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Abstract. Using a study of the connection between entangle-
ment and quantum detailed balance as motivation, we define and
study the concept of balance between two W ∗-dynamical systems.
Balance is defined in terms of certain correlated states (couplings),
with entangled states as a specific case. Basic properties of balance
are derived, and a connection with correspondences in the sense of
Connes is discussed. The characterization, and possible general-
izations of a quantum detailed balance condition is explored. A
characterization of ergodicity in terms of balance is also given.
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4 CONTENTS

Introduction

In this thesis we define and study a general notion of balance be-
tween two W ∗-dynamical systems, as motivated by a study of the con-
nection between quantum detailed balance and entanglement in the
finite dimensional case.

Entanglement is a central aspect of quantum physics and is im-
portant in several areas of physics, such as quantum information and
statistical mechanics, whereas detailed balance is a form of microscopic
reversibility that is closely related to equilibrium in statistical mechan-
ics. The quantum version of detailed balance for open systems has
been studied for many years, and research continues to the present
day (see [5, 15, 38] for some of the early papers, and [27, 53] for
examples of more recent work). Ideas related to quantum detailed bal-
ance continue to play an important role in studying certain aspects
of non-equilibrium statistical mechanics, in particular non-equilibrium
steady states (see for example [2, 3, 4]). There are several different
approaches to quantum detailed balance as illustrated in the mentioned
papers, corresponding to different types of quantum detailed balance.

Connections between detailed balance and entangled states have in
fact already been exploited in [12, 29, 30] with regards to entropy
production for quantum Markov semigroups. However our interest will
be more explicit, specifically how precisely the connection arises. We’ll
do this by deriving a characterization of quantum detailed balance
conditions in terms of an entangled state. Balancing behaviour inherent
to this characterization will then act as our motivation to define and
study a more general and abstract notion of balance.

Due to the above connection between detailed balance and non-
equilibrium statistical mechanics, the notion of balance is therefore
potentially applicable to non-equilibrium statistical mechanics. How-
ever, in this thesis we will only develop the basics of a theory of balance
as a foundation for further work.

In Chapter 1 we study the connection between quantum detailed
balance and entanglement in finite dimensions, closely following [24],
and culminating in characterizations of two quantum detailed balance
conditions in terms of an entangled state. We conclude the chapter
with a brief motivation as to how the “balancing behaviour” exhibited
in the characterizations can be investigated more abstractly.

In Chapter 2 we cover mathematical background that will be used
in Chapters 3 and 4. Various notations and conventions will also be
discussed here.

In Chapter 3 we define the notion of balance between two W ∗-
dynamical systems in terms of a dual of a system, and a coupling of
two states on von Neumann algebras. With the main definitions in
place we then proceed with a study of the concept, investigating trivial
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examples, symmetry, transitivity and characterizations of ergodicity
and quantum detailed balance in terms of balance. A connection with
correspondences in the sense of Connes is also discussed. This chapter
closely follows [25].

The thesis is concluded in Chapter 4 with a simple example from
[25] that illustrates some of the ideas in Chapter 3. We define two
W ∗-dynamical systems on the same algebra and state pair, but with
different possible dynamics, and then identify a “family” of possible
couplings of the system’s state with itself. Conditions for balance in
terms of these couplings are then derived. We conclude the example by
investigating a quantum detailed balance condition defined in Chapter
3, and ways in which the condition can be strictly weakened in terms
of balance.
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Index of Symbols and Conventions

N : Natural numbers {1, 2, 3, ...}.
R : Field of real numbers.
C : Field of complex numbers.

Mn : Shorthand notation for Mn×n(C), the space of all n × n ma-
trices with C-valued entries.

u.c.p. : Short for unital and completely positive.

L(X) : Space of linear operators X → X.
L (X) : Space of bounded linear operators X → X.
L1(X) : Space of trace-class operators X → X.

X∗ : Dual space of a normed space X, i.e. the space of all bounded
linear functionals on X equipped with the operator norm.

(A)+ : The positive elements of a C∗-algebra A.
A′ : The commutant of an algebra A.

idA : The identity operator on an operator space restricted to a
subspace A of an operators space. That is, idA : a 7→ a for all
a ∈ A where, e.g. A ⊂ L (H).

1A : The unit of an algebra A, also sometimes denoted without the
subscript if the context is clear.

x on y : The operator defined on an inner product space X by

x on y(z) = 〈y, z〉x
for all z ∈ X and some fixed x, y ∈ X.

[·, ·] : The commutator on an algebra A. That is, [a, b] = ab− ba for
all a, b ∈ A.

	 : The symmetric difference of two sets.
δµ : The diagonal coupling of µ with itself. See Eq. (28).

µ� ν : The product/trivial coupling of µ and ν. See Eq. (29).

(i) Unless explicitly stated otherwise, any vector space or algebra
will be over the field of complex numbers.

(ii) An inner product of an inner product space will always be
taken to be linear in the second argument and conjugate linear
in the first argument.

(iii) In Chapter 1 only, we will denote inner products with the
somewhat less standard notation (·, ·) so as to avoid confusion
with the standard notation for an expected value, 〈·〉. In all
subsequent chapters we will use 〈·, ·〉 to denote inner products.





CHAPTER 1

Detailed balance in finite dimensions

The main aim of this chapter is to show how two quantum detailed
balance conditions can be characterized in terms of an entangled state
ω. In Section 1.1 we derive ω as the purification of a mixed state of a
quantum system with a finite dimensional Hilbert space, and in Section
1.2 we define two types of quantum detailed balance: detailed balance
II, and standard quantum detailed balance w.r.t a reversing operation
Θ. In Section 1.3 we then investigate the connection between detailed
balance and entanglement, and derive characterizations of the these
two types of quantum detailed balance in terms of ω .

The main results of this chapter are Theorem 1.3.3, which is a char-
acterization of detailed balance II in terms of ω, and Proposition 1.3.4,
which is a characterization of Θ standard quantum detailed balance in
terms of ω. We conclude the chapter with a short heuristic argument as
to how one may formulate and investigate the “balancing behaviour”
implicit in the characterizations more abstractly.

1.1. Purifying with an entangled state

Here we set up a representation of the purification of a state, which
will be convenient when we study the connection between detailed bal-
ance and entanglement in Section 1.3.

Consider a quantum system with an n ≥ 2 dimensional Hilbert
space H whose state is given by a density matrix ρ. We assume the
state is mixed, i.e. Tr(ρ2) < 1. If A is an observable of the system, i.e.
if A is a hermitian operator in L (H) then its expected value is given
by

(1) < A >= Tr(ρA).

For convenience we extend Eq. (1) to all operators A ∈Mn instead of
just the hermitian ones

(2) ωH,ρ : Mn → C : A 7→ Tr(ρA).

Eq. (2) may be viewed as a representation of the state of the system
since if Tr(ρ1A) = Tr(ρ2A) for all A ∈Mn then ρ1 = ρ2. That is, ρ can
be uniquely recovered from Eq. (2).

Consider next the composite system consisting of a copy of the
system and itself. The composite system has state space H ⊗H which
we take to be the Kronecker product H ⊗H = Mn where x⊗ y = xyᵀ

9
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for all x, y ∈ H, viewed as column vectors. The inner product on H⊗H
then becomes the Hilbert-Schmidt inner product:

(x1 ⊗ y1, x2 ⊗ y2) := (x1, x2)(y1, y2)

= x†1x2 y
†
1y2

= Tr
(
(x1y

ᵀ
1)†(x2y

ᵀ
2)
)

where (·)† is used to denote both the conjugate transpose of a column
vector in C and the hermitian adjoint in Mn, which is also given by
the conjugate transpose. Since the elementary tensors span H ⊗H it
therefore follows that

(3) (ψ, φ) = Tr(ψ†φ)

for all ψ, φ ∈ H ⊗H.
A somewhat subtle but important thing to note here is that Eq.

(3) is independent of the choice of basis for H. This follows since
(x, y) = x†y for all representations of two elements x, y ∈ H as column
vectors in Cn

Suppose the composite system is in the pure state ψ ∈ H ⊗H. If
T is an observable of the composite system then its expected value is
given by

< T >= (ψ, Tψ).

Just as before we view the following extended linear map as a repre-
sentation of the state of the composite system

ωH⊗H,ψ : L (H ⊗H)→ C : T 7→ (ψ, Tψ) .

If T = A⊗B where A,B are observables of the original system, and if
ψ = x⊗ y for some x, y ∈ H then

Tψ = (A⊗B)x⊗ y
= Ax⊗By
= AxyᵀBᵀ

= AψBᵀ.(4)

Hence, since the elementary tensors span H ⊗ H it follows by the
linearity of T that Eq. (4) holds for all ψ ∈ H ⊗ H. It now follows
from Eq. (3) that

ωH⊗H,ψ(A⊗B) = (ψ, (A⊗B)ψ)

= (ψ,AψBᵀ)

= Tr
(
ψ†AψBᵀ

)
(5)

for all A,B ∈Mn.
Note that ωH⊗H,ψ does not depend on our choice of basis for H

either. Comparing Eq. (2) and (5) we see that if we were to identify
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an r ∈Mn such that r2 = ρ and r† = r then

ωH⊗H,r(A⊗ I) = Tr(rAr) = Tr(r2A) = ωH,ρ(A), and

ωH⊗H,r(I ⊗B) = Tr(r2Bᵀ) = Tr(Br2) = ωH,ρ(B)

for all A,B ∈Mn. That is, ωH⊗H,r would be a purification of ωH,ρ = 〈·〉.
However, since ρ is a positive operator in L (H), it has a unique positive
square root ρ1/2 ∈ L (H) which is hermitian, so in particular it satisfies

ρ1/2† = ρ1/2. For ρ1/2 to be a pure state of the composite system
it also needs to be unital, which follows from (3) since (ρ1/2, ρ1/2) =

Tr(ρ1/2†ρ1/2) = Tr(ρ) = 1.
For the remainder of this chapter we will denote ωH⊗H,ρ1/2 simply

by ω, so

(6) ω(A⊗B) = Tr(ρ1/2Aρ1/2Bᵀ),

and since we are free to choose any basis in H we will assume w.l.o.g
that the basis in H is such that ρ is diagonal.

That ω is an entangled state follows from our assumption that the
state of the original system is mixed, i.e. that Tr(ρ2) < 1. If r is not
an entangled state, in other words r = x⊗ y for some x, y ∈ H, then it
would follow from Tr(r2) = Tr(ρ) = 1 that Tr(ρ2) = Tr(r4) = Tr(r2)2 =
1. This would contradict the assumption Tr(ρ2) < 1, i.e. that our
original state is mixed. To see why, note that r = x⊗ y = xyᵀ ∈Mn is
the matrix representation of the operator x on y ∈ L (H), from which
it is easy to see that rn is the matrix representation of the operator
(x, y)n−1x on y. Hence

Tr(rn) = (x, y)n−1 Tr(x on y) = (x, y)n = Tr(r)n

To summarize, ω is a pure state of the 2-system whose reduced states
to both systems are given by 〈·〉, i.e. by ρ, and since in statistical
mechanics we are particularly interested in cases where ρ is not pure,
it follows then that ω is an entangled state.

For the remainder of the chapter we will assume that ρ is invertible,
i.e. all its eigenvalues are strictly positive.

1.2. Quantum detailed balance definitions

We now describe two definitions of quantum detailed balance for
which the connection to the entangled state ω from Section 1.1 can be
made in a particularly clear way.

For a simple and clear discussion of how one can rewrite the classical
definition of detailed balance in a form that suggests the basic form of
the definitions of quantum detailed balance presented below, please
refer to [29, 54]. This gives some intuition regarding the origins of
these definitions. For the origins of quantum detailed balance, see [5],
[7], [15], [38] and [41].
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As before we consider a system with n dimensional Hilbert space.
We allow the system to interact with its environment, i.e. it is an open
system. A standard approach to this situation is to model the time-
evolution of the system in the Heisenberg picture as a quantum Markov
semigroup (QMS) τt on the algebra Mn, where we take the time vari-
able to be either continuous, i.e. t ≥ 0, or discrete, i.e. t = 0, 1, 2, 3, ....
This means that for each t the corresponding τt is a completely positive
linear map from Mn to itself which is also unital, i.e. τt(I) = I, and
furthermore the semigroup property τsτt = τs+t is satisfied. Extensive
discussions as to when a QMS is a good approximation to the physical
time-evolution is given for example in the books [8] and [13], but also
see [18] for one of the original papers. A brief overview of the defini-
tion of completely positive maps and some related results are given in
Section 2.3.

It turns out that for the framework presented in this section and
the results discussed in the next, the semigroup property is not needed,
so this assumption can in fact be dropped, which may be relevant when
studying non-Markovian dynamics. We do however keep the rest of the
above mentioned assumptions regarding τt, in which case we simply
refer to τt as dynamics. The literature on detailed balance which is
related to our approach typically assumes the semigroup property.

The first definition of quantum detailed balance we consider is from
[43], and is called detailed balance II. In [43] the dynamics is only as-
sumed to be positive, rather than completely positive, and they only
consider the case of discrete time. We therefore adapt their approach
to completely positive maps and also to include continuous time. Our
results in the next section in fact still hold when working with posi-
tivity instead of complete positivity, but as is well known [39] there
are convincing physical reasons to assume complete positivity, and this
also happens to be mathematically convenient in many cases. In this
regard also see again the books [8] and [13]. The above mentioned ex-
tension from discrete to continuous time on the other hand is a minor
mathematical issue in our setup in this section. All our arguments in
this section and the next work for both the case of continuous time and
the case of discrete time.

We are going to define detailed balance of the dynamics τt of the
system relative to a given fixed density matrix ρ of the system. The key
mathematical idea to define and study detailed balance is to consider
certain duals or adjoints of τt. In particular for detailed balance II we
need the following:

With 〈·〉 the expectation functional given by ρ as in the previous
section, we can define the dual (relative to ρ) of any linear map α :
Mn →Mn as the linear map α′ : Mn →Mn such that

〈α′(A)B〉 = 〈Aα(B)〉
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for all n×n matrices A and B. Note that since ρ is invertible, such an
α′ necessarily exists and is unique, since it can be obtained from the
Hermitian adjoint of α with respect to the inner product (A,B)ρ :=
Tr(ρA†B) =

〈
A†B

〉
. Indeed, denoting this Hermitian adjoint by αρ, it

is easy to check that α′(A) = αρ(A†)†.

Definition 1.2.1. We say that τt as given above satisfies detailed
balance II with respect to ρ if τ ′t is a completely positive unital linear
map for every t.

As a general remark, note that if τt has the semigroup property,
then τ ′t automatically has it as well, since〈

τ ′s+t(A)B
〉

= 〈Aτs+t(B)〉 = 〈Aτs[τt(B)]〉 = 〈τ ′t [τ ′s(A)]B〉 .
Note that roughly speaking detailed balance II boils down to re-

quiring that the dual τ ′t is a sensible physical time-evolution.
Next we consider a type of standard quantum detailed balance

(see[19], and also [46] for related work). The particular form of stan-
dard quantum detailed balance considered below was studied in [30,
27]. It will immediately be seen that it is defined in a form directly
related to the entangled state ω, a point we come back to in the next
section. It is defined in terms of a reversing operation Θ : Mn → Mn,
meaning that Θ is a ∗-anti-automorphism, i.e. it is linear, Θ(A†) =
Θ(A)† and Θ(AB) = Θ(B)Θ(A), and we furthermore assume that Θ2

is the identity map on Mn. Note that some form of time reversal plays
a central role in a number of approaches to detailed balance; see for
example [5, 42], and also the discussion in [43].

For any linear α : Mn → Mn we define α(1/2) : Mn → Mn (relative
to ρ) by

Tr(ρ1/2α(1/2)(A)ρ1/2B) = Tr(ρ1/2Aρ1/2α(B))

for all n × n matrices A and B. We note that α(1/2) exists and is
uniquely determined. In fact it is easily seen to be given by

α(1/2)(A) = ρ−1/2α†(ρ1/2A†ρ1/2)†ρ−1/2

where α† is the Hermitian adjoint of α with respect to the Hilbert-
Schmidt inner product. From this formula it also follows that α(1/2) is
positive if α is, and completely positive if α is. Furthermore, if τt is

a QMS, it can be seen that α
(1/2)
t is as well. However, the semigroup

property will again not be essential for our work.
The dual α(1/2) is known as the KMS-dual of α, however we will

not explore KMS-theory in this thesis.

Definition 1.2.2. We say that τt on Mn satisfies standard quan-
tum detailed balance with respect to the reversing operation Θ and the
density matrix ρ, abbreviated as Θ-sqdb with respect to ρ, if

τ
(1/2)
t = Θ ◦ τt ◦Θ.
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As the preceding references and introduction show, there are also
a number of other definitions of quantum detailed balance in the lit-
erature. For remarks comparing some of these, refer to [27, 43] in
particular.

1.3. Detailed balance and entanglement

In this section we turn to the main goal of this chapter, namely
to characterize quantum detailed balance in terms of the entangled
state ω introduced in Section 1.1. As mentioned in Section 1.1, ρ is an
invertible density matrix throughout and we have chosen some fixed
basis in which ρ is diagonal to define the transposition. Furthermore,
the term dynamics is as defined in the previous section.

The central tool towards our goal is the modular operator ∆ defined
by

∆(A) = ρAρ−1

for all n×n matrices A. This operator is part of a very general theory,
namely modular theory or Tomita-Takesaki theory, which is discussed
for example in [14]. Section 2.2 contains a brief summary of the main
operators as well as a principal result of the theory, but since we are
still only working in finite dimensions we don’t need to delve into the
general theory here.

We start with a technical result regarding the modular operator in
our finite dimensional context, which we will use to prove the main
results in this section.

Lemma 1.3.1. For any z ∈ C, ∆z is well defined and given by

(7) ∆z(A) = ρ−zAρz, A ∈Mn.

Moreover, if α : Mn 7→ Mn is linear then ∆α = α∆ if and only if
∆zα = α∆z for some nonzero z ∈ C.

