?). Suppose gcd.7; q � 1/ D 7. If
q C 1 is not a power of 2, then there exists an odd prime l such that l j .q C 1/, and
we are done. We may thus assume that q C 1 D 2a, a � 3. Now 3 divides either
q � 1, q or q C 1. We know that 3 − .q C 1/. Suppose that 3 j .q � 1/. Then 3
is the desired odd prime. Thus 3 j q, that is, q D 3f , f � 1. This implies that
q D 2a � 1 D 3f . By [11, IX, Lemma 2.7], f D 1, that is, q D 3, a contradiction
since gcd.7; q � 1/ D 7.

Suppose that n D 8. Then � vanishes on elements of order l1 or l2 by the proof
of [19, Theorem 2.1]. If there exists an odd prime l such that l j .q � 1/, then we
are done. We may assume that q � 1 D 2a, a � 1. Then q is odd. If there exists
an odd prime l such that l j .q C 1/, then we are done. Otherwise, q C 1 D 2b ,
b � 2. Then q D 3. For M D PSL8.3/, jT1j and jT2j are both divisible by two
distinct primes. Since � is of l1-defect zero or of l2-defect zero, we have that
� vanishes on two elements of distinct orders.

Suppose that n � 9. Then � vanishes on elements of order l1 or l2 by the proof
of [19, Theorem 2.1]. Consider a torus T of M corresponding to the partition
.n � 9/.3/.3/.3/. There exists a Zsigmondy prime l dividing q3 � 1 such that M
is of l-rank at least 3. By Theorem 2.1, � vanishes on an l-singular element. Since
gcd.l1; l/ D gcd.l2; l/ D 1, the result follows. This concludes our argument.

Special unitary groups

Let M D GLn.Fp/, and let F be the twisted Frobenius morphism. The conjugacy
classes of F -stable maximal tori of GUn.Fp/ and SUn.Fp/ are also parametrised
by conjugacy classes of Sn. If T � GUn.Fp/ corresponds to the cycle shape
� D .�1; �2; : : : ; �m/ 2 Sn with �1 � �2 � � � � � �m, then

jT j D jT F
j D

mY
iD1

.q�i � .�1/�i /

whilst if T � SUn.Fp/, then

.q C 1/jT j D .q C 1/jT F
j D

mY
iD1

.q�i � .�1/�i /:
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Proposition 3.7. Let M be a quasisimple group such that M=Z.M/ D PSU3.q/,
q � 3. If (?) holds for M , then M D PSU3.4/ with �.1/ D 13.

Proof. We may conclude from the character tables in Atlas [5] thatM D PSU3.4/
when 3 � q � 11. We may assume that q � 13. Note that � is not the Stein-
berg character. We first consider the case M D SU3.q/ and Z.M/ ¤ 1. Since
we are only considering faithful characters, � is not unipotent. Then jZ.M/j D 3,
3 j .q C 1/. By (iii) of (?), � vanishes on a 3-element. We have that T1 and T2 cor-
respond to the cycle shapes .3/ and .2/.1/, and so T1 and T2 have regular elements
by Lemma 3.3. Using the same argument as in Proposition 3.5, we have that � van-
ishes on regular elements in T1 or in T2. If � vanishes on regular elements in T1,
then � vanishes on an element of Zsigmondy prime order l1. Since gcd.l1; 3/ D 1,
the result follows. If � vanishes on regular elements in T2, then � vanishes either
on an element of Zsigmondy prime order l2 if q � 1 is not a power of 2 or on
an element of even order if q � 1 is a power of 2. Since all the orders above are
relatively prime to 3, � vanishes on at least two elements of distinct orders, con-
tradicting (?).

Let M D PSU3.q/. By [18, Lemmas 5.3 and 5.4], � vanishes on regular ele-
ments in T1 or in T2. Assume that � vanishes on regular elements in T1. Note
that jT1j is divisible by a Zsigmondy prime l1. If jT1j is divisible by two distinct
primes, then by [15, Remark 2.2], � vanishes on at least two elements of distinct
orders. Note that T1 is cyclic by [8, Section 3.3]. If jT1j D la1 , a > 1, then � van-
ishes on two elements of distinct orders la1 and l1, which contradicts (?). We may
assume that

jT1j D
q3 C 1

.q C 1/ gcd.3; q C 1/
D

q2 � q C 1

gcd.3; q C 1/
D l1:

If q D 13, then M has 52 conjugacy classes of order 53, jOut.M/j D 2, contra-
dicting (ii) of (?). We thus assume q � 16. Then M has

l1 � 1

3
�

q2 � q � 2

3 � gcd.3; q C 1/

conjugacy classes whose elements are of order l1. Now

jOut.M/j � 2 � gcd.3; q � 1/ � f:

By Lemma 2.3, 6f C 1 � q2�q�2
9

, and (ii) of (?) fails to hold.
We now consider the case where � vanishes on regular elements in T2. By

[19, Theorem 2.2], � vanishes on an element of order q � 1. On the other hand,
� vanishes on: an element of order Zsigmondy prime l2, an involution or on a reg-
ular unipotent element by the proof of [18, Lemma 5.4]. Therefore, � vanishes on
at least two elements of distinct orders, contradicting (?).
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Proposition 3.8. Let M be a quasisimple group such that M=Z.M/ Š PSUn.q/,
n � 4 and q � 2. Then every non-trivial faithful irreducible character of M fails
to satisfy (?).

Proof. We consider M=Z.M/ Š PSUn.2/ first. Using the character tables for
PSU4.2/, PSU5.2/ and PSU6.2/ in Atlas [5], and for PSU7.2/, PSU8.2/ and
PSU9.2/ from Magma [2], we may assume that n � 10. Suppose that Z.M/ ¤ 1.
This means that jZ.M/j D 3 and 3 j .q C 1/. Note that � is not unipotent. By (?),
� vanishes on a 3-element. We claim that � vanishes on regular elements in T1
or in T2. Assume that this claim is not true. Then CM�.s�/ contains conjugates
of the dual tori T �1 and T �2 of T1 and T2 where � lies in the Lusztig series
E.M; s�/. The corresponding reductive subgroup CıM�.s�/ contains the tori T �1
and T �2 . By Lemma 3.4, CıM�.s�/ D PGLn.F2/ and s� is central. Hence we have
CM�.s�/ D PGUn.2/, and so � is unipotent, a contradiction. The claim is true,
and � vanishes either on an l1-element or on an l2-element. Hence � vanishes on
at least two elements of distinct orders.

Assume that Z.M/ D 1. By [19, Theorem 2.2], we have that � vanishes on
elements of order l1 or l2. Consider a torus T of M corresponding to the partition
.n � 10/.2/.2/.2/.2/.2/. Hence M is of l-rank at least 3, where l D q C 1 D 3.
By Theorem 2.1, � vanishes on an l-singular element. Hence the result follows.

Suppose that M=Z.M/ Š PSUn.q/, n � 4, q � 3. Assume that Z.M/ ¤ 1.
By (?), jZ.M/j is a power of a prime l j .q C 1/, and � vanishes on an l-element.
Using the proof of [19, Theorem 2.2], � vanishes on an l1-element or an l2-ele-
ment, and the result follows.

Suppose M Š PSUn.q/. By the proof of [19, Theorem 2.2], � is of l1-defect
zero or l2-defect zero. Suppose n � 9, and consider a torus T ofM corresponding
to the partition .n � 9/.3/.3/.3/. Then there exists a Zsigmondy prime l D l.6/
dividing q3 C 1, and M is of l-rank at least 3. By Theorem 2.1, � vanishes on an
l-singular element, and the result follows. Hence we may assume that n � 8.

Suppose that n D 8. Recall that q � 3. If gcd.8; q C 1/ D 1, then there exists an
odd prime l j .q C 1/ such that the l-rank of M is 7. By Theorem 2.1, � vanishes
on an l-singular element, and the result follows since gcd.l1; l/ D gcd.l2; l/ D 1.
If gcd.8; q C 1/ ¤ 1, then q is odd and there exists an odd prime l such that
l j .q � 1/ or l j .q C 1/ unless q D 3. If q ¤ 3, then M is of l-rank at least 3,
and hence � vanishes on an l-singular element for an odd prime l by Theorem 2.1.
If q D 3, then using Magma [2] to calculate the character table of PSU8.3/, we
can conclude that � fails to satisfy (?). Hence the result follows.