Proof. From the definition of ∆, it is easily verified that ∆† =
∆, where again the Hermitian adjoint ∆† is taken with respect to
the Hilbert-Schmidt inner product. I.e. ∆ is self-adjoint, and simi-
larly ∆1/2 := ρ1/2(·)ρ−1/2 is self-adjoint. The latter means that ∆ =
∆1/2∆1/2 ≥ 0. Furthermore, ∆−1 = ρ−1(·)ρ exists so all of the eigen-
values of ∆ are strictly positive, so in fact

∆ > 0

as an operator on the Hilbert space Mn with the Hilbert-Schmidt norm.
This means that ∆z is well-defined for all z ∈ C.

A convenient and standard representation of a linear map α : Mn →
Mn, for example ∆ above, is to arrange the columns of an n×n matrix
in order below one another in an n2 dimensional column, in which case
α can be written as an n2 × n2 matrix. This is just a choice of basis,
and is essentially an explicit case of the GNS construction with respect



1.3. DETAILED BALANCE AND ENTANGLEMENT 15

to the trace (see for example [14] for the general GNS construction).
In this representation α† is then easily seen to be represented by the
Hermitian adjoint of the n2 × n2 matrix (i.e. transpose and complex
conjugation).

Since we are working in a basis in which ρ is diagonal it follows that
in the above mentioned representation,

(8) ∆ =



 ρ1ρ
−1
1

. . .

ρnρ
−1
1


. . .  ρ1ρ

−1
n

. . .
ρnρ

−1
n




where we have indicated n×n blocks for clarity. From this we see that

(9) ∆z(A) = ρ−zAρz.

The final assertion follows from (8) and the easily verified observation
that, if A = [aij], B = [bij] ∈ Mn are the matrix representations of
linear maps αA, αB : Cn 7→ Cn and B is diagonal, then αAαB = αBαA
if and only if aijbjj = ajibjj for all i, j = 1, ..., n. �

We now proceed with the following characterization of detailed bal-
ance II in terms of the modular operator.

Theorem 1.3.2. The dynamics τt satisfies detailed balance II with
respect to ρ if and only if it commutes with the modular operator, i.e.

(10) τt∆ = ∆τt,

and it leaves the state ρ invariant in the sense that

(11) 〈τt(A)〉 = 〈A〉
for all n× n matrices A.

Proof. To simplify the technical steps to follow we start by intro-
ducing another type of dual operator. Given any linear map α : Mn →
Mn we define the linear map α‡ : Mn →Mn by

Tr[α‡(A)B] = Tr[Aα(B)].

Similar to α′, α‡ can be obtained from the usual Hermitian adjoint α†

of the operator α with respect to the Hilbert-Schmidt inner product by
the formula

α‡(A) = α†(A†)†

where the 2nd and 3rd † refer to the Hermitian adjoint of the n × n
matrices A and α†(A†). Note that α(I) = I if and only if Tr ◦α‡ = Tr.
It is similarly easy to see that 〈α(A)〉 = 〈A〉 for all A if and only if
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α‡(ρ) = ρ. In the case that α is a Hermitian map, i.e. it satisfies
α(A†) = α(A)†, we see that α† is also Hermitian, since

Tr
[
α†(A†)B

]
= Tr

[
A†α(B)

]
= {Tr[α(B†)A]}∗ = {Tr[B†α†(A)]}∗

= Tr
[
α†(A)†B

]
.

Therefore

α‡ = α†

if α is Hermitian.

Assume that the dynamics τt satisfies detailed balance II with respect
to ρ. That is, τt and τ ′t are both completely positive and unital. τt and
τ ′τ are therefore in particular positive, and hence both are Hermitian
maps.

Consider any linear α : Mn → Mn. It follows that 〈α′(A)B〉 =
〈Aα(B)〉 = Tr[α‡(ρA)B] =

〈
ρ−1α‡(ρA)B

〉
, and therefore

α′(A) = ρ−1α‡(ρA).

Furthermore,

〈Aα(B)〉 = 〈α′(A)B〉 = Tr[Bρα′(A)] = Tr[α′‡(Bρ)A] = Tr[ρAα′‡(Bρ)ρ−1]

=
〈
Aα′‡(Bρ)ρ−1

〉
so α(B) = α′‡(Bρ)ρ−1, i.e. α′‡(Bρ) = α(B)ρ. Assuming that α and α′

are Hermitian, it follows that α‡ = α† and α′‡ = α′† are also Hermitian,
therefore we also have α′†(ρB) = ρα(B). Therefore

〈Aα(B)〉 = Tr[ρAρ−1α′†(ρB)] = Tr[α′(ρAρ−1)ρB] =
〈
α′(ρAρ−1)ρBρ−1

〉
=
〈
Aρ−1α(ρBρ−1)ρ

〉
from which it follows that α(B) = ρ−1α(ρBρ−1)ρ.

I.e. we have shown that

(12) α∆ = ∆α

if both α and α′ are Hermitian maps. Since τt and τ ′t are both Hermitian
maps as established above, (12) holds for α = τt and all t.

Furthermore, Eq. (11) holds, since 〈τt(A)〉 = 〈τ ′t(I)A〉 = 〈A〉 di-
rectly from the definition of τ ′t and detailed balance II.

Now we prove the converse. First note that for a linear map α : Mn →
Mn we have that α is completely positive if and only if α† is completely
positive. This follows immediately from the definition of α† and the
fact [39, 50] that a linear map ϕ : Mn → Mn is completely positive if
and only if it can be written in the form

ϕ(A) =
n2∑
j=1

VjAV
†
j
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for all A, for some set of matrices Vj ∈Mn. (It can also be shown by a
slightly longer argument that α is positive if and only if α† is positive.)

Assuming Eq. (10) and Eq. (11), we define ϕt : Mn →Mn by

ϕt(A) = ρ−1/2τ †t (ρ1/2Aρ1/2)ρ−1/2,

from which follows that

〈ϕt(A)B〉 = Tr[ρρ−1/2τ †t (ρ1/2Aρ1/2)ρ−1/2B] = Tr[ρ1/2Aρ1/2τt(ρ
−1/2Bρ1/2)]

=
〈
Aρ1/2τt(ρ

−1/2Bρ1/2)ρ−1/2
〉

= 〈Aτt(B)〉

where in the last step we applied τt(ρ
zAρ−z) = ρzτt(A)ρ−z which follows

from Lemma 1.3.1 and our assumption Eq. (10). This shows that
τ ′t = ϕt, i.e.

(13) τ ′t(A) = ρ−1/2τ †t (ρ1/2Aρ1/2)ρ−1/2,

from which we conclude that τ ′t is completely positive, since τt and

therefore τ †t are. (Similarly, τ ′t is positive if we only assume that τt is
positive.) Furthermore

〈τ ′t(I)A〉 = 〈τt(A)〉 = 〈A〉 ,

implying that τ ′t is unital. This shows that τt satisfies detailed balance
II with respect to ρ as required. �

We will now use this characterization of detailed balance II to derive
the characterization of detailed balance II in terms of the entangled
state ω.

For any linear map α : Mn →Mn we can define another linear map
α̂ : Mn →Mn by

α̂(A) = α′(Aᵀ)ᵀ

where α′ is as defined in Section 1.2. In order to formulate the char-
acterization of detailed balance II in terms of ω, we apply this to the
dynamics τt, i.e. we consider τ̂t given by

(14) τ̂t(A) = τ ′t(A
ᵀ)ᵀ

for all n× n matrices A and every t. Keep in mind that τ ′t and there-
fore τ̂t are mathematically well-defined operators for every t. However,
it is only under the condition of detailed balance II that τ ′t becomes
dynamics, i.e. that it is unital and completely positive. When this is
the case, τ̂t similarly becomes dynamics.

Note that since the transpose appears in Eq. (14), the definition of
τ̂t is basis dependent, so we have made a specific choice to fit in with
ω from Section 1.1.

Now we can characterize detailed balance II in terms of entangle-
ment.



18 1. DETAILED BALANCE IN FINITE DIMENSIONS

Theorem 1.3.3. The dynamics τt satisfies detailed balance II with
respect to ρ if and only if

(15) ω[A⊗ τ̂t(B)] = ω[τt(A)⊗B]

for all n× n matrices A and B, and

(16) τ̂t(I) = I,

for every t. Alternatively Eq. (15) can be expressed as

ω ◦ (idMn ⊗τ̂t) = ω ◦ (τt ⊗ idMn),

i.e. evolving the 2-system by idMn ⊗τ̂t has the same effect on the en-
tangled pure state ω as τt⊗ idMn, where idMn denotes the identity map
on the algebra Mn.

Proof. Assume that τt satisfies detailed balance II with respect
to ρ. Then Eq. (13) holds, so by also using Eq. (6) and Eq. (14) it
follows that

ω[A⊗ τ̂t(B)] = Tr[ρ1/2Aρ1/2τ ′t(B
ᵀ)]

= Tr[ρ1/2Aρ1/2ρ−1/2τ †t (ρ1/2Bᵀρ1/2)ρ−1/2]

= Tr[τt(A)ρ1/2Bᵀρ1/2] = ω[τt(A)⊗B],

i.e. Eq. (15) holds. Since τ ′t(I) = I because of detailed balance II, we
also have Eq. (16) by Eq. (14).

Conversely, assuming Eqs. (15) and (16), we are going to use The-
orem 1.3.2 to show that τt satisfies detailed balance II with respect to
ρ. Since

ω(A⊗B) = Tr(ρBᵀρ1/2Aρ−1/2) =
〈
Bᵀ∆1/2(A)

〉
,

we have by our assumption Eq. (15) that〈
Bᵀτt[∆

1/2(A)]
〉

=
〈
τ ′t(B

ᵀ)∆1/2(A)
〉

= ω[A⊗ τ ′t(Bᵀ)ᵀ] = ω[A⊗ τ̂t(B)]

= ω[τt(A)⊗B] =
〈
Bᵀ∆1/2[τt(A)]

〉
which means that τt∆

1/2 = ∆1/2τt, hence τt∆ = ∆τt. Furthermore,

〈τt(A)〉 = ω[τt(A)⊗ I] = ω[A⊗ τ̂t(I)] = 〈A〉 ,
since we assumed that τ̂t(I) = I. The conditions in Theorem 1.3.2 are
therefore satisfied, implying that τt satisfies detailed balance II with
respect to ρ. �

Next we consider a similar characterization of Θ-sqdb. The defini-
tion of Θ-sqdb is indeed already in a form that is aligned with ω. We
simply define αΘ : Mn →Mn by

αΘ(A) = (Θ ◦ α ◦Θ(Aᵀ))ᵀ

for any linear α : Mn → Mn. Then one can immediately reformulate
the definition of Θ-sqdb to obtain the following characterization which
is inherent to the work in [12, 29, 30]:
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Proposition 1.3.4. The dynamics τt satisfies Θ-sqdb with respect
to ρ if and only if

ω[A⊗ τΘ
t (B)] = ω[τt(A)⊗B]

for all n× n matrices A and B and every t.

A typical choice of Θ is Θ(A) = Aᵀ. In this case τΘ
t = τt and the

above condition simplifies to

ω[A⊗ τt(B)] = ω[τt(A)⊗B].

So this choice of Θ seems to fit in naturally with our choice of ω.
It is straightforward to construct examples of Θ-sqdb in M2 where

τt does not commute with ∆, unlike the case of detailed balance II.
This aspect of standard quantum detailed balance was emphasized in
for example [27].

On the other hand, should we assume that τt does commute with
∆, one can show that Θ-sqdb implies detailed balance II.

We also mention that all of the results in this section still hold if we
work in terms of positivity instead of complete positivity, as discussed
in the previous section.

Theorem 1.3.3 and Proposition 1.3.4 gives us a hint as to how we may
explore a more abstract version of detailed balance. In both results the
dynamics of the system, and a kind of dual mechanics, is “balanced”
relative to a state defined on a composition of the system with itself,
and derived from the original system’s state. So by considering a state
on a composition of two different systems, derived from or related to
both systems’ states in some way, and then requiring a condition such
as Eq. (15) to hold where τ̂t is the dynamics on the other system,
one could potentially determine a more abstract and far more versatile
“balance” condition.

In Chapter 3 we will show how this can be done in the context
of W ∗-dynamical systems in such a way that, one can not only easily
characterize a quantum detailed balance condition, but one can eas-
ily generalize the condition in a number of natural ways. Moreover,
we’ll see how properties not directly related to detailed balance can be
characterized and generalized as well, as we’ll illustrate with an ergodic
property in Section 3.3





CHAPTER 2

Mathematical Background

In this chapter we cover some of the main mathematical tools that
we will be working with in the next two chapters. We also introduce
notations and explain some conventions that we will adopt in the re-
mainder of the thesis.

In Section 2.1 we briefly discuss and define cyclic representations,
which will form the backbone of a great deal of analysis in the next
chapter. We then prove the existence of a cyclic representation given
by a Hilbert space in a special case that will be of importance.

In Section 2.2 we briefly discuss von Neumann algebras, in terms
of which W ∗-systems are defined in Chapter 3. We also derive a useful
characterization for continuity on a von Neumann algebra relative to
the topology that we will be mainly interested in, the σ-weak topology.
We then provide a brief summary of the operators of Tomita Takesaki
theory, and state one of the theory’s main results.

In Section 2.3 we define completely positive maps between C∗-
algebras and list two results that we will use multiple times: a general
characterization of completely positive maps by Stinespring, known as
the Stinespring dilation, and Kadison’s inequality, which is an inequal-
ity that holds for completely positive maps that are also contractions.

Finally, in Section 2.4 we prove that, for a Hilbert space H with
a countable total orthonormal basis, (L (H) ⊗ 1)′ = 1 ⊗ L (H) and
(1⊗L (H))′ = L (H)⊗ 1 in L (H ⊗H).

2.1. Cyclic representations

The majority of our analysis of systems, as will be defined in the
next chapter, will be done on Hilbert space level through cyclic rep-
resentations. In this section we briefly relate the definition of a cyclic
representation, discuss some of the conventions we will adopt and then
prove the existence of such a representation in a special case that will
be important to us.

Definition 2.1.1. A cyclic representation for a unital ∗-algebra
and state pair (A, µ) is a triple (X, π,Ω) with X an inner-product
space, Ω ∈ X and π : A→ L(X) a linear operator that satisfies

π(A)Ω = X

µ(a) = 〈Ω, π(a)Ω〉

21
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for all a ∈ A, where X is the completion of X relative to the norm
determined by its inner product.
A cyclic representation for a unital C∗-algebra and state pair (A, µ) is
a triple (H, π,Ω) with H a Hilbert space, Ω ∈ H and π : A → L (H)
a linear ∗-morphism that satisfies

π(A)Ω = H

µ(a) = 〈Ω, π(a)Ω〉
for all a ∈ A.

By a state µ on the unital ∗-algebra A we mean that µ : A→ C is
linear, µ(1) = 1 and µ(a∗a) ≥ 0 for all a ∈ A. With this definition of a
state the existence of a cyclic representation in both cases of Definition
2.1.1 is established through the GNS construction, and in the case of
a C∗-algebra it follows that the cyclic representation is unique up to
unitary transformations (see [14, Section 2.3.3] for details). Moreover,
if a state µ on a C∗-algebra A is faithful then (A, µ) has a faithful
cyclic representation (H, π,Ω). That is, π is a ∗-isomorphism onto
its range. In that case it is sometimes convenient to assume, without
loss of generality, that (A, µ) is in its cyclic representation from the
start. In other words, it has cyclic representation (H, idA,Ω) with
idA : A→ L (H) the identity operator.

The special case we will be interested is a state ω on the algebraic
tensor product A � B where A,B are C∗-algebras. This is a unital
∗-algebra and state pair, however because A and B are C∗-algebras a
Hilbert space cyclic representation can be shown to exist.

Proposition 2.1.2. Let A and B be C∗-algebras, and ω a state on
their algebraic tensor product A � B. Then ω is bounded with respect
to the maximal C∗-norm on A�B.

A proof of this known proposition can be found in [22, Proposition
4.1]

Theorem 2.1.3. (A�B,ω) in Proposition 2.1.2 has a cyclic repre-
sentation (H, π,Ω) where H is a Hilbert space, Ω ∈ H is a unit vector
and π : A�B → L (H) is a ∗-morphism satisfying

π(A�B)Ω = H

ω(z) = 〈Ω, π(z)Ω〉
for all z ∈ A�B.

Proof. Equip A�B with the maximal C∗-norm ‖·‖m. Then A�B
is a normed space and by Proposition 2.1.2 ω is bounded relative to
‖ · ‖m. That is, ωm ∈ (A � B)∗, so ω has a unique bounded linear
extension to A ⊗m B, the maximal tensor product of A and B. We
denote this extension by ω as well and assume without loss of generality
that A�B ⊂ A⊗m B, so A�B = A⊗m B.
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It is easily verified that ω is a state on the C∗-algebra A ⊗m B,
thus (A ⊗m B,ω) has a cyclic representation (G,ϕ,Ω) in the sense
of Definition 2.1.1. It follows that (H, π,Ω) is a cyclic representation

with the required properties where H = ϕ(A�B)Ω, and π : A�B →
L (H) : z 7→ ϕ(z)|H . �

2.2. von Neumann algebra tools

There are a couple of different equivalent definitions of von Neu-
mann algebras, depending on the source text, but arguably the simplest
one is in terms of the double commutant:

Definition 2.2.1. If H is a Hilbert space and M is a ∗-subalgebra
of L (H) then M is a von Neumann algebra if M ′′ = M .

A trivial example of a von Neumann algebra therefore is L (H)
itself, since L (H)′ = C1 and (C1)′ = L (H). Also note that a von
Neumman algebra in L (H) necessarily contains the identity operator
1 : H → H.

The topology that we will be most concerned with on a von Neu-
mann algebra is the σ-weak topology on L (H), i.e. the locally convex
topology generated by the family of seminorms {|Tr(·u)| : u ∈ L1(H)}
on L (H). We will also use the term normal to refer to σ-weakly con-
tinuous maps. This not only keeps the terminology simple, but reflects
the fact that a ∗-morphism between von Neumann algebras is normal
if and only if it is σ-weakly continuous, where a normal ∗-morphism
η : M → N is by definition a ∗-morphism which satisfies

φ(sup{xi}) = sup{φ(xi)}
for all bounded increasing nets (xi) ⊂ M . See [10, III.2.2] for further
details.

It’s a fundamental fact that the σ-weak topology is a w∗ topol-
ogy, which can make it easier to work with. For example, the σ-weak
topology inherits useful w∗-topology properties such as:

Proposition 2.2.2. Let X and Y be normed spaces, and V a subset
of X∗. A map η : V → Y ∗ is w∗-continuous if and only if, for all w∗-
continuous θ : Y ∗ → C, the map θ ◦ η : V → C is w∗-continuous.

Proof. The reverse implication is obvious and the forward impli-
cation follows directly from the fact [44, A.2. Theorem] that {θy :
Y ∗ → C : g 7→ g(y)} represents all w∗-continuous functions Y ∗ 7→ C.
That is, if (fλ) is a net in X∗ converging to some f ∈ X∗ then

θy ◦ η(fλ) = η(fλ)(y) −→ η(f)(y) = θy ◦ η(f)

for all y ∈ Y . Thus η(fλ) −→ η(f) by definition of the w∗-topology. �

Since the σ-weak topology is a w∗-topology, Proposition 2.2.2 can
be used to establish the following criteria for normal maps:
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Theorem 2.2.3. Let H,K be Hilbert spaces and M ⊂ L (H) an
arbitrary subset. A map η : M → L (K) is normal if and only if θ ◦ η
is normal for all normal positive linear functionals θ : L (K)→ C.

Proof. By [44, Thm 4.2.3], Γ : L (H) → L1(H)∗ : u 7→ Tr(·u) is
an isometric linear isomorphism. Since the σ-weak topology on L (H)
is generated by semi-norms of the form

L (H)→ R+ : u 7→ |Tr(uv)|, v ∈ L1(H)

and the w∗-topology on L1(H) by semi-norms of the form

L1(H)∗ → R+ : Tr(·u) 7→ |Tr(uv)|, v ∈ L1(H)

it is clear that Γ defines a homeomorphism between L (H) equipped
with the σ-weak topology, and L1(H)∗ equipped with the w∗-topology.
Therefore the proposition will follow from Proposition 2.2.2 if we can
show that θ ◦ η is normal for all normal linear functionals θ : L (K)→
C. Hence what remains to be shown is that if θ ◦ η is normal for all
positive normal linear functionals θ : L (K)→ C, then it is normal for
all normal linear functionals θ : L (K)→ C.

Consider any normal linear functional θ : L (K) → C. By [44, Theo-
rem 4.2.10] there is a v ∈ L1(K) such that

(17) θ(u) = Tr(uv)

for all u ∈ L (K), and it is easy to see that θ ≥ 0 if v ≥ 0. For any
a ∈ L (K) and any hermitian b ∈ L (K),

a0 =
1

2
(a+ a∗); a1 =

1

2i
(a− a∗); b+ =

1

2
(|b|+ b); b− =

1

2
(|b| − b)

are all trace-class if a, b are. See [44, Theorem 2.4.15]. Setting v =
v+

0 − v−0 + iv+
1 − iv−1 in (17) we see that

θ(u) = Tr(uv+
0 )− Tr(uv−0 ) + iTr(uv+

1 )− iTr(uv−1 ).

Thus θ can be expressed as a linear combination of normal positive
functionals since v+

0 , v
−
0 , v

+
1 , v

−
1 ≥ 0.

Hence the results follows since vector operations are continuous in
the σ-weak topology. �

We proceed by giving a brief summary of the relevant terminology
and results from Tomita-Takesaki theory that we will use. Let A be a
von Neumann algebra on a Hilbert space H, with a cyclic and sepa-
rating vector Ω. That is, AΩ = H and if a ∈ A, then aΩ = 0 only if
a = 0. Define a conjugate linear operator S0 on AΩ by

S0aΩ = a∗Ω

for all a ∈ A. Then S0 is a closable operator, and we denote its
closure by S (see [49, Chapter 1] for a detailed development of closed
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operators). That is, if xn → x and S0xn → y in H, then Sx := y. S is
a densely defined closed operator, and has a polar decomposition

(18) S = J∆
1
2

(see [37, Section 9.2] and [14, Definition 2.5.10.]) where ∆ is called the
modular operator associated with (A,Ω) and J is called the modular
conjugation associated with (A,Ω).

We will only use the J operator in Eq. (18), which is an anti-
unitary operator satisfying J∗ = J , JΩ = Ω and, since it is anti-unitary,
J2 = J∗J = 1.

A principal result from Tomita-Takesaki theory is as follows:

Theorem 2.2.4. Let A be a von Neumann algebra with associated
modular conjugation J . Then

JAJ = A′.

2.3. Completely positive maps

In Chapter 1 we considered dynamics given by completely positive
maps on finite dimensional matrices, however in Chapter 3 we will
consider dynamics given by completely positive maps on general von
Neumann algebras (equipped with a faithful state). In this section we
briefly discuss some results and go over the definition of completely
positive maps, which is in terms of matrix algebras with C∗-algebra
entries:

It is easy to show that for a Hilbert space H, L (Hn) is ∗-isomorphic
to Mn(L (H)), where if [aij] ∈Mn(L (H)) is the matrix representation
of T ∈ L (Hn), then [bij] with bij = a∗ji is the matrix representation of
T ∗ ∈ L (Hn). It follows that if A ⊂ L (H) is a C∗-algebra then Mn(A)
acts as a C∗-algebra of operators on Hn. More generally, in this sense
we can consider Mn(A) for any C∗-algebra A by first taking a faithful
representation π of A on some Hilbert space H.

Definition 2.3.1. Let A and B be C∗-algebras and φ : A → B a
linear map. Then φ is said to be completely positive if for all n ∈ N,

φ(n) : Mn(A)→Mn(B) : [aij] 7→ [φ(aij)]

is positive.

Note that a completely positive map is necessarily positive, and
hence ∗-linear in particular. That is, if φ : A→ B is a positive (linear)
map between C∗-algebras A and B, and for any a ∈ A

a =
∑
i

αiai
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is a expressed as a finite linear combination of the positive elements
ai ∈ A+, then it follows that

φ(a∗) = φ

(∑
i

αiai

)
=
∑
i

αiφ(ai) =

(∑
i

αiφ(ai)

)∗
= (φ(a))∗

A useful characterization of completely positive maps was derived
by Stinespring in his original 1955 paper and is known as the Stine-
spring dilation:

Theorem 2.3.2. Let A be a unital C∗-algebra, H a Hilbert space
and φ : A→ L (H) a linear map. Then φ is completely positive if and
only if there is a Hilbert space K, an operator V ∈ L (H,K) and a
representation π of A on K such that

φ(a) = V ∗π(a)V.

Proof. For the original proof by Stinespring, refer to [50]. �

Most completely positive maps we will consider will also be unital,
which are necessarily contractions by [10, Proposition II.6.9.4], and
completely positive contractions satisfy Kadison’s inequality which we
will encounter several times in the next chapter:

Proposition 2.3.3. Let A,B be C∗-algebras and φ : A → B a
completely positive contraction. Then

(19) φ(a∗a) ≥ φ(a)∗φ(a)

for all a ∈ A.

Proof. Follows easily from the Stinespring dilation. See [10, II.6.9.14
Proposition] �

2.4. The commutant of L (H)⊗ 1 in L (H ⊗H)

In Chapter 4 we will construct an example to illustrate some of
the ideas from Chapter 3, and we will use the fact that L (H) ⊗
L (H) ⊂ L (H ⊗ H), relative to the spatial tensor product, and that
(L (H) ⊗ 1)′ = 1 ⊗L (H) in L (H ⊗ H). The former is well known
(see for example [36, Proposition 2.6.12]), and the latter can be proved
using theory from the tensor products of von Neumann algebras (see
[52, IV. Theorem 5.9.]). However, we won’t consider a general Hilbert
space H in Chapter 4, instead we’ll assume it has a countable orthonor-
mal basis. For curiosity’s sake we’ll directly prove the latter result for
this special case.

Let H be a Hilbert space with a total orthonormal basis {ei}i∈N. Then
{ei⊗ej : i, j ∈ N} is a countable orthonormal basis for H⊗H. We can
thus consider an infinite matrix representation of any a ∈ L (H ⊗H)
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given by matrix entries {αj,k,l,m : j, k, l,m ∈ N}, relative to the basis
{ei ⊗ ej : i, j ∈ N}. That is, analogous to the finite dimensional case,

(20) a =
∑

j,k,l,m∈N

αj,k,l,m ej ⊗ el on ek ⊗ em.

Note however that this is only a way to express the matrix represen-
tation of a in the above basis. That is, Eq. (20) does not imply the
convergence of an infinite series. In fact the series in Eq. (20) will not
converge in general. Instead the interpretation of Eq. (20) is that a is
the operator in L (H ⊗H) uniquely determined by:

(21) a(ek ⊗ em) =
∑
j,l∈N

αj,k,l,m ej ⊗ el

for all ek ⊗ em ∈ H ⊗H. We will not directly utilize this matrix rep-
resentation, but we include it as it is occasionally useful to “visualize”
an operator a ∈ L (H ⊗H) as an infinite matrix.

Theorem 2.4.1. (L (H) ⊗ 1)′ = 1 ⊗ L (H) and (1 ⊗ L (H))′ =
L (H)⊗ 1 in L (H ⊗H).

Proof. It is clear that 1⊗L (H) ⊂ (L (H)⊗ 1)′, so we only have
to show that (L (H)⊗ 1)′ ⊂ 1⊗L (H).

Consider any a ∈ L (H ⊗H) defined by

(22) a(ek ⊗ em) =
∑
j,l∈N

αj,k,l,m ej ⊗ el

for all k,m ∈ N as explained above. For any p, q ∈ N, let us denote the
operator ep on eq ∈ L (H) simply by epq.

Assume that a ∈ (L (H)⊗ 1)′. Thus, in particular,

a(epq ⊗ 1) = (epq ⊗ 1)a

for all p, q ∈ N. Consider any es ⊗ et ∈ H ⊗H. It follows that

(epq ⊗ 1)a(es ⊗ et) = (epq ⊗ 1)
∑
j,l∈N

αj,s,l,t ej ⊗ el

=
∑
j,l∈N

αj,s,l,t epqej ⊗ el

=
∞∑
l=1

αq,s,l,t ep ⊗ el
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where we used the continuity of epq⊗1 ∈ L (H)⊗L (H) ⊂ L (H⊗H).
It also follows that

a(epq ⊗ 1)es ⊗ et = a(epqes ⊗ et)
= δq,sa(ep ⊗ et)

= δq,s
∑
j,l∈N

αj,p,l,t ej ⊗ el

where δ is the Kronecker delta function. That is, δq,s = 0 if q 6= s, and
δq,q = 1 for all q ∈ N.

Hence, since a commutes with epq we have that

(23)
∞∑
l=1

αq,s,l,t ep ⊗ el = δq,s
∑
j,l∈N

αj,p,l,t ej ⊗ el

for all p, q, s, t ∈ N. It is clear that we must have αj,k,l,t = 0 if j 6= k,
so Eq. (23) simplifies to

∞∑
l=1

αq,q,l,t ep ⊗ el =
∞∑
l=1

αp,p,l,t ep ⊗ el

for all p, q, t ∈ N, so it also follows that, for any l, t ∈ N, αq,q,l,t = αp,p,l,t
for all p, q ∈ N. We can thus set ϕl,t := αp,p,l,t for any p, l, t ∈ N.

Applying this to Eq. (22) it follows for any ek ⊗ em ∈ H ⊗H that

a(ek ⊗ em) =
∑
j,l∈N

αj,k,l,m ej ⊗ el

=
∞∑
l=1

αk,k,l,m ek ⊗ el

= ek ⊗
∞∑
l=1

ϕl,m el

= (1⊗ d)ek ⊗ em
where d ∈ L (H) is the operator uniquely determined by

dem =
∞∑
l=1

ϕl,mel.

That d is well defined, specifically that it is bounded linear, follows
from the fact that a is bounded linear. That is, for any x ∈ span{ei :
i ∈ N} ⊂ H it is easy to show that

‖a(ek ⊗ x)‖ = ‖ek ⊗ d(x)‖ = ‖d(x)‖
and since a is bounded linear, ‖a(ek ⊗ x)‖ ≤ ‖a‖‖ek ⊗ x‖ = ‖a‖‖x‖.

Since {ei ⊗ ej : (j, l) ∈ N2} is an orthonormal basis for H ⊗ H,
it follows that a = 1 ⊗ d. Thus (L (H) ⊗ 1)′ = 1 ⊗ L (H), with
(1⊗L (H))′ = L (H)⊗ 1 following similarly. �
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It is clear from Theorem 2.4.1 that L (H) ⊗ 1 and 1 ⊗L (H) are
each equal to their double commutants in L (H ⊗H), so we have the
following simple corollary by definition of a von Neumann algebra.

Corollary 2.4.2. L (H) ⊗ 1 and 1 ⊗ L (H) are von Neumann
algebras in L (H ⊗H).





CHAPTER 3

Balance

In this chapter we turn to our main goal, to define and study the
notion of balance between two W ∗-dynamical systems, as an exten-
sion of the conditions in Chapter 1 for quantum detailed balance. In
particular the characterizations derived in terms of the entangled state
(Theorem 1.3.3 and Proposition 1.3.4).

In Section 3.1 we give the definition of balance, along with relevant
mathematical background. In particular we define the dual of a W ∗-
dynamical system, in terms of which balance is defined, and prove that
it exists. Couplings of states on two von Neumann algebras are also
defined here, and two elementary couplings, the diagonal and product
couplings, are discussed.

In Section 3.2 we show how couplings lead to unital completely
positive (u.c.p.) maps from one von Neumann algebra to another. Of
central importance in this regard, is the diagonal coupling defined in
Section 3.1. In certain standard special cases of states on the alge-
bra L (H), with H a finite dimensional or separable Hilbert space, the
diagonal coupling is the maximally entangled bipartite state compat-
ible with the single system states (see Section 4.3), indicating a close
connection between these u.c.p. maps and entanglement.

Section 3.3 gives a characterization of balance in terms of inter-
twinement with the u.c.p. maps defined in Section 3.2. The role of
KMS-duals and the special case of KMS-symmetry are also briefly dis-
cussed in the context of symmetry of balance. A simple application of
balance is then given in the form of an ergodic result, by characterizing
an ergodicity condition in a way analogous to the theory of joinings
(Proposition 3.3.4).

The development of the theory of balance continues in Section 3.4,
where balance is shown to be transitive using the composition of cou-
plings, as an easy result of the characterization of balance in Section
3.3. The definition and properties of such compositions are treated in
some detail. The connection to correspondences in the sense of Connes
is also discussed.

In Section 3.5 we discuss a quantum detailed balance condition
(namely standard quantum detailed balance with respect to a reversing
operation, from [26] and [29]) in terms of balance.

31
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3.1. Definition of balance

This section gives the definition of balance, but for convenience and
completeness also collects some related known results that we need in
the formulation of this definition as well as later on in the chapter.
Some of the notation used in the rest of the thesis is also introduced.

Definition 3.1.1. A W ∗-dynamical system A = (A,α, µ) consists
of a faithful normal state µ on a (necessarily σ-finite) von Neumann
algebra A, and a unital completely positive (u.c.p.) map α : A → A,
such that µ ◦ α = µ.

Recall that by normal we mean that µ is σ-weakly continuous (see
Section 2.2). For simplicity we will refer to W ∗-dynamical systems
simply as systems from now on.

Note that we only consider a single u.c.p. map, since throughout
the chapter we can develop the theory at a single point in time. This
can then be applied to a semigroup of u.c.p. maps by applying the
definitions and results to each element of the semigroup separately.

In the rest of the chapter the symbols A, B and C will denote
systems (A,α, µ), (B, β, ν) and (C, γ, ξ) respectively. The unit of a von
Neumann algebra will be denoted by 1. When we want to emphasize
it is the unit of, say, A, the notation 1A will be used.

Without loss of generality, we will always assume that these von
Neumann algebras are in the cyclic representations associated with
the given states, i.e. the cyclic representation of (A, µ) is of the form
(Gµ, idA,Λµ), where Gµ is the Hilbert space, idA denotes the identity
map of A into L (Gµ), and Λµ is the cyclic and separating vector such
that µ(a) = 〈Λµ, aΛµ〉. We know that Λµ is separating for A since µ
is faithful. Hence Λµ is cyclic and separating for A′ as well by [14,
Proposition 2.5.3].

The dynamics α of a system A is necessarily a contraction, since it is
positive and unital (see again [10, Proposition II.6.9.4]). Furthermore,
α is automatically normal. This is due to the following result:

Theorem 3.1.2. Let M and N be von Neumann algebras on the
Hilbert spaces H and K respectively, and consider states on them re-
spectively given by µ(a) = 〈Ω, aΩ〉 and ν(b) = 〈Λ, bΛ〉, with Ω ∈ H
and Λ ∈ K cyclic vectors, i.e. MΩ = H and NΛ = K. Assume that
ν is faithful and consider a positive linear (but not necessarily unital)
η : M → N such that

(24) ν(η(a)∗η(a)) ≤ µ(a∗a)

for all a ∈M . Then it follows that η is normal, i.e. σ-weakly continu-
ous.

Proof. By Theorem 2.2.3 we only need to show that η composed
with an arbitrary normal positive functional L (K)→ C is normal.



3.1. DEFINITION OF BALANCE 33

For any x, y ∈ K , define the mapping

ωx,y : L (K)→ C : b 7→ 〈x, by〉.

By [14, Theorem 2.5.31], for any positive normal function ϕ : L (K)→
C there is an x ∈ K such that ϕ = ωx,x =: ωx. So let x ∈ K be arbitrary
and consider the map ωx ◦ η. We proceed to show that ω ◦ η may be
approximated in norm by a weak operator continuous (wo-continuous)
linear function M → C.

Since ν is faithful, Λ is separating for N and thus cyclic for N ′ by
[14, Proposition 2.5.3]. Therefore ‖x − b′Λ‖ can be made arbitrarily
small for an appropriate choice of b′ ∈ N ′. Hence it follows that for
any ε > 0 there is a b′ ∈ N ′ such that

|ωx ◦ η(a)− ωx,b′Λ ◦ η(a)| = |〈x, η(a)x〉 − 〈x, η(a)b′Λ〉|
= |〈x, η(a)x− η(a)b′Λ〉|
≤ ‖x‖‖η‖‖a‖‖x− b′Λ‖
< ‖a‖ε

for all a ∈M , where we used the fact that η is necessarily bounded by
[10, II.6.9.2]. We now show that ωx,b′Λ ◦ η is continuous in the weak
operator topology.