Suppose that n D 7. We first consider the case when q is even. If we have
gcd.7; q C 1/ D 1, then there exists an odd prime l ¤ 7 such that l j .q C 1/. If
gcd.7; q C 1/ ¤ 1, then since q is even, there exists an odd prime l ¤ 7 such that
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l j .q � 1/. In both cases, M is of l-rank at least 3, and so � vanishes on an l-sin-
gular element. Since gcd.l1; l/ D gcd.l2; l/ D 1, � vanishes on at least two ele-
ments of distinct orders. Assume that q is odd. Suppose that gcd.7; q C 1/ D 1.
Then there exists an odd prime l ¤ 7 such that l j .q � 1/ or l j .q C 1/ unless
q D 3. If q ¤ 3, then we have an odd prime l and M is of l-rank at least 3, which
means that � vanishes on at least two elements of distinct orders. If q D 3, then
using Magma [2] to calculate the character table of PSU7.3/, we conclude that
� does not satisfy (?). Suppose gcd.7; q C 1/ D 7. If q � 1 is not a power of 2,
then there exists an odd prime l ¤ 7 such that l j .q � 1/. Hence M is of l-rank
at least 3, and gcd.l1; l/ D gcd.l1; l/ D 1. Thus � vanishes on two elements of
distinct orders, a contradiction to (?).

We may assume that q � 1 D 2a, a � 3. Now 3 divides either q � 1, q or q C 1.
We know that 3 − .q � 1/. Suppose that 3 j .q C 1/. Then 3 is the desired odd
prime since M is of 3-rank at least 3. Thus 3 j q, that is, q D 3f , f � 1. This im-
plies that q � 1 D 3f � 1 D 2a. By Zsigmondy’s theorem, there is a Zsigmondy
prime l j .3f � 1/ unless f � 2. If f D 1, then we have q D 3, contradicting the
hypothesis that gcd.7; q C 1/ D 7. If f D 2, then q D 9, again contradicting the
hypothesis that gcd.7; q C 1/ D 7.

Suppose n D 6. If gcd.6; q C 1/ D 1, then there exists an odd prime l j q C 1
such that the l-rank ofM is 5. Let gcd.6; q C 1/ D 2. Then q is odd. If q ¤ 3, then
there exists an odd prime l such that l j .q � 1/ or l j .q C 1/, and the result fol-
lows sinceM is of l-rank at least 3. Let gcd.6;qC 1/D3. Then q is even. Note that
q � 4. Then there exists an odd prime l that divides q � 1. Hence � vanishes on
an l-singular element since the l-rank ofM is 6. Let gcd.6; q C 1/ D 6. Then q is
odd. If there exists an odd prime l ¤ 3 such that l j .qC 1/, then the result follows.
We may assume that qC 1D2a3b , a� 1 and b � 1. Then there exists an odd prime
l ¤ 3 that divides q � 1, and the result follows unless q � 1D 2c , c � 3. Hence we
may assume that q � 1D 2c . By Lemma 2.4, q D 5 or 17 since gcd.6; qC 1/D 6.
In both cases, the 3-rank of M is 5 by Theorem 2.1. Hence the result follows.

Suppose n D 5. Assume that � is not unipotent. Let T1, T2 and T3 be tori of
M corresponding to .5/, .4/.1/ and .3/.2/, respectively. These tori contain regu-
lar elements by Lemma 3.3. We claim that � vanishes on regular elements in at
least two of these tori. Otherwise, CM�.s�/ contains conjugates of the dual tori
T �i and T �j of Ti and Tj , respectively, i ¤ j , 1 � i; j � 3, where � lies in the
Lusztig series E.M; s�/. The corresponding reductive subgroup CıM�.s�/ con-
tains T �i and T �j . It follows from Lemma 3.4 that Cı

M�.s
�/ D PGU5.Fq/, that

is, � is unipotent, a contradiction. The claim is thus true. Now, for jT1j and jT2j,
note that the corresponding Zsigmondy primes l1 and l2 exist, respectively. Hence
� vanishes on at least two elements of distinct orders l1, l2 or some positive integer
that divides jT3j.