From (24) it follows that

aΩ 7→ η(a)Ω

uniquely determines an operator T ∈ L (H,K). Hence, for any a ∈M

ωx,b′Λ ◦ η(a) = 〈x, η(a)b′Λ〉
= 〈x, b′η(a)Λ〉
= 〈x, b′TaΛ〉
= 〈T ∗b∗x, aΛ〉

from which it easy to see that ωx,b′Λ ◦ η is wo-continuous.
Since ε > 0 above was arbitrary we have thus shown that ωx ◦ η lies

in the norm-closure of the space of all wo-continuous linear functions
on M . Therefore ωx ◦ η is normal by [51, 1.10 Theorem. (iii)].

�

To apply this result to the dynamics of a system A we note that
because α is a completely positive contraction it follows from Kadison’s
inequality (Proposition 2.3.3) that

µ(α(a)∗α(a)) ≤ µ(α(a∗a))

for all a ∈ A. Hence α is normal as a special case of Theorem 3.1.2.
A central notion going forward will be the dual of a system, defined

as follows:
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Definition 3.1.3. The dual of the system A, is the system A′ =
(A′, α′, µ′) where A′ is the commutant of A (in L (Gµ)), µ′ is the state
on A′ given by µ′(a′) = 〈Λµ, a

′Λµ〉 for all a′ ∈ A′, and α′ : A′ → A′ is
the unique map such that

〈Λµ, aα
′(a′)Λµ〉 = 〈Λµ, α(a)a′Λµ〉

for all a ∈ A and all a′ ∈ A′.

Let Jµ be the modular conjugation associated with (A,Λµ), as de-
fined in Section 2.2, or just the modular conjugation associated with µ
for short. Define

(25) jµ := Jµ(·)∗Jµ
Then jµ(A) = A′ by Theorem 2.2.4 and

〈Λµ, jµ(a)Λµ〉 = 〈Λµ, Ja
∗JΛµ〉 = 〈J∗Λµ, a∗Λµ〉 = 〈a∗Λµ,Λµ〉

That is,

µ′ = µ ◦ jµ
in Definition 3.1.3. We will return to these operators in Section 3.3.

Before we proceed to use the dual to define balance between two
systems we have to establish that it is well defined. Specifically, that
α′ : A′ → A′ is well-defined and satisfies the required properties for
A′ to be a system follows from the following result, which is a more
general version of [1, Proposition 3.1] and [6, Theorem 2.1]:

Theorem 3.1.4. Let H and K be Hilbert spaces, M a (not neces-
sarily unital) ∗-subalgebra of L (H), and N a (not necessarily unital)
C*-subalgebra of L (K). Let Ω ∈ H with ‖Ω‖ = 1 be cyclic for M , i.e.
MΩ is dense in H, and let Λ ∈ K be any unit vector. Set

µ : M → C : a 7→ 〈Ω, aΩ〉
and

ν : N → C : b 7→ 〈Λ, bΛ〉 .
Consider any positive linear η : M → N , i.e. for a positive operator
a ∈ M , we have that η(a) is a positive operator. Assume furthermore
that

ν ◦ η = µ.

Then there exists a unique map, called the dual of η,

η′ : N ′ →M ′

such that

(26) 〈Ω, aη′(b′)Ω〉 = 〈Λ, η(a)b′Λ〉
for all a ∈ M and b′ ∈ N ′. The map η′ is necessarily linear, positive
and unital, i.e. η′(1) = 1, and ‖η′‖ = 1. Furthermore the following
two results hold:
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(a) If M and N are von Neumann algebras then, if η is n-positive,
then η′ is n-positive as well. In particular, if η is completely positive,
then η′ is as well.

(b) If M and N contain the identity operators on H and K respec-
tively, and η is unital (i.e. η(1) = 1), then it follows that

µ′ ◦ η′ = ν ′,

where µ′(a′) := 〈Ω, a′Ω〉 and ν ′(b′) := 〈Λ, b′Λ〉 for all a′ ∈ M ′ and
b′ ∈ N ′. If in addition Λ is separating for N ′, then η′ is faithful in the
sense that when η′(b′∗b′) = 0, it follows that b′ = 0.

Proof. Fix any b′ ∈ (N ′)+ and define

ψ : M → C : a 7→ 〈Λ, η(a)b′Λ〉
It is easy to see that ψ is a positive linear functional since if a ≥ 0 then

ψ(a) = 〈Λ, (η(a))
1
2 (η(a))

1
2 (b′)

1
2 (b′)

1
2 Λ]〉 = ‖(b′)

1
2 (η(a))

1
2 Λ‖2

where we used the fact that, since N and N ′ are both C∗-algebras
(see [14, p. 71]), η(a) and b′ have positive square roots in N and N ′

respectively.
Furthermore, if a ≥ 0 then

ψ(a) = 〈Λ, (η(a))
1
2 (η(a))

1
2 b′Λ〉

= 〈Λ, (η(a))
1
2 b′(η(a))

1
2 Λ〉

≤ 〈Λ, η(a)Λ〉‖b′‖
= ν ◦ η(a)‖b′‖
= µ(a)‖b′‖

=

〈
Ω√
‖b′‖

, a
Ω√
‖b′‖

〉
where we used [14, Proposition 2.3.11(3)] to obtain the inequality. It
now follows by [20, Lemma 1 on p. 53] that there is a d′ ∈ M ′ such
that

ψ(a) =

〈
d′

Ω√
‖b′‖

, ad′
Ω√
‖b′‖

〉

=

〈
Ω, a

(d′)∗d′

‖b′‖
Ω

〉
for all a ∈M .

Thus, if b′ ∈ N ′ is positive then there exists an element η′(b′) ∈
(M ′)+ such that (26) holds for all a ∈M , namely η′(b′) = ((d′)∗d′)/‖b′‖.
Moreover, this element is necessarily unique since 〈Ω, ac′Ω〉 = 〈Ω, ad′Ω〉
for some c′, d′ ∈ (M ′)+ and all a ∈M implies that c′Ω = d′Ω and thus
that c′ = d′. This follows due to Ω being cyclic for M , and thus also
separating for M ′ as can be easily checked.
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In other words, by defining η(b′) as the unique element in (M ′)+

satisfying (26) we obtain a well-defined mapping η′ : (N ′)+ → (M ′)+.
Consider any b′ ∈ N ′ and let

b′ =
∑
i

αic
′
i =

∑
i

γid
′
i

be two expressions of b′ as finite linear combinations of positive elements
in N ′. Such an expression always exists since N ′ is a C∗-algebra (for
example, as in the proof of Theorem 2.2.3). It follows that

〈Ω, a
∑
i

αiη
′(c′i)Ω〉 =

∑
i

αi〈Ω, aη′(c′i)Ω〉

=
∑
i

αi〈Ω, aη′(c′i)Ω〉

=
∑
i

αi〈Ω, η(a)c′iΩ〉

= 〈Ω, η(a)
∑
i

αic
′
iΩ〉

= 〈Ω, η(a)
∑
i

γid
′
iΩ〉

= 〈Ω, a
∑
i

γiη
′(d′i)Ω〉

for all a ∈ M . Thus
∑

i αiη
′(c′i) =

∑
i γiη

′(d′i) for the same reason
that c′ = d′ above. This shows that, firstly, η′ has a well defined linear
extension η′ : N ′ →M ′ and, secondly, that the linear extension satisfies
(26) for all a ∈M and b′ ∈ N ′.
Furthermore, substituting b′ = 1 in (26) shows that η′ is unital:

〈Ω, aη′(1)Ω〉 = 〈Ω, η(a)Ω〉 = µ ◦ η(a) = ν(a) = 〈Ω, aΩ〉 = 〈Ω, a1Ω〉.

Also, η′ is clearly positive by our construction, so it is a contraction by
[10, II.6.9.4 Proposition]. Hence, as η′(1) = 1 it follows that ‖η′‖ = 1.

(a) Assume that η : M → N is n-positive. Thus

η(n) : Mn(M)→Mn(N)

defined pointwise is positive, or equivalently,

(27) M �Mn → N �Mn : a⊗ xn 7→ η(a)⊗ xn

is positive. To prove that η′ is n-positive we will show that η(n) has a
positive dual (η(n))′, and reason that this is equivalent to n′ being n-
positive, in the same way that the n-positivity of η is equivalent to the
positivity of η(n). However, to this end the algebra Mn is too “small”,
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so let π : Mn →Mn2 be the ∗-morphism defined by

π : xn 7→ xn ⊗ In =

 [xn] 0
. . .

0 [xn]


for all xn ∈ Mn where In is the n × n identity matrix. For simplicity
we’ll use the shorthand notation xn ∈ Cn(= π(Mn)) to refer to the
element π(xn) = xn ⊗ 1n where xn ∈ Mn. Thus π : Mn → Cn is a ∗-
isomorphism and we have that the following linear operator is positive:

η(n) : η � ιn : M � Cn → N � Cn : a⊗ xn 7→ η(a)⊗ xn.

For any i = 1, ..., n let γi be the n × 1 column vector with a 1/
√
n in

position i and zeros elsewhere, and define Ωn ∈ Cn2
to be a stacking of

these vectors:

Ωn =

 γ1
...
γn

 .
Set Ω = Ω⊗Ωn and Λ = Λ⊗Ωn, both of which are clearly unit vectors
in H �Cn2

. With a little thought it can also be seen that (M � Cn)Ω

is dense in H ⊗ Cn2
. That is, Ω is cyclic for M � Cn ⊂ L (H ⊗ Cn2

).
Furthermore, for any a ∈M and xn ∈ Cn it follows that

〈Λ, η � ιn(a⊗ xn)Λ〉 = 〈Λ⊗ Ωn, η(a)⊗ xnΛ⊗ Ωn〉
= 〈Λ, η(a)Λ〉〈Ωn, xnΩn〉
= 〈Ω, aΩ〉〈Ωn, xnΩn〉
= 〈Ω, a⊗ xnΩ〉

Thus 〈Λ, η � ιn(z)Λ〉 = 〈Ω, zΩ〉 for all z ∈M � Cn.
Finally, Cn is a finite-dimensional von Neumann algebra, so M �

Cn = M⊗Cn and N � Cn = N⊗Cn. Hence it follows from [52, IV.
Theorem 5.9.] that

M ′ � C ′n = M ′⊗C ′n = (M�Cn)′ = (M � Cn)′.

Hence it now follows from the first part of the theorem that η(n) has a
unique dual

(η(n))′ : N ′ � C ′n →M ′ � C ′n

which is necessarily positive.
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Now, let ι′n : C ′n → C ′n be the identity mapping on C ′n ⊂ Mn2 . It
follows, for any b ∈ N ′, a ∈M, b′n ∈ C ′n and an ∈ Cn, that〈

Ω, η′ � ι′n(b′ ⊗ b′n)a⊗ anΩ
〉

= 〈Ω⊗ Ωn, η
′(b′)aΩ⊗ b′nanΩn〉

= 〈Ω, η′(b′)aΩ〉 〈Ωn, b
′
nanΩn〉

= 〈Ω, b′η(a)Ω〉 〈Ωn, b
′
nanΩn〉

= 〈Ω⊗ Ωn, b
′η(a)Ω⊗ b′nanΩn〉

=
〈
Ω, b′ ⊗ b′n(η � ιn)(a⊗ an)Ω

〉
.

Thus 〈Ω, η′ � ι′n(b′)aΩ〉 = 〈Ω, b′η � ιn(a)Ω〉 = 〈Ω, b′η(n)(a)Ω〉, so it fol-
lows by uniqueness of the dual that η′ � ι′n = (η(n))′.
The proof of (a) is concluded by noting that n-positivity of η′ is equiv-
alent to η′ � ιn being positive, which in turn is equivalent to η′ � ι′n
being positive. This follows since Cn and C ′n are isomorphic in Mn2 .
Specifically, C ′n = (Mn ⊗ In)′ = In ⊗Mn. This follows from a modifi-
cation of the arguments used to prove Theorem 2.4.1, however in the
finite dimensional case this can be proven more directly and with a
much shorter argument using the fact that M ′

n = C1n.

(b) Assume 1L (H) ∈ M and 1L (K) ∈ N . If η is unital then it fol-
lows that

µ′ ◦ η′(b′) = 〈Ω, η′(b′)Ω〉
= 〈Λ, η(1)b′Λ〉
= ν ′(b′)

for all b′ ∈ N ′.
If η′(b′∗b′) = 0 for some b′ ∈ N ′, then since µ′ ◦ η′ = ν ′ it follows that
ν ′(b′∗b′) = 0, or 〈Λ, b′∗b′Λ〉 = ‖b′Λ‖2 = 0. Thus b′ = 0 follows if Λ is
separating for N ′. �

Strictly speaking one should say that η′ is the dual of η with respect
to µ and ν. However the states will always be implicitly clear.

In particular, with M = N = A and Ω = Λ = Λµ, we see from this
theorem that the dual of the system A is well-defined.

If instead of the single map α we have a semigroup of u.c.p. maps
(αt)t≥0 leaving µ invariant, then α′t ≡ (αt)

′ also gives a semigroup
of u.c.p. maps leaving µ′ invariant. The continuity or measurability
properties of this dual semigroup (as function of t) will depend on
those of αt. Consider for example the standard assumption made for
(continuous time) quantum Markov semigroups, namely that t 7→ αt(a)
is σ-weakly continuous for every a ∈ A. Then it can be shown that t 7→
ϕ(α′t(a

′)) is continuous for every a′ ∈ A′ and every normal state ϕ on
A′, so t 7→ α′t(a

′) is σ-weakly continuous for every a′ ∈ A′. I.e. (α′t)t≥0

is also a quantum Markov semigroup (with the same type of continuity
property). If we were to include these assumptions in our definition
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of a system, then the dual of such a system would therefore still be
a system. Our example in Chapter 4 will indeed be for semigroups
indexed by t ≥ 0, with even stronger continuity properties.

It is helpful to keep the following fact about duals in mind:

Corollary 3.1.5. If in addition to the assumptions in Theorem
3.1.4 (prior to parts (a) and (b)), we have that M and N are von
Neumann algebras, and Λ is cyclic for N ′, then we have

η′′ = η.

Proof. This follows directly from the theorem itself, since η′′ :
M → N is then the unique map such that 〈Λ, b′η′′(a)Λ〉 = 〈Ω, η′(b′)aΩ〉
for all a ∈ M and b′ ∈ N ′, while we know (again from Theorem 3.1.4)
that 〈Λ, b′η(a)Λ〉 = 〈Ω, η′(b′)aΩ〉 for all a ∈M and b′ ∈ N ′. �

We also record the following simple result:

Proposition 3.1.6. If in Theorem 3.1.4 we assume in addition that
µ and ν are faithful normal states on von Neumann algebras M and N
(so Ω and Λ are the corresponding cyclic and separating vectors), then

(jν ◦ η ◦ jµ)′ = jµ ◦ η′ ◦ jν
for the map jν ◦ η ◦ jµ : M ′ → N ′ obtained in terms of Eq. (25).

Proof. It is a straightforward calculation to show that

〈Ω, a′jµ ◦ η′ ◦ jν(b)Ω〉 = 〈Λ, jν ◦ η ◦ jµ(a′)bΛ〉
for all a′ ∈M ′ and b ∈ N . �

We can now state the main definition for our work ahead:

Definition 3.1.7. Let µ and ν be faithful normal states on the
von Neumann algebras A and B respectively. A coupling of (A, µ) and
(B, ν), is a state ω on the algebraic tensor product A�B′ such that

ω(a⊗ 1) = µ(a) and ω(1⊗ b′) = ν ′(b′)

for all a ∈ A and b ∈ B′. We also call such an ω a coupling of µ and ν.
Let A and B be systems. We say that A and B (in this order) are in
balance with respect to a coupling ω of µ and ν, expressed in symbols
as

AωB,

if
ω(α(a)⊗ b′) = ω(a⊗ β′(b′))

for all a ∈ A and b′ ∈ B′.
By a state on the algebraic tensor product A�B′ we mean that ω

is linear, ω(1) = 1 and ω is positive in the sense that ω(z∗z) ≥ 0 for all
z ∈ A�B′ (See Definition 2.1.1 and the discussion immediately after).

Notice that Definition 3.1.7 is in terms of the dual B′ rather than
in terms of B itself. To define balance in terms of ω(α(a) ⊗ b) =
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ω(a ⊗ β(b)), for a ∈ A and b ∈ B, turns out to be a less natural
convention, in particular with regards to transitivity (see Section 3.4).
Also, strictly speaking, saying that A and B are in balance, implies a
direction, say from A to B. These points will become more apparent
in subsequent sections.

For systems given by quantum Markov semigroups (αt)t≥0 and
(βt)t≥0, instead of a single map for each system, we note that balance
is defined by requiring ω(αt(a)⊗ b′) = ω(a⊗ β′t(b′)) at every t ≥ 0.

For comparison to the theory of joinings [21, 22, 23], note that
a joining of systems A and B, with α and β ∗-automorphisms, is a
state ω on A � B such that ω(a ⊗ 1) = µ(a), ω(1 ⊗ b) = ν(b) and
ω ◦ (α � β) = ω. In addition [9] also assumes that ω ◦ (σµt � σνt ) = ω,
where σµt and σνt are the modular groups associated with µ and ν. In
[9], however, it is formulated in terms of the opposite algebra of B,
which is in that sense somewhat closer to the conventions used above
for balance.

We now define two simple couplings that always exist, and in terms
of which several important characterizations will be derived in the sub-
sequent sections.

Consider two von Neumann algebras and faithful normal state pairs
(A, µ) and (B, ν), and assume without loss of generality that both are
in their cyclic representations (Gµ, idA,Λµ) and (Gν , idA,Λν).

Let ϕ : A � A′ → L (Gµ) be the linear extension of the bilinear
map A × A′ → L (Gµ) : (a, a′) 7→ aa′, by the universal property of
tensor products. The diagonal coupling of (A, µ) with itself, or simply
of µ with itself, is defined:

(28) δµ(z) = 〈Λµ, ϕ(z)Λµ〉

for all z ∈ A� A′. That is,

δµ(a⊗ a′) = 〈Λµ, aa
′Λ〉

which would’ve sufficed as a definition for δµ, but it is more readily
seen that δµ is positive by observing that ϕ : A ⊗ A′ → L (Gµ) is a
∗-morphism:

ϕ((a⊗ a′)(b⊗ b′)) = aba′b′

= aa′bb′

= ϕ(a⊗ a′)ϕ(b⊗ b′)
ϕ((a⊗ a′)∗) = ϕ(a∗ ⊗ a′∗)

= (aa′)∗

= ϕ(a⊗ a′)∗
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for all a, b ∈ A and a′, b′ ∈ A′, from which it readily follows for any
z =

∑n
i ai ⊗ a′i ∈ A� A′ that ϕ(z∗z) ≥ 0:

ϕ(z∗z) = ϕ

(
n∑
i=1

a∗i ⊗ a′∗i
n∑
j=1

aj ⊗ a′j

)

=
n∑

i,j=1

ϕ(a∗i ⊗ a′∗i )ϕ(aj ⊗ a′j)

=
n∑
i=1

ϕ(a∗i ⊗ a′∗i )
∑
j=1

ϕ(aj ⊗ a′j)

= ϕ(z∗)ϕ(z)

Thus δµ in (28) clearly defines a state and a coupling:

δµ(a⊗ 1) = 〈Λµ, ϕ(a⊗ 1)Λ〉 = 〈Λ, aΛ〉 = µ(a)

δµ(1⊗ a′) = 〈Λµ, ϕ(1⊗ a′)Λ〉 = 〈Λ, a′Λ〉 = µ′(a)

Moreover, for any system A it easy to see that AδµA.

The trivial/product coupling µ� ν ′ of (A, µ) and (B, ν), or simply of µ
and ν, is defined by

(29) µ� ν ′(a⊗ b′) = µ(a)ν ′(b)

for all a⊗b′ ∈ A�B′, which is a well-defined functional by the universal
property of the tensor products. It is clear that µ � ν ′(1 ⊗ 1) = 1,
and to see that µ � ν ′ is positive consider the inner product space
representation of (29):

µ� ν ′(a⊗ b′) = 〈Λµ, aΛµ〉〈Λν , b
′Λν〉

= 〈Λµ ⊗ Λν , a⊗ b′Λµ ⊗ Λν〉

for all a⊗ b′ ∈ A�B′, so it follows that

(30) µ� ν ′(t) = 〈Λµ ⊗ Λν , t(Λµ ⊗ Λν)〉

for all t ∈ A� B′, where the latter inner product is the inner product
on Gµ �Gν uniquely determined by

〈x⊗ y, p⊗ q〉 = 〈x, p〉〈y, q〉

for all x⊗y, p⊗q ∈ Gµ�Gν . Hence 〈x⊗y, a⊗b′x⊗y〉 = 〈a∗⊗b′∗x⊗y, x⊗
y〉 = 〈(a⊗ b′)∗x⊗ y, x⊗ y〉 for all x⊗ y ∈ Gµ�Gν and a⊗ b′ ∈ A�B′,
from which it follows that 〈a⊗ y, t(x⊗ y)〉 = 〈t∗(a⊗ y), x⊗ y〉 for all
t ∈ A�B′. Thus µ� ν ′(t∗t) ≥ 0 for all t ∈ A�B′ in (30).
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3.2. Couplings and u.c.p. maps

Here we define and study a map Eω associated with a coupling ω.
This map is of fundamental importance in the theory of balance, as
will be seen the next two sections. We do not consider systems in this
section, only couplings. Some aspects of this section and the next are
closely related to [9, Section 4] regarding joinings.

Let ω be a coupling of (A, µ) and (B, ν) as in Definition 3.1.7.
Assume without loss of generality that (B, ν) is in its cyclic represen-
tation, denoted here by (Gν , idB,Λν), which means that (Gν , idB′ ,Λν)
is a cyclic representation of (B′, ν ′) (see Section 2.1). Similarly, we
assume that (A, µ) is in the cyclic representation (Gµ, idA,Λµ).

Denoting the cyclic representation of (A � B′, ω) by (Hω, πω,Ωω)
(see Theorem 2.1.3), we obtain a second cyclic representation (Hµ, πµ,Ωµ)
of (A, µ) by setting

(31) Hµ := πω(A⊗ 1)Ωω, πµ(a) := πω(a⊗ 1)|Hµ and Ωµ := Ωω

for all a ∈ A, since

〈Ωµ, πµ(a)Ωµ〉 = 〈Ωω, πω(a⊗ 1)Ωω〉 = ω(a⊗ 1) = µ(a).

Similarly

(32) Hν := πω(1⊗B′)Ωω, πν′(b
′) := πω(1⊗ b′)|Hν and Ων := Ωω

for all b′ ∈ B′, gives a second cyclic representation (Hν , πν′ ,Ων) of
(B′, ν ′). In particular Hµ and Hν are subspaces of Hω.

By the unitary equivalence of (Gν , idB,Λν) and (Hν , πν′ ,Ων) there
is a unitary operator

(33) uν : Gν → Hν

defined by
uνb
′Λν := πν′(b

′)Ων

for all b′ ∈ B′ ⊂ L (H). More generally, since Gν and Hν are the
“same” through uν , any t ∈ L (Gν) can be viewed as an operator on
Gν , as t, or on Hν , as uνtu

∗
ν , and likewise for any t ∈ L (Hν). In

particular, by setting

(34) πν(b) := uνbu
∗
ν

for all b ∈ B we obtain a second cyclic representation (Hν , πν ,Ων) of
(B, ν) with the property

πν(B)′ = πν′(B)

and

(35) πν′(b
′) = uνb

′u∗ν

as is easily verified.
Now, let

Pν ∈ L (Hω)
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be the projection operator of Hω onto Hν . Then, for any a ∈ A,

πω(a⊗ 1) ∈ L (Hω)

Pνπω(a⊗ 1)P ∗ν ∈ L (Hν)

u∗νPνπω(a⊗ 1)P ∗ν uν ∈ L (Gν)

That is, we can directly compare the elements of A to B,B′ as operators
on the same Hilbert space. Doing so leads to our first main result:

Proposition 3.2.1. In terms of the notation above, we have

u∗νι
∗
Hνπω(a⊗ 1)ιHνuν = u∗νPνπω(a⊗ 1)uν ∈ B

for all a ∈ A, where ιHν : Hν → Hω is the inclusion map, and ι∗Hν :
Hω → Hν its adjoint.

Proof. Note that Pν = ι∗Hν , so indeed u∗νι
∗
Hν
πω(a ⊗ 1)ιHνuν =

u∗νPνπω(a⊗ 1)uν . We now show that this is in B.
For any b′ ∈ B′ we have πω(1⊗ b′)H⊥ν ⊂ H⊥ν , since πω(1⊗ b′∗)Hν ⊂

Hν . It follows that Pνπω(1⊗ b′) = πω(1⊗ b′)Pν = πν′(b
′)Pν . Therefore,

u∗νPνπω(a⊗ 1)uνb
′ = u∗νPνπω(a⊗ 1)uνb

′u∗νuν

= u∗νPνπω(a⊗ 1)πν′(b
′)uν

= u∗νPνπω(a⊗ 1)πω(1⊗ b′)uν
= u∗νPνπω(1⊗ b′)πω(a⊗ 1)uν

= u∗νπω(1⊗ b′)Pνπω(a⊗ 1)uν

= u∗νπν′(b
′)Pνπω(a⊗ 1)uν

= b′u∗νPνπω(a⊗ 1)uν .

Hence, since b′ ∈ B′ is arbitrary, it follows that u∗νPνπω(a ⊗ 1)uν ∈
B′′ = B. �

This proposition proves part of the following result, which defines
the central object of this section, namely the map Eω : A→ B

Theorem 3.2.2. In terms of the notation above we have the fol-
lowing well-defined linear map

(36) Eω : A→ B : a 7→ u∗νι
∗
Hνπω(a⊗ 1)ιHνuν

which is normal and completely positive. It has the following properties:

Eω(1) = 1

‖Eω‖ = 1

(37) ν ◦ Eω = µ.

Proof. Eω is precisely the form of a completely positive map ac-
cording to the Stinespring dilation (see Theorem 2.3.2), with ινuν ∈
L (Gν , Hω) and πω((·)⊗ 1) a representation of A on Hω.
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From Eq. (36) we have Eω(1) = u∗νι
∗
Hν
ιHνuν = 1 as well as ‖Eω‖ ≤

1, since ‖uν‖ = ‖Pν‖ = 1 and ‖π(a ⊗ 1)‖ ≤ ‖a‖ ([14, Proposition
2.3.1]). Thus ‖Eω‖ = 1.

Furthermore,

ν ◦ Eω(a) = 〈Λν , Eω(a)Λν〉 = 〈Ωω, πω(a⊗ 1)Ωω〉 = ω(a⊗ 1) = µ(a)

for all a ∈ A.
Lastly, Kadison’s inequality (Proposition 2.3.3), Eω(a)∗Eω(a) ≤

Eω(a∗a), holds, since Eω is a completely positive contraction. So
ν(Eω(a)∗Eω(a)) ≤ ν(Eω(a∗a)) = µ(a∗a), for all a ∈ A. Hence, Eω
is normal, due to Theorem 3.1.2. �

We proceed by discussing some further general properties of Eω
which will be useful for us later. These results will be in terms of
the diagonal and product couplings defined in the previous section. In
terms of the diagonal coupling we have the following characterization
of Eω which will often be used:

Proposition 3.2.3. The map Eω is the unique operator from A to
B such that

ω(a⊗ b′) = δν(Eω(a)⊗ b′)
for all a ∈ A and b′ ∈ B′.

Proof. We simply calculate:

δν(Eω(a)⊗ b′) = 〈Λν , Eω(a)b′Λν〉
= 〈Λν , u

∗
νPνπω(a⊗ 1)uνb

′Λν〉
= 〈PνΩν , πω(a⊗ 1)πν′(b

′)Ων〉
= 〈Ων , πω(a⊗ b′)Ων〉
= ω(a⊗ b′)

for all a ∈ A and b′ ∈ B′. Secondly, suppose that for some b1, b2 ∈ B
we have δν(b1 ⊗ b′) = δν(b2 ⊗ b′) for all b′ ∈ B′. Then 〈b∗1Λν , b

′Λν〉 =
〈b∗2Λν , b

′Λν〉 for all b′ ∈ B′, so b∗1Λν = b∗2Λν , since B′Λν is dense in Gν .
But Λν is separating for B, hence b1 = b2. Therefore Eω is indeed the
unique function as stated. �

This has four simple corollaries:

Corollary 3.2.4. If ω1 and ω2 are both couplings of µ and ν, then
ω1 = ω2 if and only if Eω1 = Eω2.

Corollary 3.2.5. The map Eω is faithful in the sense that if
Eω(a∗a) = 0, then a = 0.

Proof. If Eω(a∗a) = 0, then µ(a∗a) = ω((a∗a)⊗1) = δν(Eω(a∗a)⊗
1) = 0. But µ is faithful, and hence a = 0. �



3.2. COUPLINGS AND U.C.P. MAPS 45

The latter also follows from Theorem 3.1.4 and E ′′ω = Eω.
The next corollary is relevant when we consider cases of trivial

balance, i.e. balance with respect to the product coupling µ � ν ′,
and will be applied toward the end of the next section, in relation to
ergodicity:

Corollary 3.2.6. Let ω be a coupling of (A, µ) and (B, ν). If
ω = µ�ν ′, then Eω(a) = µ(a)1B for all a ∈ A. Conversely, if Eω(A) =
C1B, then ω = µ� ν ′.

Proof. If ω = µ� ν ′, then Eω(a) = µ(a)1B follows from Proposi-
tion 3.2.3. Conversely, again using Proposition 3.2.3, if Eω(A) = C1B,
then ω(a ⊗ b′)1B = δν(Eω(a) ⊗ b′)1B = Eω(a)δν(1 ⊗ b′) = Eω(a)ν ′(b′).
In particular, setting b′ = 1, Eω(a) = µ(a)1B, so ω = µ� ν ′. �

Corollary 3.2.7. We have ω = δν if and only if Eω = idB.

A natural question to ask in light of Proposition 3.2.3 is, given a
linear map E : A → B, when does ωE(a ⊗ b′) = δν(E(a) ⊗ b′) define
a coupling of µ and ν? If it does define a coupling then EωE = E
by Proposition 3.2.3. Hence, by Theorem 3.2.2 a necessary condition
for Eω to be a coupling is that E is a normal, completely positive,
unital contraction satisfying ν ◦ E = µ. Or, equivalently, a completely
positive unital map satisfying ν ◦ E = µ (see proof of Theorem 3.2.2).
The following proposition establishes that this is a sufficient condition
as well:

Proposition 3.2.8. Let µ and ν be faithful normal states on the
von Neumann algebras A and B respectively. Consider a linear map
E : A→ B and define a linear functional ωE : A�B′ → C by

ωE := δν ◦ (E � idB′),

i.e.

ωE(a⊗ b′) = δν(E(a)⊗ b′)
for all a ∈ A and b ∈ B′. Then ωE is a coupling of µ and ν if and only
if E is completely positive, unital and ν ◦E = µ. In this case E = EωE .

Proof. Consider a completely positive linear map E : A → B.
Then E � idB′ is positive (see e.g. [II.9.7][10]), so ωE is positive, since
δν is. If we furthermore assume that E is unital, then ωE(1⊗1) = 1, so
ωE is a state. Assuming in addition that ν ◦ E = µ, we conclude that
ωE(a⊗ 1) = ν(E(a)) = µ(a) and ωE(1⊗ b′) = ν ′(b′), so ωE is indeed a
coupling of µ and ν. Because of Proposition 3.2.3 we necessarily have
E = EωE . The converse is covered by Theorem 3.2.2 and Proposition
3.2.3. �

So in effect we can define couplings as maps E of the form described
in this proposition.
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Lastly we study the dual E ′ω of Eω, given by Theorem 3.1.4. Given
a coupling ω of µ and ν, we define

ω′ := δ′µ ◦ (E ′ω � idA) : B′ � A→ C

where δ′µ : A�A′ → C is the state defined by δµ′(a
′⊗ a) = 〈Λµ, a

′aΛµ〉
for all a ∈ A, a′ ∈ A′ (So δ′µ is the diagonal coupling of µ′ with itself).
Since E ′ω is a u.c.p. map, it then follows, using Theorem 3.1.4, Propo-
sition 3.2.8 and Proposition 3.2.3, that ω′ is a coupling of ν ′ and µ′

such that

(38) ω′(b′ ⊗ a) = ω(a⊗ b′)

for all a ∈ A and b′ ∈ B′.

Proposition 3.2.9. In terms of the above notation we have

E ′ω = Eω′ : B′ → A′

and

Eω′(b′) = u∗µι
∗
Hµπω(1⊗ b′)ιHµuµ

for all b′ ∈ B′, where uµ : Gµ → Hµ is the unitary operator defined by

uµaΛµ := πµ(a)Ωµ

for all a ∈ A, ιHµ : Hµ → Hω is the inclusion map, and ι∗Hµ : Hω → Hµ

its adjoint.

Proof. That E ′ω = Eω′ , follows from the definition of ω′ and
Proposition 3.2.3 applied to ω′ and δµ′ instead of ω and δν .

Note that uµ is defined in perfect analogy to uν in Eq. (33): As the
cyclic representation of (B′ � A, ω′) we can use (Hω, πω′ ,Ωω) with πω′

defined via

πω′(b′ ⊗ a) := πω(a⊗ b′)

(and the universal property of tensor products) for all b′ ∈ B′ and
a ∈ A. Then, referring to the form of Eq. (32), we see that in the
place of (Hν , πν′ ,Ων) we have (Hµ, πµ,Ωµ), as we would expect, since

πω′(1⊗ A)Ωω = πω(A⊗ 1)Ωω = Hµ, πω′(1 ⊗ a)|Hµ = πω(a ⊗ 1)|Hµ =
πµ(a) and Ωµ = Ωω for all a ∈ A.

So uµ plays the same role for E ′ω as uν does for Eω, i.e. by definition
(see Theorem 3.2.2)

Eω′(b′) = u∗µι
∗
Hµπω′(b′ ⊗ 1)ιHµuµ = u∗µι

∗
Hµπω(1⊗ b′)ιHµuµ

for all b′ ∈ B′. �

We are now in a position to apply Eω to balance in subsequent
sections.
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3.3. A Characterization of balance

In this section we derive a characterization of balance in terms
of the map Eω from the previous section, and consider some of its
consequences, including a condition for symmetry of balance. This
gives insight into the meaning and possible applications of balance.
We continue with the notation from Section 3.2.

The dynamics α of a system A can be represented by a contraction
U on Hµ defined as the unique extension of

Uπµ(a)Ωµ := πµ(α(a))Ωµ

for a ∈ A. Note that U is indeed a contraction, as α satisfies Kadison’s
inequality (see Proposition 2.3.3). That is, µ(α(a)∗α(a)) ≤ µ(a∗a). (It
is also simple to check from the definition of the dual system that U∗

is the corresponding representation of α′ on Hµ.) Similarly

V πν(b)Ων := πν(β(b))Ων

for all b ∈ B, to represent β on Hν by the contraction V .
Also set

(39) Pω := Pν |Hµ : Hµ → Hν ,

where Pν is again the projection of Hω onto Hν . Then it follows from
from Eqs. (34), (36) and πω(a⊗ 1)Hµ ⊂ Hµ that

Pωπµ(a)Ωµ = Pν |Hµπω(a⊗ 1)|HµΩµ

= Pνπω(a⊗ 1)Ωµ

= uνu
∗
νPνπω(a⊗ 1)uνu

∗
νΩµ

= uνEω(a)u∗νΩµ

= πν(Eω(a))Ων(40)

for all a ∈ A since Ωµ = Ωω = Ων . Thus, Pω is a Hilbert space
representation of Eω.