Zeros of primitive characters 207

Assume that � is unipotent. Then � vanishes on elements of order l1 or l2
by the proof of [19, Theorem 2.1]. By Theorem 2.1, it is sufficient to show that
� vanishes on an l-singular element with l ¤ 5, an odd prime. Let q be even, and
note that q � 3. If gcd.5; q C 1/ D 1, then there exists an odd prime l ¤ 5 such
that l j .q C 1/ andM is of l-rank at least 3. If gcd.5; q C 1/ ¤ 1, then there exists
an odd prime l ¤ 5 such that l j .q � 1/. Note that M is of l-rank 2. By the proof
of [12, Proposition 4.2], � vanishes on an l-singular element. Now assume that q is
odd. Suppose that gcd.5; q C 1/ D 1. Then there exists an odd prime l ¤ 5 such
that l j .q � 1/ or l j .q C 1/ with the following exception: q � 1 D 2a, a � 1
and q C 1 D 2b5c , b � 1, c � 0. By Lemma 2.4, q D 3 or 9. In both cases, using
Magma [2] to calculate the character tables of PSU5.3/ and PSU5.9/, we conclude
that � does not satisfy (?). Assume that gcd.5; q C 1/ D 5. If there exists an odd
prime l ¤ 5 such that l j .q � 1/ or l j .q C 1/, thenM is of l-rank at least 2, and
we are done by [12, Proposition 4.2]. Hence the only exception we have is when
q � 1 D 2a5b and q C 1 D 2c . Lemma 2.4 entails q D 3 which contradicts the
assumption that gcd.5; q C 1/ D 5.

First suppose that n D 4 and q � 3. We have an explicit character table for
PSU4.3/ in the Atlas [5], and for PSU4.4/ and PSU4.5/, we obtain an explicit
character table in Magma. Assume that q � 7. Note that, for jT1j and jT2j, the
Zsigmondy primes l1 and l2 exist, respectively. By the proof of [19, Theorem 2.1],
� is of l1-defect zero or l2-defect zero, and so � vanishes on elements of order l1
or l2. Then

jT1j D
q4 � 1

.q C 1/ gcd.4; q C 1/
D
.q � 1/.q2 C 1/

gcd.4; q C 1/

is divisible by two distinct primes. Also,

jT2j D
q3 C 1

gcd.4; q C 1/
D
.q C 1/.q2 � q C 1/

gcd.4; q C 1/

is divisible by two distinct primes since qC1
gcd.4;qC1/ ¤ 1. Hence � vanishes on two

regular elements of distinct orders.

Symplectic groups and special orthogonal groups

Let M be a simple, simply connected algebraic group of type Bn, Cn or Dn over
Fp, and let F WM!M be a Frobenius morphism such that M ´MF . Then
the MF -conjugacy classes of F -stable maximal tori of M are parametrised by
the conjugacy classes of W , the Weyl group of M. If M is of type Bn or Cn,
then W is isomorphic to the wreath product C2 o Sn, and the conjugacy classes
of W are parametrised by pairs of partitions .�; �/ ` n (see [15, Section 2.1]
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for details). In particular, if a maximal torus T D T F corresponds to a partition
.�; �/ D ..�1; �2; : : : ; �r/; .�1; �2; : : : ; �s// ` n, then

jT j D

rY
iD1

.q�i � 1/

sY
jD1

.q�j C 1/;

and T F contains cyclic subgroups of orders q�i � 1 and q�j C 1 for all i and j .
If M is of type Dn, then W D C n�12 Ì Sn, and the MF -conjugacy classes of

F -stable maximal tori of M are parametrised by pairs of partitions .�; �/ ` n
such that � has an even number of parts if MF is SpinC2n.q/ and � has an odd
number of parts if MF is the non-split orthogonal group Spin�2n.q/. Now jT j is
the same as in the case when M is of type Bn or Cn, that is,

jT j D

rY
iD1

.q�i � 1/

sY
jD1

.q�j C 1/:

Lemma 3.9 ([15, Lemma 2.1]). Let M be a simple, simply connected classical
group of type Bn, Cn or Dn defined over Fp with corresponding Steinberg mor-
phism F .

Let .�; �/ D ..�1; �2; : : : ; �r/; .�1; �2; : : : ; �s// be a pair of partitions of n,
and T a corresponding F -stable maximal torus of M. Then T D T F contains
regular elements if one of the following is fulfilled:

(1) q > 3, �1 < �2 < � � � < �r and �1 < �2 < � � � < �s;

(2) q 2 ¹2; 3º, �1 < �2 < � � � < �r , �1 < �2 < � � � < �s , all �i ¤ 2, and if M is
of type Bn or Cn, then also all �i ¤ 1;

(3) M is of type Dn, 2 < �1 < �2 < � � � < �r , 1 D �1 D �2 < �3 < � � � < �s .