The characterization of balance in terms of Eω is the following:

Theorem 3.3.1. For systems A and B, let ω be a coupling of µ
and ν. Then AωB, i.e. A and B are in balance with respect to ω, if
and only if

Eω ◦ α = β ◦ Eω
holds, or equivalently, if and only if PωU = V Pω.

Proof. We prove it on Hilbert space level. Note that Pω as defined
in Eq. (39) is the unique function Hµ → Hν such that 〈Pωx, y〉 =
〈x, y〉 for all x ∈ Hµ and y ∈ Hν . (This is a Hilbert space version of
Proposition 3.2.3, but it follows directly from the definition of Pω.)
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Assume that A and B are in balance with respect to ω. Then, for
x = πµ(a)Ωµ ∈ Hµ and y = πν′(b

′)Ων ∈ Hν , where a ∈ A and b′ ∈ B′,

〈PωUx, y〉 = 〈Ux, y〉
= 〈πω(α(a)⊗ 1)Ωω, πω(1⊗ b′)Ωω〉
= 〈Ωω, πω(α(a∗)⊗ b′)Ωω〉 = ω(α(a∗)⊗ b′)
= ω(a∗ ⊗ β′(b′))
= 〈πω(a⊗ 1)Ωω, πω(1⊗ β′(b′))Ωω〉
= 〈x, V ∗y〉 = 〈Pωx, V ∗y〉 = 〈V Pωx, y〉

which implies that PωU = V Pω. Therefore, using Eqs. (31), (34), (36)
and uνΛν = Ωω,

Eω ◦ α(a)Λν = u∗νPωπµ(α(a))Ωω = u∗νPωUπµ(a)Ωω

= u∗νV Pωπµ(a)Ωω = u∗νV uνEω(a)u∗νΩω

= u∗νV πν(Eω(a))Ωω = u∗νπν(β ◦ Eω(a))Ωω

= β ◦ Eω(a)Λν .

But since Λν is separating for B, this means that Eω ◦α(a) = β◦Eω(a).
Conversely, if Eω ◦ α = β ◦ Eω, then by Eq. (40),

PωUπµ(a)Ωµ = Pωπµ(α(a))Ωω = πν(Eω(α(a)))Ωω

= πν(β ◦ Eω(a))Ωω = V πν(Eω(a))Ωω

= V Pωπµ(a)Ωµ

and so PωU = V Pω. Therefore, similar to the beginning of this proof,

ω(α(a∗)⊗ b′) = 〈PωUx, y〉 = 〈V Pωx, y〉 = ω(a∗ ⊗ β′(b′))

for all a ∈ A and b′ ∈ B′, as required. �

This theorem can be compared to the case of joinings in [9, Theo-
rems 4.1 and 4.3]. Keep in mind that in [9] the dynamics of systems
are given by ∗-automorphisms, and secondly an additional assumption
is made involving the modular groups. The u.c.p. map obtained in [9]
from a joining then also intertwines the modular groups, not just the
dynamics.

From Theorem 3.3.1 one starts to see some aspects of the meaning
of balance. In particular it can be seen from Eω ◦α = β ◦Eω that part
of the dynamics of B, more precisely the restriction β|Eω(A) : Eω(A)→
Eω(A) to the space Eω(A), is given by the dynamics of A, via Eω.

A natural question is whether or not balance is symmetric. I.e.,
are A and B in balance with respect to ω if and only if B and A
are in balance with respect to some coupling (related in some way to
ω)? Below we derive balance conditions equivalent to AωB, but where
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(duals of) the systems A and B appear in the opposite order. This is
then used to find conditions under which balance is symmetric.

By Proposition 3.2.8 and Theorem 3.3.1 the question is equivalent
to asking if there is a u.c.p. map Ẽ : B → A such that

µ ◦ Ẽ = ν and Ẽ ◦ β = α ◦ Ẽ ?

By Proposition 3.2.9 E ′ω : B′ → A′, so let

jµ : L (Gµ)→ L (Gµ) : a 7→ Jµa
∗Jµ,

where as in the previous section we assume that (A, µ) is in the cyclic
representation (Gµ, idA,Λµ) and Jµ is the corresponding modular con-
jugation. We Similarly define jν .

So, given a coupling ω of µ and ν, this allows us to define

Eσ
ω := jµ ◦ E ′ω ◦ jν : B → A,

Since jµ is an anti-∗-automorphism, the conjugate linear map j∗µ :
L (Gµ)→ L (Gµ) obtained by composing jµ with the involution, i.e.

j∗µ(a) := jµ(a∗)

for all a ∈ L (Gµ), is completely positive in the sense that if it is
applied entry-wise to elements of the matrix algebra Mn(A), then
it maps positive elements to positive elements for every n, just like
complete positivity of linear maps (see Section 2.3). It follows that
Eσ
ω = j∗µ ◦ E ′ω ◦ j∗ν is a u.c.p. map, since E ′ω is. Consequently, since

µ ◦ Eσ
ω = µ′ ◦ E ′ω ◦ jν = ν ′ ◦ jν = ν, it follows from Proposition 3.2.8

that
ωσ := δµ ◦ (Eσ

ω � idA′) : B � A′ → C
is a coupling of ν and µ. It is then also clear that

(41) Eωσ = Eσ
ω

by applying Proposition 3.2.3.
By the definition of a dual in Theorem 3.1.4 it can be easily seen

that (Eω ◦ α)′ = α′ ◦ E ′ω and (β ◦ Eω)′ = E ′ω ◦ β′. So if ω is a coupling
of µ and ν then by Theorem 3.3.1 and the definition of Eσ

ω :

α′ ◦ E ′ω = E ′ω ◦ β′

jµ ◦ α′ ◦ jµ ◦ jµ ◦ E ′ω ◦ jν = jµ ◦ E ′ω ◦ jν ◦ jν ◦ β′ ◦ jν
jµ ◦ α′ ◦ jµ ◦ Eσ

ω = Eσ
ω ◦ jν ◦ β′ ◦ jν

ασ ◦ Eσ
ω = Eσ

ω ◦ βσ

if we define

(42) ασ = jµ ◦ α′ ◦ jµ and βσ = jµ ◦ α′ ◦ jµ
The operator ασ in (42) is known as the KMS-dual of α (see [29]), and
similarly for β. This means that

〈Λµ, a1jµ(ασ(a2))Λµ〉 = 〈Λµ, α(a1)jµ(a2)Λµ〉
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for all a1, a2 ∈ A, which corresponds to the definition of the KMS-dual
given in [29, Section 2], in connection with quantum detailed balance.
(In [29], however, the KMS-dual is indicated by a prime rather than
the symbol σ.) However as mentioned in Chapter 1 when we defined
Θ-sqdb, we will not explore KMS-theory in this thesis.

Finally, note that ασ is also u.c.p. map, by the same argument as
for Eσ

ω above, and that ν ◦ ασ = µ′ ◦ α′ ◦ jµ = µ′ ◦ jµ = µ.
We summarize the above findings in a single proposition:

Proposition 3.3.2. In terms of the above notation, if ω is a cou-
pling of µ and ν, then

Aσ := (A,ασ, µ) and Bσ := (B, βσ, ν)

are systems and

AωB⇔ B′ω′A′ ⇔ BσωσAσ.

For a QMS (αt)t≥0 with the σ-weak continuity property, we again
have that the same σ-weak continuity property holds for (ασt )t≥0 as
well, where ασt := (αt)

σ for every t. This follows from the correspond-
ing property of (α′t)t≥0.

Proposition 3.3.2 is not quite symmetry of balance. However, if

(43) ασ = α and βσ = β

then it follows that
AωB⇔ BωσA,

which expresses symmetry of balance in this special case.
The condition ασ = α is known as KMS-symmetry and was studied

in [16], [26], [33] and [34].
We have however not excluded the possibility that there is some

coupling other than ωσ that could be used to show symmetry of balance
more generally. This possibility seems unlikely, given how natural the
foregoing arguments and constructions are.

We end this section by studying a simple application of balance that
follow from Theorem 3.3.1 and the facts derived in the previous section.

We consider ergodicity of a system B, which we define to mean

(44) Bβ := {b ∈ B : β(b) = b} = C1B

in analogy to the case for ∗-automorphisms instead of u.c.p. maps. This
is certainly not the only notion of ergodicity available; see for example
[6] for an alternative definition which implies Eq. (44), because of
[6, Lemma 2.1]. The definition we give here is however convenient to
illustrate how balance can be applied: this form of ergodicity can be
characterized in terms of balance, similar to how it is done in the theory
of joinings (see [21, Theorem 3.3], [22, Theorem 2.1] and [9, Theorem
6.2]), as we now explain.
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Definition 3.3.3. A system B is said to be disjoint from a system
A if the only coupling ω with respect to which A and B (in this order)
are in balance, is the trivial coupling ω = µ� ν ′.

In the next result, an identity system is a system A with α = idA.

Proposition 3.3.4. A system is ergodic if and only if it is disjoint
from all identity systems.

Proof. Suppose B is ergodic and A an identity system. If AωB
for some coupling ω, then β ◦Eω = Eω by Theorem 3.3.1. So Eω(A) =
C1B, since B is ergodic. By Corollary 3.2.6 we conclude that ω = µ�ν ′.

Conversely, suppose that B is disjoint from all identity systems.
Recall that A := Bβ is a von Neumann algebra (see for example [9,
Lemma 6.4] for a proof). Therefore A := (A, idA, µ) is an identity
system, where µ := ν|A. Define a coupling of µ and ν by ω := δν |A�B′

(see Eq. (28)), then from Proposition 3.2.3 we have Eω = idA. So Eω ◦
α = idA = β ◦ Eω, implying that A and B are in balance with respect
to ω by Theorem 3.3.1. Hence, by our supposition and Corollary 3.2.6,
Bβ = Eω(A) = C1B, which means that B is ergodic. �

It seems plausible that some other ergodic properties can be sim-
ilarly characterized in terms of balance. Given two systems, one can
also ask whether balance with respect to some coupling means that an
ergodic property on the one system must necessarily hold on the other
system, possibly in a weaker form.

Conversely, one can in principle use balance as a way to impose
less stringent alternative versions of a given property, not necessarily
ergodicity, by requiring a system to be in balance with another system
having the property in question. We expect that such conditions need
not be directly comparable (and strictly weaker) than the property in
question. This idea will be discussed further in relation to detailed
balance in Section 3.5.

3.4. Transitivity of balance

Here we show transitivity of balance: if A and B are in balance with
respect to ω, and B and C are in balance with respect to ψ, then A
and C are in balance with respect to a certain coupling obtained from
ω and ψ, and denoted by ω ◦ψ. The coupling ω ◦ψ is the composition
of ω and ψ, as defined and discussed in detail below. Furthermore, we
discuss the connection between couplings and correspondences in the
sense of Connes.

Let ω be a coupling of (A, µ) and (B, ν), and let ψ be a coupling of
(B, ν) and (C, ξ). Note that Eψ ◦Eω : A→ C is a u.c.p. map such that
ξ ◦ Eψ ◦ Eω = µ by Theorem 3.2.2. Therefore, by Proposition 3.2.8,
setting

(45) ω ◦ ψ := δξ ◦ ((Eψ ◦ Eω)� idC′),
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i.e.

ω ◦ ψ(a⊗ c′) = δξ(Eψ(Eω(a))⊗ c′)
for all a ∈ A and c ∈ C ′, we obtain a coupling ω ◦ ψ of µ and ξ such
that

(46) Eω◦ψ = Eψ ◦ Eω.

This construction forms the foundation for the rest of this section.
We call the coupling ω◦ψ the composition of the couplings ω and ψ.

We can view it as an analogue of a construction appearing in the theory
of joinings in classical ergodic theory; see for example [32, Definition
6.9].

We can immediately give the main result of this section, namely
that we have transitivity of balance in the following sense:

Theorem 3.4.1. If AωB and BψC, then A(ω ◦ ψ)C.

Proof. By Theorem 3.3.1 we have Eω ◦ α = β ◦Eω and Eψ ◦ β =
γ ◦ Eψ, so

Eω◦ψ ◦ α = Eψ ◦ β ◦ Eω = γ ◦ Eω◦ψ,
which again by Theorem 3.3.1 means that A(ω ◦ ψ)C. �

In order to gain a deeper understanding of the transitivity of bal-
ance, we now study properties of the composition of couplings.

Proposition 3.4.2. The diagonal coupling δν in Eq. (28) is the
identity for composition of couplings in the sense that δν ◦ ψ = ψ and
ω ◦ δν = ω.

Proof. By Corollary 3.2.7, Eδν = idB. Hence, from Eq. (46), we
obtain Eδν◦ψ = Eψ ◦ Eδν = Eψ and Eω◦δν = Eδν ◦ Eω = Eω, which
concludes the proof by Corollary 3.2.4. �

In order to treat further properties of ω◦ψ and the connection with
the theory of correspondences, we need to set up the relevant notation:

Continuing with the notation in the previous two sections, also
assuming (C, ξ) to be in its cyclic representation (Gξ, idC ,Λξ), and
denoting the cyclic representation of (B � C ′, ψ) by (Kψ, ϕψ,Ψψ), it
follows that

Kν := πψ(B ⊗ 1)Ψψ, ϕν(b) := ϕψ(b⊗ 1)|Kν and Ψν := Ψψ

gives a third cyclic representation (Kν , ϕν ,Λν) of (B, ν), and that

(47) Kξ := πψ(1⊗ C ′)Ψψ, ϕξ′(c
′) := ϕψ(1⊗ c′)|Kξ and Ψξ := Ψψ

gives a cyclic representation (Kξ, ϕξ′ ,Ψξ) of (C ′, ξ′). Note that to help
keep track of where we are, we use the symbol K instead of H for the
Hilbert spaces originating from ψ (as opposed to ω), and similarly we
use ϕ instead of π, and Ψ instead of Ω.
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We can define a unitary equivalence

(48) vν : Gν → Kν

from (Gν , idB,Λν) to (Kν , ϕν ,Ψν) by

vνbΛν := ϕν(b)Ψν

for all b ∈ B. Then

ϕν(b) := vνbv
∗
ν

for all b ∈ B.
By Theorem 3.2.2 we can then define the normal u.c.p. map Eψ′ :

C ′ → B′. By Proposition 3.2.9 this map is the dual E ′ψ of Eψ, and we
can write it as

(49) E ′ψ : C ′ → B′ : c′ 7→ v∗νι
∗
Kνϕψ(1⊗ c′)ιKνvν = v∗νQνϕψ(1⊗ c′)vν

where Qν is the projection of Kψ onto Kν , and Qν = ι∗Kν with ιKν :
Kν → Kψ the inclusion map, in analogy to Pν = ι∗Hν in Proposition
3.2.1.

The coupling ω ◦ ψ can now be expressed in various ways:

Proposition 3.4.3. The coupling ω ◦ ψ is given by the following
formulas:

(50) ω ◦ ψ = δν ◦ (Eω � E ′ψ)

and

ω ◦ ψ = δµ ◦ (idA�(E ′ω ◦ E ′ψ))

in terms of Eq. (28), as well as

(51) ω ◦ ψ(a⊗ c′) = ψ(Eω(a)⊗ c′) = ω(a⊗ E ′ψ(c′))

and

(52) ω ◦ ψ(a⊗ c′) = 〈u∗νPνπµ(a∗)Ωω, v
∗
νQνϕξ′(c

′)Ψψ〉

(in the inner product of the Hilbert space Gν) for all a ∈ A and c′ ∈ C ′.

Proof. From Eqs. (45) and (28), and Theorem 3.1.4, we have

ω ◦ ψ(a⊗ c′) = 〈Λξ, Eψ(Eω(a))c′Λξ〉
=
〈
Λν , Eω(a)E ′ψ(c′)Λν

〉
(53)

from which Eq. (50) follows. Continuing with the last expression above,
we respectively have by Theorem 3.1.4 that

ω ◦ ψ(a⊗ c′) =
〈
Λµ, aE

′
ω(E ′ψ(c′))Λµ

〉
= δµ ◦ (idA�(E ′ω ◦ E ′ψ))(a⊗ c′),

by Proposition 3.2.3 that

ω ◦ ψ(a⊗ c′) = ω(a⊗ E ′ψ(c′))
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and by Proposition 3.2.9 that

ω ◦ ψ(a⊗ c′) = 〈Λν , Eψ′(c′)Eω(a)Λν〉
= ψ′(c′ ⊗ Eω(a))

= ψ(Eω(a)⊗ c′),

where in the second line we again applied Proposition 3.2.3, while the
last line follows from the definition of ψ′, as in Eq. (38).

On Hilbert space level we again have from Eq. (53) that

ω ◦ ψ(a⊗ c′) =
〈
Eω(a∗)Λν , E

′
ψ(c′)Λν

〉
= 〈u∗νPνπω(a∗ ⊗ 1)uνΛν , v

∗
νQνϕψ(1⊗ c′)vνΛν〉

= 〈u∗νPνπµ(a∗)Ωω, v
∗
νQνϕξ′(c

′)Ψψ〉

for all a ∈ A and c′ ∈ C ′, using Theorem 3.2.2 (and Proposition 3.2.1)
as well as Eqs. (49), (31) and (47). �

At the end of this section ω ◦ ψ will also be expressed in terms of
the theory of relative tensor products of bimodules; see Corollary 3.4.7.

Next we consider triviality of transitivity, namely when ω ◦ψ = µ�
ξ′, in which case we also say that the couplings ω and ψ are orthogonal,
in analogy to the case of classical joinings [32, Definition 6.9]. We first
note the following:

Proposition 3.4.4. If either ω = µ � ν ′ or ψ = ν � ξ′, then
ω ◦ ψ = µ� ξ′.

Proof. By Proposition 3.2.3, Eµ�ν′ = µ(·)1B and Eν�ξ′ = ν(·)1C ,
so (µ � ν ′) ◦ ψ(a ⊗ c′) = δξ(µ(a)1C ⊗ c′) = µ(a)ξ′(c′) and ω ◦ (ν �
ξ′)(a ⊗ c′) = δξ(ν(Eω(a))1C ⊗ c′) = µ(a)ξ′(c′) according to Eq. (45)
and Theorem 3.2.2. �

However, as will be seen by example in Section 4.4, in general it is
possible that ω ◦ ψ = µ� ξ′ even when ω 6= µ� ν ′ and ψ 6= ν � ξ′. In
order for ω ◦ ψ 6= µ � ξ′ to hold, there has to be sufficient “overlap”
between ω and ψ. The following makes this precise on Hilbert space
level and also explains the use of the term “orthogonal” above:

Proposition 3.4.5. We have ω ◦ ψ = µ� ξ′ if and only if

u∗ν [PνHµ 	 CΩω] ⊥ v∗ν [QνKξ 	 CΨψ]

in the Hilbert space Gν (see Section 3.2), where Pν and Qν are the
projections of Hω onto Hν and Kψ onto Kν respectively, and uν and vν
are the unitaries defined above (see Eqs. (33) and (48)).
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Proof. In terms of the projections PΩω and QΨψ of Hω and Kψ

onto CΩω and CΨψ respectively, we have〈
u∗νPΩωπµ(a∗)Ωω, v

∗
νQΨψϕξ′(c

′)Ψψ

〉
= 〈〈Ωω, πµ(a∗)Ωω〉u∗νΩω, 〈Ψψ, ϕξ′(c

′)Ψψ〉 v∗νΨψ〉
= µ(a)ξ′(c′) 〈Λν ,Λν〉
= µ� ξ′(a⊗ c′)

for all a ∈ A and c′ ∈ C ′. In terms of P := Pν−PΩω and Q := Qν−QΨψ ,
it then follows from Eq. (52) that

ω ◦ ψ(a⊗ c′)− µ� ξ′(a⊗ c′) = 〈u∗νPπµ(a∗)Ωω, v
∗
νQϕξ′(c

′)Ψψ〉
+
〈
u∗νPπµ(a∗)Ωω, v

∗
νQΨψϕξ′(c

′)Ψψ

〉
+ 〈u∗νPΩωπµ(a∗)Ωω, v

∗
νQϕξ′(c

′)Ψψ〉
= 〈u∗νPπµ(a∗)Ωω, v

∗
νQϕξ′(c

′)Ψψ〉 .
For the last line we used u∗νPHω = Gν 	CΛν and v∗νQΨψKψ = CΛν to
obtain the one term as zero, while the other term is zero, since v∗νQKψ =
Gν	CΛν and u∗νPΩωHω = CΛν . Therefore ω ◦ψ(a⊗ c′)−µ� ξ′(a⊗ c′)
is zero for all a ∈ A and c′ ∈ C ′ if and only if u∗ν [PνHµ 	 CΩω] ⊥
v∗ν [QνKξ 	 CΨψ]. �

To conclude this section, we discuss bimodules and correspondences,
the main goal being to show how ω ◦ψ can be expressed in terms of the
relative tensor product of bimodules obtained from ω and ψ. Along the
way we get an indication of the connection between couplings and cor-
respondences. Also see [9] for a related discussion of correspondences
in the context of joinings.

The theory of correspondences was originally developed by Connes,
but never published in full, although it is discussed briefly in his book
[17, Appendix V.B]. In short, a correspondence from one von Neumann
algebra, M , to another, N , is an M -N -bimodule (where the direction
from M to N , is the convention used in the thesis).

For details on the relative tensor product, see for example [52,
Section IX.3] and [31], but also [48] for some of the early work on this
topic. We only outline the most pertinent aspects of relative tensor
products, and the reader is referred to these sources, in particular [52,
Section IX.3], for a more systematic exposition.

As before, let
jν(b) := Jνb

∗Jν
for all b ∈ L (Gν), with Jν : Gν → Gν the modular conjugation asso-
ciated with (B,Λν). Similarly, with (C, ξ) in its cyclic representation
(Gξ,idC ,Λξ), let

jξ(c) := Jξc
∗Jξ

for all c ∈ L (Gξ), with Jξ : Gξ → Gξ the modular conjugation associ-
ated with (C,Λξ).
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Given a coupling ω of (A, µ) and (B, ν) as at the beginning of this
section, we can view H = Hω as an A-B-bimodule by setting

πH(a) := πω(a⊗ 1)

and
π′H(b) := πω(1⊗ jν(b)),

and writing
axb := πH(a)π′H(b)x

for all a ∈ A, b ∈ B, and x ∈ H. The map πH can be shown to be
normal (see for example the proof of [9, Theorem 3.3]), as required
for it to give a left A-module, and similarly π′H gives a normal right
action of B on H; again see [9, Theorem 3.3]. When viewing H as the
A-B-bimodule thus defined, we also denote it by AHB. This module is
therefore an example of a correspondence from A to B.

With ψ a coupling of (B, ν) and (C, ξ) as at the beginning of this
section, and (Kψ, ϕψ,Ψψ) the corresponding cyclic representation as
before, but now using the notation K = Kψ, we analogously obtain
the B-C-bimodule BKC via πK and π′K given by

πK(b) := ϕψ(b⊗ 1)

and
π′K(c) := ϕψ(1⊗ jξ(c))

which enables us to write

byc := πK(b)π′K(c)y

for all b ∈ B, c ∈ C, and y ∈ K.
Now we form the relative tensor product (see [52, Definition IX.3.16])

AXC := H ⊗ν K
with respect to the faithful normal state ν. This is also a Hilbert space
(its inner product will be discussed below) and, as the notation on the
left suggests, the relative tensor product is itself a A-C-bimodule. This
is a special case of [52, Corollary IX.3.18]. The reason it works is that
since H is a A-B-bimodule, any element of πH(A) can be viewed as an
element of L(HB), the space of all bounded (in the usual sense of linear
operators on Hilbert spaces) right B-module maps. Similarly for the
right action of C. So AXC is a correspondence from A to C, which can
be viewed as the composition of the correspondences AHB and BKC .

As one may expect, the actions of A and C on H ⊗ν K are given
by

a(x⊗ν y)c = (ax)⊗ν (yc)

for all a ∈ A and c ∈ C. However, in general this does not hold for all
x ∈ H and y ∈ K. In fact the elementary tensor x⊗ν y does not exist
for all x ∈ H and y ∈ K. However, it does work if we restrict either x
or y to a certain dense subspace, say x ∈ D(H, ν) ⊂ H and y ∈ K. (See
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below for further details on the space D(H, ν).) We correspondingly
use x ∈ H and y ∈ D′(K, ν) ⊂ K if we rather want to restrict y to a
dense subspace of K.

In particular we have Ωω ∈ D(H, ν) and Ψψ ∈ D′(K, ν), and so we
set

Ω := Ωω ⊗ν Ψψ ∈ H ⊗ν K,
which we use to define a state, denoted by ω �ψ, on A�C ′ as follows:

(54) ω � ψ(d) := 〈Ω, πX(d)Ω〉

for all d ∈ A � C ′, where πX is the representation of A � C ′ on AXC

given in terms of its bimodule structure by

πX(a⊗ c′)x := axjξ(c
′)

for all x ∈ AXC . Below we show that ω�ψ = ω◦ψ, so we have the com-
position of couplings expressed in terms of the relative tensor product
of bimodules, i.e. in terms of the composition of correspondences.

We first review the inner product of the relative tensor product in
more detail, in order to clarify its use below. Write

(55) η′ν(b) := jν(b)Λν = Jνb
∗Λν

for all b ∈ B.
For every x ∈ D(H, ν), define the bounded linear operator Lν(x) :

Gν → H by setting

Lν(x)η′ν(b) = xb ≡ π′H(b)x

for all b ∈ B, and uniquely extending to Gν . We note that the space
D(H, ν) is defined to ensure that Lν(x) is indeed bounded:

D(H, ν) = {x ∈ H : ‖xb‖ ≤ kx ‖η′ν(b)‖ for all b ∈ B, for some kx ≥ 0}

It then follows that Lν(x1)∗Lν(x2) ∈ B for all x1, x2 ∈ D(H, ν). The
space H ⊗ν K and its inner product is obtained from a quotient con-
struction such that we have

(56) 〈x1 ⊗ν y1, x2 ⊗ν y2〉 = 〈y1, πK(Lν(x1)∗Lν(x2))y2〉K
for x1, x2 ∈ D(H, ν) and y1, y2 ∈ K, where for emphasis we have de-
noted the inner product of K by 〈·, ·〉K . This is the “left” version,
but there is also a corresponding “right” version of this formula for
the inner product (see [52, Section IX.3]). It can be shown from the
definition of D(H, ν), that πH(a)πν(b)Ωω ∈ D(H, ν) for all a ∈ A and
b ∈ B, from which in turn it follows that D(H, ν) is dense in H, and
that Ωω ∈ D(H, ν). Similarly D′(K, ν), which is defined analogously,
is dense in K.

From this short review of the inner product, we can show that it
has the following property:
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Proposition 3.4.6. In H ⊗ν K,

(57) 〈a1Ωc1, a2Ωc2〉 = ψ(Eω(a∗1a2)⊗ jξ(c2c
∗
1))

for a1, a2 ∈ A and c1, c2 ∈ C.

Proof. Firstly, we obtain a formula for Lν(x) for elements of the
form x = πH(a)πν(b)Ωω ∈ D(H, ν), where a ∈ A and b. For all b1 ∈ B
we have

Lν(x)η′ν(b1) = π′H(b1)πH(a)πν(b)Ωω

= πH(a)πν(b)πν′(jν(b1))Ωω

= πH(a)πν(b)uνη
′
ν(b1),

by Eqs. (35) and (55), which means that

(58) Lν(πH(a)πν(b)Ωω) = πH(a)πν(b)uν .

Applying the special case Lν(πH(a)Ωω) = πH(a)uν of this formula, for
a1, a2 ∈ A we have

Lν(πH(a1)Ωω)∗Lν(πH(a2)Ωω) = u∗νPνπH(a∗1a2)uν

= Eω(a∗1a2).

by Theorem 3.2.2 and Proposition 3.2.1. From Eq. (56) we therefore
have

〈a1Ωc1, a2Ωc2〉 = 〈π′K(c1)Ψψ, πK(Eω(a∗1a2))π′K(c2)Ψψ〉K
= 〈Ψψ, πK(Eω(a∗1a2))π′K(c2c

∗
1)Ψψ〉K

= 〈Ψψ, ϕψ(Eω(a∗1a2)⊗ jξ(c2c
∗
1))Ψψ〉K

= ψ(Eω(a∗1a2)⊗ jξ(c2c
∗
1)).

�

Now we can confirm that Eq. (54) is indeed equivalent to the
original definition Eq. (45):

Corollary 3.4.7. We have

ω � ψ = ω ◦ ψ
in terms of the definitions Eq. (54) and Eq. (45).

Proof. From Eq. (54)

ω � ψ(a⊗ c′) = 〈Ω, πX(a⊗ c′)Ω〉 = 〈Ω, aΩjξ(c
′)〉

= ψ(Eω(a)⊗ c′))
by Eq. (57), for all a ∈ A and c′ ∈ C ′. By Eq. (51), ω �ψ = ω ◦ψ. �

So we have ω ◦ ψ expressed in terms of the vector Ω ∈ H ⊗ν K.
Note, however, that in general H ⊗ν K is not the GNS Hilbert space
for the state ω ◦ ψ, although the former contains the latter. Consider
for example the simple case where ω = µ�ν ′ and ψ = ν� ξ′. Then, by
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Proposition 3.4.4, ω ◦ ψ = µ� ξ′, and the GNS Hilbert space obtained
from this state is Gµ ⊗Gξ, whereas H ⊗ν K = Gµ ⊗Gν ⊗Gξ.

When (A, µ) = (B, ν) and ω is the diagonal coupling δν in Eq.
(28), then by [52, Proposition IX.3.19], AXC is isomorphic to BKC , so
in this case the correspondence AHB acts as an identity from the left.
Similarly from the right when ψ is the diagonal coupling. This is the
correspondence version of Proposition 3.4.2.

Lastly, by Eq. (58) we have Lν(Ωω) = ιHνuν , therefore Lν(Ωω)∗ =
u∗νPν , which by Theorem 3.2.2 means that

Eω(a) = Lν(Ωω)∗πH(a)Lν(Ωω)

for all a ∈ A. This is the form in which Eω has appeared in the the-
ory of correspondences, as a special case of maps of the form a 7→
Lν(x)∗πH(a)Lν(x) for arbitrary x ∈ D(H, ν); see for example [47, Sec-
tion 1.2].

3.5. Detailed balance in terms of balance

Our main goal in this section is to suggest how balance can be used
to define conditions that generalize detailed balance. In order to moti-
vate these generalized conditions, we present a specific instance of how
detailed balance can be expressed in terms of balance. We focus on one
form of detailed balance, namely standard quantum detailed balance
with respect to a reversing operation, as defined in [26, Definition 3
and Lemma 1] and [29, Definition 1]. This form of detailed balance
has only appeared in the literature relatively recently.

The basic idea of this section should also apply to properties other
than detailed balance conditions, as will be explained.

We begin by noting the following simple fact in terms of the diagonal
coupling δµ (see Eq. (28)):

Proposition 3.5.1. A system A is in balance with itself with re-
spect to the diagonal coupling δµ, i.e. δµ(α(a) ⊗ a′) = δµ(a ⊗ α′(a′))
for all a ∈ A and a′ ∈ A′. Conversely, if two systems A and B, with
(A, µ) = (B, ν), are in balance with respect to the diagonal coupling δµ,
then A = B, i.e. α = β.

Proof. The first part is simply the definition of the dual (see Def-
inition 3.1.3 and Theorem 3.1.4):

〈Λµ, α(a)a′Λµ〉 = 〈Λµ, aα
′(a′)Λµ〉

δµ(α(a)⊗ a′) = δµ(a⊗ α′(a′))

for all a ∈ A and a′ ∈ A′.
And the second part simply follows from the uniqueness of the dual.

That is, if AδµB with A = B and µ = ν then the above equations hold
with α′ replaced with β′. Hence β′ = α′ by Theorem 3.1.4, so β = α
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by Corollary 3.1.5. Alternatively one can also use Theorem 3.3.1 and
Corollary 3.2.7. �

So, if A and B are in balance with respect to the diagonal coupling
and one of the systems has some property, then the other system has
it as well, since the systems are necessarily the same.

One avenue of investigation is therefore to define generalized ver-
sions of a given property by demanding only that a system is in balance
with another system with the given property, with respect to a coupling
(or set of couplings) other than the diagonal coupling. In particular
we then do not need to assume that the two systems have the same
algebra and state.

We demonstrate this idea below for a specific property, namely stan-
dard quantum detailed balance with respect to a reversing operation.
In order to do so, we discuss this form of detailed balance along with
Θ-KMS-duals:

Definition 3.5.2. Consider a system A. A reversing operation for
A (or for (A, µ)), is a ∗-antihomorphism Θ : A → A (i.e. Θ is linear,
Θ(a∗) = Θ(a)∗, and Θ(a1a2) = Θ(a2)Θ(a1)) such that Θ2 = idA and
µ ◦Θ = µ. Furthermore we define

αΘ := Θ ◦ ασ ◦Θ

of α in terms of the ασ = jµ ◦ α′ ◦ jµ in Eq. (42).

In [12] αΘ was introduced in the context of systems on L (H), with
H a separable Hilbert space, and called a Θ-KMS-dual. There may be
a scarcity of examples of reversing operations for general von Neumann
algebras, but a standard example for L (H) is mentioned in Section 4.5.

Using the Θ-KMS-dual, we can define the above mentioned form of
detailed balance:

Definition 3.5.3. A system A satisfies standard quantum detailed
balance with respect to the reversing operation Θ for (A, µ), or Θ-sqdb,
when αΘ = α.

To complete the picture, we state some straightforward properties
related to reversing operations Θ and the Θ-KMS-dual:

Proposition 3.5.4. Given a reversing operation Θ for A as in
Definition 3.5.2, we define an anti-unitary operator θ : Gµ → Gµ by
extending

(59) θaΛµ := Θ(a∗)Λµ

which in particular gives θ2 = 1 and θΛµ = Λµ. Then

Θ(a) = θa∗θ

for all a ∈ A, and consequently Θ is normal. This allows us to define

Θ′ : A′ → A′ : a′ 7→ θa′∗θ
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which is the dual of Θ in the sense that

〈Λµ, aΘ′(a′)Λµ〉 = 〈Λµ,Θ(a)a′Λµ〉
for all a ∈ A and a′ ∈ A′. We also have

θJµ = Jµθ

from which

αΘ = (Θ ◦ α ◦Θ)σ

and

(αΘ)Θ = α

follow.

Proof. Even though θ is defined similarly to the conjugate linear
operator S0 from Tomita Takesaki theory, (59) does have a bounded
linear extension in L (Gµ):

‖Θ(a∗)Λµ‖2 = 〈Θ(a∗)Λµ,Θ(a∗)Λµ〉 = 〈Λµ,Θ(a)Θ(a∗)Λµ〉
= 〈Λµ,Θ(a∗a)Λµ〉
= µ ◦Θ(a∗a)

= µ(a∗a)

= ‖aΛµ‖2

From the definition of θ, the properties of Θ and θΛµ = Λµ it follows
that

θa∗θbΛµ = Θ((a∗Θ(b∗))∗)Λµ = Θ(a)bΛµ

for all a, b ∈ A, so Θ(a) = θa∗θ. Normality (i.e. σ-weak continuity)
follows from this and the definition of the σ-weak topology. For a ∈ A
and a′ ∈ A′ we now have aθa′θ = θΘ(a∗)a′θ = θa′Θ(a∗)θ = θa′θa,
hence θa′θ ∈ A′. So Θ′ is well-defined, and that it is the dual of Θ
follows easily.

Denoting the closure of the operator

AΛµ → AΛµ : aΛµ 7→ a∗Λµ

by Sµ = Jµ∆
1/2
µ , as usual in Tomita-Takesaki theory, we obtain Sµ =

θSµθ = θJµθθ∆
1/2
µ θ, hence θJµθ = Jµ by the uniqueness of polar de-

composition, proving θJµ = Jµθ.
Then by definition

αΘ = Θ ◦ jµ ◦ α′ ◦ jµ ◦Θ = jµ ◦Θ′ ◦ α′ ◦Θ′ ◦ jµ = jµ ◦ (Θ ◦ α ◦Θ)′ ◦ jµ
= (Θ ◦ α ◦Θ)σ

follows. So (αΘ)Θ = Θ ◦ Θ ◦ α ◦ Θ ◦ Θ = α by Corollary 3.1.5 and
Proposition 3.1.6. �

Returning now to the main goal of this section, it will be convenient
for us to express the Θ-KMS dual as a system:
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Proposition 3.5.5. For a reversing operation Θ as in Definition
3.5.2,

AΘ := (A,αΘ, µ)

is a system, called the Θ-KMS-dual of A.