Lemma 3.10 ([15, Lemma 2.3]). Let M be a simple algebraic group of type Bn,
Cn(with n � 2) or Dn (with n � 4) with Frobenius endomorphism F such that
MF is a classical group. Let ƒ be a set of pairs of partitions .�; �/ ` n. Assume
the following:

(1) there is no 1 � k � n � 1 such that all .�; �/ 2 ƒ are of the form

.�1; �1/ t .�2; �2/ with .�1; �1/ ` kI

(2) the greatest common divisor of all parts of all .�; �/ ` n is 1;

(3) if M is of type Bn, then there exist pairs .�; �/ ` n for which � has an odd
number of parts, and one for which � has an even number of parts.

If s 2MF is semisimple such that CM.s/ contains maximal tori of M correspond-
ing to all .�; �/ 2 ƒ, then s is central.
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We first consider a quasisimple groupM such thatM=Z.M/ Š PSp4.q/. Since
Sp4.2/

0 Š PSL2.9/, PSp4.3/ Š PSU4.2/, and the groups PSL2.9/ and PSU4.2/
were dealt with in [16, Theorem 1.2] and Proposition 3.8, respectively, we shall
not consider them in the result below.

Proposition 3.11. LetM be a quasisimple group such thatM=Z.M/ Š PSp4.q/,
where q � 4. Then every non-trivial faithful irreducible character of M fails to
satisfy (?)

Proof. Since the character tables Sp4.4/ and Sp4.5/ are in Atlas [5], we may as-
sume that q � 7. Suppose that q is even. Then the result follows from the generic
character tables in Chevie [9]. We may assume that q is odd, q � 7. For this case,
we first suppose Z.M/ ¤ 1. Note that � is not unipotent. Then jZ.M/j D 2,
and by (?), � vanishes on a 2-element. For each prime l such that l j .q � 1/ or
l j .q C 1/, the Sylow l-subgroups of G are non-cyclic. Since q ¤ 3, there exists
an odd prime l such that l j .q � 1/ or l j .q C 1/. By [15, Theorem 4.1], � van-
ishes on an l-singular element. But gcd.2; l/ D 1, so � vanishes on at least two
elements of distinct orders, as required.

Suppose M Š PSp4.q/. We may assume that � is not the Steinberg character.
By the proof of [19, Theorem 2.3], � vanishes on regular elements in T1 or in
T2. In particular, we may choose two conjugacy classes C1 and C2 in T1 and T2
such that � vanishes on C1 or C2. Now C2 may contain elements which are not
of Zsigmondy prime order. In that case, the result follows since � vanishes on ele-
ments of prime order by [18, Theorem 5.1]. Hence we may assume that C1 and C2
contain elements of Zsigmondy prime orders. Suppose that � vanishes on elements
in T2. Note that jT2j D

q2�1
2

is even. Hence T2 contains a regular element of even
order by [15, Remark 2.2], and � vanishes on this element. This means that � van-
ishes on two elements of distinct orders, contradicting (?). Assume that � vanishes
on elements of T1. Note that T1 is cyclic by [8, Section 4.5]. If jT1j is not prime,
then there exist at least two elements of distinct orders on which � vanishes. We
may assume that jT1j D

q2C1
2

is prime. Then there are

.q2C1/
2
� 1

4
D
q2 � 1

8

conjugacy classes with elements of order q
2C1
2

. On the other hand, we have that
jOut.M=Z.M/j � 4f , where q D pf , p is a prime and f � 1. By Lemma 2.3,
4f C 1 < q2�1

8
, and the result follows by (ii) of (?).

Let S D ¹PSp2n.q/ j n � 3º [ ¹PSO2nC1.q/ j n � 3º [ ¹PSO˙2n.q/ j n � 4º.
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Proposition 3.12. Let M be a quasisimple group such that M=Z.M/ 2 S . Then
every non-linear faithful irreducible character � of M fails to satisfy (?).

Proof. Note that � is not the Steinberg character by Lemma 3.2. We first consider
the case where M 2 S with q D 2. Since we have character tables in Atlas [5]
for Sp2n.2/ Š SO2nC1.2/, 3 � n � 4, and PSO˙2n.2/, 4 � n � 5, we may as-
sume that n � 5 and n � 6, respectively. Since q C 1 D 3, then M is of 3-rank at
least 5. By Theorem 2.1, � vanishes on a 3-singular element. For M Š Sp2n.2/,
� vanishes on elements of order l1 or elements of order l2 in Table 1, or � is of
l3-defect zero, where l3 D l.n � 1/ (the last case only arising when n is even)
by [18, Lemmas 5.3–5.5]. Note that Zsigmondy primes l1, l2, l3 exist, and we
have gcd.l1; 3/ D gcd.l2; 3/ D gcd.l3; 3/ D 1. Hence � vanishes on at least two
elements of distinct orders, contradicting (?). For M Š PSO˙2n.2/, n � 6, � van-
ishes on elements of order l1, or l2 or � is of l3-defect zero, where l3 D l.2n � 4/
(the last case only arising when n is even) by [18, Lemmas 5.3, 5.4 and 5.6]. Since
the Zsigmondy primes l1, l2 and l3 exist, the result follows.

Henceforth, we may assume that q � 3 and n � 3. Suppose that Z.M/ ¤ 1.
Then gcd.2; q � 1/ D 2, and by (?), � vanishes on a 2-element. We want to show
that � also vanishes on an element of Zsigmondy prime order. Note that � is not
unipotent, and so � lies in the Lusztig series E.M; s�/ of s� in the dual M �.
Let ..�/; .�// and ..�0/; .�0/// be the partitions corresponding to tori T1 and T2
with orders in Table 1. These tori contain regular elements by Lemma 3.9. We
claim that � vanishes on regular elements in at least one of these tori. Otherwise,
by Lemma 2.2, CM�.s�/ contains conjugates of the dual tori T �1 and T �2 . The
corresponding subgroup CM�.s�/ contains conjugates of the dual tori T �1 and
T �2 . It follows from Lemma 3.10 that s� is central. Hence CM�.s�/ DM �, that
is, � is unipotent, a contradiction. The claim is thus true. Now, for T1 and T2,
note that the Zsigmondy primes l1 and l2 exist in respect of jT1j and jT2j. Hence
� vanishes on at least two elements of distinct orders, and we are done.

Suppose that Z.M/ D 1. Consider M Š PSp2n.q/, n � 3, or PSO2nC1.q/,
n � 3. By [18, Lemmas 5.3–5.5], � vanishes on elements of order l1, l2, or � is
of l3-defect zero, where l3 D l.n � 1/ (the last case arising when n is even). In
all cases, the Zsigmondy primes exist. Now there exists an odd prime l such
that l j .q � 1/ or l j .q C 1/ except when q D 3. Note that M is of l-rank at
least 3. If q ¤ 3, then by Theorem 2.1, � vanishes on an l-singular element. Since
we have gcd.l1; l/ D gcd.l2; l/ D gcd.l3; l/ D 1, the result follows. We are left
with the case when q D 3. If n � 6, then M has a torus T corresponding to
.�; .n � 6/.2/.2/.2//, i.e.,M is of l-rank at least 3, where l j .q2 C 1/. The result
follows again. Hence we may assume that n � 5, that is,

M 2 ¹PSp6.3/;PSp8.3/;PSp10.3/;PSO7.3/;PSO9.3/;PSO11.3/º:
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We have explicit character tables for PSp6.3/ and PSO7.3/ in the Atlas [5], and
using Magma [2] for the rest of the groups, we have our conclusion.

Suppose that Z.M/ D 1 and M Š PSO�2n.q/ with n � 4 and q � 3. By the
proof of [19, Theorem 2.5], � is of l1-defect zero or of l2-defect zero. If q ¤ 3,
then there exists an odd prime l such that l j .q � 1/ or l j .q C 1/ and M is of
l-rank at least 3. By Theorem 2.1 and since gcd.l1; l/ D gcd.l2; l/ D 1, the result
then follows. Consider n � 4 and q D 3. We have an explicit character table for
PSO�8 .3/ in the Atlas [5], and for PSO�10.3/, we obtain an explicit character table
in Magma. For n D 6, the orders of T1 and T2 are divisible by two distinct primes,
and the result follows. We may assume that n � 7. HenceM is of l-rank at least 3
when l j q2 C 1. Therefore, by Theorem 2.1, � vanishes on at least two elements
of distinct orders.

Suppose that Z.M/ D 1 and M Š PSOC2n.q/ with n � 4 and q � 3. Assume
that n is odd. Then the Zsigmondy primes l1 and l2 exist, and � vanishes on regular
elements in T1 or in T2 by [18, Lemma 5.3]. If q ¤ 3, then there exists an odd
prime l such that l j .q � 1/ or l j .q C 1/ and M is of l-rank at least 3. Hence
� vanishes on an l-singular element by Theorem 2.1, and thus � vanishes on at
least two elements of distinct orders. Let q D 3. If n � 7, then consider a torus
corresponding to the cycle shape .�; .n � 6/.2/.2/.2//. It follows that M is of l-
rank at least 3 with l j .q2 C 1/, and by Theorem 2.1, � vanishes on an l-singular
element. Hence we may assume n � 5. Hence n D 5, and so M Š PSOC10.3/.
Using Magma [2], the result follows.

Suppose that n � 4 is even. By [18, Lemma 5.6], � vanishes on regular elements
of order l1 or l2 or � is of l3-defect zero, where l3 D l.2n � 4/. An argument simi-
lar to that used above allows us to dispose of the case when q ¤ 3. Suppose q D 3.
Now if n � 8, then M is of l-rank at least 3, where l is an odd prime dividing
q2 C 1. In particular, l D 5. By Theorem 2.1, � vanishes on a 5-singular element.
Since gcd.l1; 5/ D gcd.l2; 5/ D gcd.l3; 5/ D 1, the result follows. If n D 4, that
is, M Š PSOC8 .3/, then we have the explicit character table in the Atlas [5], and
if n D 6, we obtain an explicit character table in Magma for PSOC12.3/. This con-
cludes our proof.

3.2 Exceptional groups

Exceptional groups of small Lie rank

Since PSL2.8/ Š 2G2.3/0 and PSU3.3/ Š G2.2/0, and PSL2.8/, PSU3.3/ were
dealt with in [16, Theorem 1.2] and Proposition 3.7, respectively, we exclude them
in this section.
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M jT1j jT2j jT3j l1 l2 l3

F4.q/ ˆ12 ˆ8 l.12/ l.8/

E6.q/ ˆ12ˆ3 ˆ9 ˆ8ˆ2ˆ1 l.12/ l.9/ l.8/
2E6.q/ ˆ18 ˆ12ˆ6 ˆ8ˆ2ˆ1 l.18/ l.12/ l.8/

E7.q/ ˆ18ˆ2 ˆ14ˆ2 ˆ12ˆ3ˆ1 l.18/ l.14/ l.12/

E8.q/ ˆ30 ˆ24 ˆ20 l.30/ l.24/ l.20/

Table 2. Tori and Zsigmondy primes for groups of Lie type.

Let

L D ¹2B2.q2/ j q2 D 22fC1; f � 1º [ ¹2G2.q2/ j q2 D 32fC1; f � 1º

[ ¹
2F4.q2/ j q2 > 2º [ ¹G2.q/ j q � 3º [ ¹3D4.q/ j q � 2º:

Proposition 3.13. Let M be a quasisimple group such that

M=Z.M/ 2 L [ ¹2F4.2/0º:

If (?) holds for M , then M D 2B2.8/ with �.1/ D 14.

Proof. The simple group M D 2B2.8/ satisfies the conclusion of our proposition
from its character table in the Atlas [5]. For the rest of the groups, using explicit
character tables in Atlas [5] and generic ordinary character tables in Chevie [9],
we may conclude that every non-trivial character ofM does not satisfy conditions
of (?). Hence the result follows.

Exceptional groups of large Lie rank

Table 2 shows the Zsigmondy primes li for the corresponding tori Ti . It was shown
in [18] that every non-trivial irreducible character which is not the Steinberg char-
acter vanishes on an element of order li for some i D 1; 2; 3.

Proposition 3.14. LetM be a quasisimple exceptional finite group of Lie type over
a field of characteristic p and of rank at least 4. Then every non-trivial faithful
irreducible character of M fails to satisfy (?).

Proof. Note that the group M must be one of these types: F4, E6, 2E6, E7 or E8.
Suppose thatM=Z.M/ Š F4.2/. Using the character tables in the Atlas [5], the

result follows. Let M D F4.q/, q � 3. Then M is simple. From [18, Lemma 5.9],
we have that � vanishes on regular elements of order l1, l2 or l3 D l.3/, or � is
of p-defect zero if � is the Steinberg character. On the other hand, there exists
an odd prime l such that l j .q � 1/ or l j .q C 1/ and M is of l-rank at least 3
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unless q D 3. If q ¤ 3, then by Theorem 2.1, we have that � vanishes on an l-sin-
gular element, and since gcd.l1; l/ D gcd.l2; l/ D gcd.l3; l/ D gcd.p; l/ D 1, the
result follows. If q D 3, then using an explicit character table of M D F4.3/ from
Magma [2], the result follows.

Now suppose M D E6.q/, q � 2, with Z.M/ D 1. From [18, Lemma 5.9], we
have that � vanishes on regular elements of order l1, l2 or l3, or � is of p-defect
zero if � is the Steinberg character. On the other hand,M is of l-rank at least 3 for
an odd prime l such that l j .q3 � 1/. By Theorem 2.1, � vanishes on an l-singular
element. Since gcd.l1; l/ D gcd.l2; l/ D gcd.l3; l/ D gcd.p; l/ D 1, we are done.
Now suppose that Z.M/ ¤ 1, that is, jZ.M/j D 3. By (?), � vanishes on a 3-ele-
ment. Using the above argument, � vanishes on an l-singular element, where l ¤ 3
is an odd prime such that l j .q2 C q C 1/. Since gcd.3; l/ D 1, the result follows.

Suppose that M D 2E6.q/, q � 2, with Z.M/ D 1. By [18, Lemma 5.9], we
have that � vanishes on regular elements of order l1, l2 or l3, or � is of p-defect
zero if � is the Steinberg character. On the other hand, M is of l-rank at least 3
for an odd prime l ¤ 3 such that l j .q2 � q C 1/. By Theorem 2.1, � vanishes on
an l-singular element. Since gcd.l1; 1/D gcd.l2; l/D gcd.l3; l/D gcd.p; l/D 1,
the result follows. Now suppose that Z.M/ ¤ 1, so jZ.M/j D 3 and q D 3b � 1
for some positive integer b � 2 using the Atlas [5] for 2E6.2/. We may assume
that q � 5. It is sufficient to show that M is of l-rank at least 3 for some prime
l ¤ 3. The candidate for l is an odd prime l such that l j .q2 � q C 1/. Finally,
let M=Z.M/ D 2E6.2/ with jZ.M/j D 2 since, by (?)(iii), jZ.M/j is a prime
power. Then the character table in the Atlas [5] concludes this case.

We will use the same arguments for M D E7.q/ and M D E8.q/ in the case
whenM is simple. By [18, Lemma 5.9], we have that � vanishes either on regular
elements of order l1, l2 or l3, or � is of p-defect zero if � is the Steinberg character.
By Theorem 2.1, � vanishes on an l-singular element, where l is an odd prime such
that l j .q2 � q C 1/. Hence the result follows.

Now suppose M D E7.q/ and Z.M/ ¤ 1. By (?), � vanishes on a 2-element.
Using Theorem 2.1, � vanishes on an l-singular element, where l is an odd prime
such that l j .q3 C 1/. Hence the result follows.

4 Non-solvable groups with a character vanishing on one class

4.1 Almost simple groups of Lie type

We are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Suppose that � 2 Irr.G/ is faithful, primitive and vanishes
on exactly one conjugacy class. By [16, Theorem 3.3], there exist normal sub-
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groupsM and Z of G such that G=Z is an almost simple group andM is a quasi-
simple group. In particular, it was shown in [16] that the normal subgroup M nec-
essarily satisfies (?). For M=Z isomorphic to a sporadic simple group, alternating
group An, n � 5, or PSL2.q/, q � 4, the result follows from [16, Theorems 1.2
and 1.3]. ForM=Z isomorphic to a finite group of Lie type distinct from PSL2.q/,
q � 4, the result follows from our results in Section 3.

Conversely, suppose that one of (1)–(7) in the hypothesis holds. For (1)–(6), the
result follows from [16, Theorem 1.3]. Now, whenG D 2B2.8/W3 with �.1/ D 14,
by the same argument above [16, Theorem 5.2], the primitivity of � follows.
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