Proof. Recall from Proposition 3.3.2 that Aσ is a system. Since
ασ is u.c.p., it can be checked as in Proposition 3.3.2 from αΘ = Θ∗ ◦
ασ ◦Θ∗, where Θ∗(a) := Θ(a∗) for all a ∈ A, that αΘ is u.c.p. as well.
From µ ◦Θ = µ, we obtain µ ◦ αΘ = µ. �

Similar to before, for a QMS (αt)t≥0 with the σ-weak continuity,
we have that this continuity property also holds for (αΘ

t )t≥0, where
αΘ
t := (αt)

Θ for every t. This follows from the continuity of (ασt )t≥0,
and the fact that Θ is normal (Proposition 3.5.4).

As a simple corollary of Proposition 3.5.1 we have:

Corollary 3.5.6. Let A be a system and let Θ be a reversing
operation for A. Then the following are equivalent:

(a) A satisfies Θ-sqdb.
(b) A and AΘ are in balance with respect to δµ.
(c) AΘ and A are in balance with respect to δµ.

When two systems are in balance, we expect the one system to
partially inherit properties of the other, so for any given property that
a system may have, we can in principle consider generalized forms of
the property via balance. In particular for Θ-sqdb:

• We can consider systems A and B which are in balance with
respect to a coupling ω (or a set of couplings) other than µ�ν ′,
but not necessarily with respect to δµ. Assuming that either
A or B satisfies Θ-sqdb, for some reversing operation Θ for
A or B respectively, the other system can then be viewed as
satisfying a generalized version of Θ-sqdb.

A second possible way of obtaining conditions generalizing Θ-sqdb
for a system A, is simply to adapt Corollary 3.5.6 more directly:

• We can require A and AΘ to be in balance with respect to
some coupling ω (or a set of couplings) other than µ � µ′,
but not necessarily with respect to δµ. Or AΘ and A to be in
balance with respect to some coupling ω (or a set of couplings)
other than µ� µ′, but not necessarily with respect to δµ.

Under KMS-symmetry (see Eq. (43)), the two options in the second
condition, namely A and AΘ in balance, versus AΘ and A in balance,
are equivalent:

Proposition 3.5.7. If the system A is KMS-symmetric, then AωAΘ

if and only if AΘωEA, where E := Θ ◦Eω ◦Θ. (See Proposition 3.2.8
for ωE.)
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Proof. By KMS-symmetry αΘ = Θ ◦ α ◦ Θ. Note that for any
coupling ω we have that E = Θ ◦ Eω ◦Θ is u.c.p. like αΘ in the proof
of Proposition 3.5.5, and µ ◦ E = µ by Theorem 3.2.2 and µ ◦ Θ = µ.
Then ωE is a coupling by Proposition 3.2.8. From Theorem 3.3.1 we
have

AωAΘ ⇔ Eω ◦ α = Θ ◦ α ◦Θ ◦ Eω ⇔ E ◦ αΘ = α ◦ E ⇔ AΘωEA.

�

The two types of conditions suggested above will be illustrated by
a simple example in the next chapter, where the conditions obtained
will in fact be weaker than Θ-sqdb.





CHAPTER 4

A balance example

In this chapter we use a simple example based on the examples in
[2, Section 6], [11], [28, Section 5] and [29, Subsection 7.1] to illus-
trate some of the ideas discussed in this thesis. Our main reason for
considering this example is that it is comparatively easy to manipulate
mathematically.

4.1. The algebra and state

Let H be a separable Hilbert space with total orthonormal set
e1, e2, e3, .... We are going to consider systems on the von Neumann
algebra L (H). These systems will all have the same faithful normal
state ζ on L (H) given by the diagonal (in the mentioned basis) density
matrix

ρ =

 ρ1

ρ2

. . .


where ρ1, ρ2, ρ3, ... > 0 satisfy

∑∞
n=1 ρn = 1. That is, ρ ∈ L (H),

ρen = ρnen for all n, and

ζ(a) = Tr(ρa) =
∞∑
n=1

〈en, ρaen〉

for all a ∈ L (H). That ζ is faithful can easily be checked and follows
from 0 < ρn < 1 for all n, and that ζ is normal follows from [44, 4.2.10.
Theorem] since clearly ρ ∈ L1(H).

We now briefly explain what the cyclic representation looks like for
the state ζ:

A (faithful) cyclic representation of (L (H), ζ) can be written as
(H, π,Ω) where H = H⊗ H,

π(a) = a⊗ 1

for all a ∈ L (H), and the maximally entangled state (reducing to ρ)

Ω =
∞∑
n=1

√
ρnen ⊗ en

is the cyclic vector. For any i, j ∈ N it’s easy to see that π(ei on
ej)Ω =

√
ρjei ⊗ ej. That is, π(L (H))Ω contains all the elementary

tensors of and is therefore dense in H. It can also easily be checked

65
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that 〈Ω, π(a)Ω〉 = ζ(a) for all a ∈ L (H). Lastly, since ζ is faithful the
cyclic representation is necessarily faithful.

Our von Neumann algebra is therefore represented as

A = π(L (H)) = L (H)⊗ 1,

and the state ζ is represented by the state µ on A given by

µ(π(a)) = ζ(a)

for all a ∈ A. That is, (A, µ) is a von Neumann algebra and faith-
ful normal state pair in a cyclic representation (H, idA,Ω). Moreover,
by Theorem 2.4.1, A′ = 1 ⊗ L (H). Hence if we consider a second
representation π′ given by

π′(a) = 1⊗ a

for all a ∈ L (H), then (H, π′,Ω) is similarly a second (faithful) cyclic
representation of (L (H), ζ). So it follows that A′ = π′(L (H)) and the
state µ′ on A′ is given by

µ′(π′(a)) = 〈Ω, π′(a)Ω〉 = ζ(a)

for all a ∈ A.
Regarding notation: Recall that for any x, y ∈ H we denote by

x on y the operator defined

(x on y)z := x 〈y, z〉

for all z ∈ H.

4.2. The couplings

We consider couplings of ζ with itself. A coupling of ζ with itself
corresponds to a coupling of µ with itself in the cyclic representation,
which is a state ω on A�A′ = π(L (H))� π′(L (H)) ∼= L (H)�L (H)
such that

ω(π(a)⊗ 1) = µ(π(a)) and ω(1⊗ π′(a)) = µ′(π′(a))

for all a ∈ L (H). However, in this concrete example it is clearly
equivalent, and simpler in terms of notation, to view ω directly as a
state on L (H)�L (H) such that

(60) ω(a⊗ 1) = ζ(a) and ω(1⊗ a) = ζ(a)

for all a ∈ L (H), rather than to work via the cyclic representation.
Consider any disjoint subsets Y1, Y2, Y3, ... of N := {1, 2, 3, 4, ...}

such that ∪∞n=1Yn = N. We construct a coupling ω which is given by a
density matrix κ ∈ L (H⊗ H), i.e.

ω(c) = Tr(κc) = Tr(cκ) =
∞∑

i,j=1

〈ei ⊗ ej, (cκ)ei ⊗ ej〉
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for all c ∈ L (H)�L (H). Therefore we may as well allow c ∈ L (H⊗H),
and define ω on the latter algebra, even though our theory only needs it
to be defined on the algebraic tensor product L (H)�L (H) ∼= A�A′.

We begin by obtaining a positive trace-class operator κn corre-
sponding to the set Yn for every n. Each κn will be one of three types,
namely a (maximally) entangled type, a mixed type, or a product type,
each of which we now discuss in turn for any n.

First, the entangled type (corresponding to an entangled pure state):
Set

Ωn =
∑
q∈Yn

√
ρqeq ⊗ eq

and
κn = Ωn on Ωn =

∑
p∈Yn

∑
q∈Yn

√
ρpρq(ep on eq)⊗ (ep on eq).

Secondly, the mixed type (corresponding to a mixture of pure states):
Set

κn =
∑
q∈Yn

ρq(eq ⊗ eq) on (eq ⊗ eq) =
∑
q∈Yn

ρq(eq on eq)⊗ (eq on eq).

Thirdly, the product type: Set

κn = dn ⊗ dn
where

dn :=

(∑
p∈Yn

ρp

)−1/2 ∑
q∈Yn

ρq(eq on eq).

For each type we take
κn = 0

if Yn is empty (this allows for a partition of N into a finite number of
non-empty subsets).

For each n ∈ N, define

ωn : L (H)�L (H) : c 7→ Tr(κnc).

Keep in mind that ωn depends on the particular partition of N and on
what the type of each κn is.

For any a ∈ L (H), if κn is of the entangled type then it is straight-
forward to check that

ωn(a⊗ 1) =
∞∑

i,j=1

〈
ei ⊗ ej, (a⊗ 1)Ωn on

(∑
q∈Yn

√
ρqeq ⊗ eq

)
ei ⊗ ej

〉

=
∑
q∈Yn

〈
eq ⊗ eq,

∑
p∈Yn

√
ρq
√
ρp aep ⊗ ep

〉
=
∑
q∈Yn

ρq〈eq, aeq〉,
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if κn is of the mixed type, that

ωn(a⊗ 1) =
∞∑

i,j=1

〈
ei ⊗ ej, a⊗ 1

(∑
q∈Yn

ρq(eq ⊗ eq) on (eq ⊗ eq)

)
ei ⊗ ej

〉
=
∑
q∈Yn

〈eq ⊗ eq, a⊗ 1 (ρqeq ⊗ eq)〉

=
∑
q∈Yn

ρq〈eq, aeq〉

and if κn is of the product type that

ωn(a⊗ 1) =
∞∑

i,j=1

〈
ei ⊗ ej, a⊗ 1

(
1
√
ρYN

∑
q∈Yn

(eq on eq)⊗
1
√
ρYN

∑
q∈Yn

(eq on eq)

)
ei ⊗ ej

〉

=
∑
p,q∈Yn

〈
ep ⊗ eq, a⊗ 1

1
√
ρYN

ρpep ⊗
1
√
ρYN

ρqeq

〉
=

1

pYn

∑
p∈Yn

∑
q∈Yn

ρp〈ep, aep〉ρq〈eq, eq〉

=
∑
q∈Yn

ρq〈eq, aeq〉

where ρYn :=
∑

n∈Yn ρn. The same equalities similarly hold for 1 ⊗ a,
that is

(61) ωn(a⊗ 1) = ωn(1⊗ a) =
∑
q∈Yn

ρq 〈eq, aeq〉

for all a ∈ B(H). It is also straightforward to verify that

(62) Tr(κn) =
∑
q∈Yn

ρq.

For each n, let κn be any of the three types above. Then κn is
indeed trace-class and positive, and so setting

ωn(c) = Tr(κnc)

for all c ∈ L (H⊗H), we obtain a well-defined positive linear functional
ωn on L (H⊗ H). Then

ω :=
∞∑
n=1

ωn

converges in the norm of L (H⊗H)∗, since ‖ωn‖ = ωn(1) = Tr(κn), so∑∞
n=1 ‖ωn‖ = 1. Correspondingly,

(63) κ :=
∞∑
n=1

κn
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converges in the trace-class norm ‖·‖1, since

∞∑
n=1

‖κn‖1 =
∞∑
n=1

Tr(κn) = 1.

Then it indeed follows that

ω(c) =
∞∑
n=1

Tr(κnc) = Tr(κc),

since |
∑m

n=1 Tr(κnc)− Tr(κc)| ≤ ‖
∑m

n=1 κn − κ‖1 ‖c‖ (where ‖ · ‖1 de-
notes the trace-class norm; see [44, Theorem 2.4.16.]).

Furthermore ω(1) =
∑∞

n=1 ωn(1) =
∑∞

n=1 ρn = 1, and from Eq.
(61) it follows that the conditions in Eq. (60) hold. So ω is a coupling
of ζ with itself as required.

For Y1 = N, i.e. κ = κ1 and Ω1 = Ω, we can get two extremes,
namely the diagonal coupling ω if κ1 is of the entangled type:

ω(a⊗ b) =
∞∑

i,j=1

〈ei ⊗ ej, a⊗ b Ω on Ω ei ⊗ ej〉

=
∞∑

i,j=1

〈
ei ⊗ ej, a⊗ b Ω

(
∞∑
n

√
ρn〈en, ei〉〈en, ej〉

)〉

=
∞∑
n=1

〈en ⊗ en, a⊗ b Ω
√
ρn〉

= 〈Ω, a⊗ b Ω〉
= δµ (π(a)⊗ π′(b)) ,

for all a, b ∈ L (H). Alternatively ω can be the product state ζ ⊗ ζ on
L (H⊗ H) when κ1 is of the product type:

ω(a⊗ b) =
∞∑

i,j=1

〈ei ⊗ ej, a⊗ b d1 ⊗ d1 ei ⊗ ej〉

=
∞∑

i,j=1

〈ei ⊗ ej, a⊗ b (ρiei)⊗ (ρjej)〉

=
∞∑

i,j=1

ρi〈ei, aei〉ρj〈ej, bej〉

= µ(π(a))µ′(π′(b))

= ζ ⊗ ζ(a⊗ b)

for all a, b ∈ L (H). But the construction above gives many cases other
than these two extremes. Then balance with respect to ω is non-trivial,
but does not necessarily force two systems A and B on the same algebra
A to have the same dynamics as in Proposition 3.5.1.
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4.3. The dynamics

We now construct dynamics in order to obtain examples of systems
on the von Neumann algebra L (H). Let rj ∈ {3, 4, 5, ...} and 0 < kj <
1 for j = 1, 2, 3, ..., and write k = (k1, k2, k3, ...). In terms of the n× n
matrix

On =


0 · · · 0 1
1 0

. . .
...

1 0

 ,
with the blank spaces all being zero. That is, On can be obtained from
the n × n identity matrix by shifting all columns one position to the
left, and the first column to the far right. We then define Rk ∈ L (H)
by the infinite matrix

Rk =

 k
1/2
1 Or1

k
1/2
2 Or2

. . .


in the basis e1, e2, e3, ..., where again the blank spaces are zero. In

other words, Rke1 = k
1/2
1 e2 etc. So Rk consists of a infinite direct sum

of finite cycles, each cycle including its own factor k
1/2
n . Replacing k

by 1 − k := (1 − k1, 1 − k2, 1 − k3, ...), we similarly obtain R1−k. In
the same basis we consider a self-adjoint operator g ∈ L (H) defined
by the diagonal matrix

g =

 g1

g2

. . .

 ,
with g1, g2, g3, ... a bounded sequence in R. Note thatR∗kRk+R1−kR

∗
1−k =

1. So by [45, Corollary 30.13] we can define the generator K of a uni-
formly continuous semigroup S = (St)t≥0 in L (H) by

K(a) = i[g, a]− 1

2
[R∗kRka+ aR∗kRk − 2R∗kaRk]

− 1

2

[
R∗1−kR1−ka+ aR∗1−kR1−k − 2R∗1−kaR1−k

]
= R∗kaRk +R∗1−kaR1−k − a+ i[g, a]

for all a ∈ L (H). That is, St(a) = etK(a) for all a ∈ L (H). For the
original papers on generators for uniformly continuous semigroups see
[35] and [40].

In the same way and still using the same basis, for l = (l1, l2, l3, ...)
with 0 < lj < 1 we define the generator L of a second uniformly
continuous semigroup T = (Tt)t≥0 in H by

L(b) = R∗l bRl +R1−lbR
∗
1−l − b+ i[h, b]
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for all b ∈ L (H), where the diagonal matrix

h =

 h1

h2

. . .

 ,
with h1, h2, h3, ... a bounded sequence in R, defines a self-adjoint oper-
ator h ∈ L (H).

In the rest of this chapter, we assume the following:

ρ1 = ... = ρr1
ρr1+1 = ... = ρr1+r2

ρr1+r2+1 = ... = ρr1+r2+r3

...

Then the state ζ is seen to be invariant under both S and T by checking
that ζ ◦ K = 0 and ζ ◦ L = 0. That is,

d

dt
ζ ◦ St(a) = ζ

(
d

dt
St(a)

)
= ζ ◦ K ◦ St(a) = 0

for all a ∈ L (H). Hence ζ ◦ St = ζ ◦ S0 = ζ and similarly ζ ◦ Tt =
ζ ◦ T0 = ζ.

It is going to be simpler (but equivalent) to work directly in terms of
L (H), rather than its cyclic representation. Nevertheless, since much
of the theory of this thesis is expressed in the cyclic representation, it
is worth expressing the various objects in this representation as well.
In particular we can then see how to obtain duals directly in terms of
L (H).

Our two systems A and B, viewed in the cyclic representation, are
in terms of A = B = π(L (H)), with the dynamics given by

αt(π(a)) = π(St(a))

and
βt(π(b)) = π(Tt(b))

and the states µ and ν both given by

µ(π(a)) = ν(π(a)) = ζ(a) = Tr(ρa)

for all a, b ∈ L (H). The diagonal coupling for µ

δµ : π(L (H))� π′(L (H))→ C
is given by

δµ(π(a)� π′(b)) = 〈Ω, π(a)π′(b)Ω〉 = 〈Ω, (a⊗ b)Ω〉

=
∞∑
p=1

∞∑
q=1

〈
ep, ρ

1/2aeq
〉 〈
eq, ρ

1/2bᵀep
〉

= Tr(ρ1/2aρ1/2bᵀ)
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where bᵀ ∈ L (H) is obtained as the transpose of the matrix representa-
tion of b in terms of the basis e1, e2, e3, .... In effect δµ is the maximally
entangled state 〈Ω, (·)Ω〉 on L (H) � L (H), reducing to Tr(ρ(·)) on
B(H).

The dual β′t : π′(L (H))→ π′(L (H)) of βt is given by

〈Ω, π(b)β′t(π
′(b′))Ω〉 = 〈Ω, βt(π(b))π′(b′)Ω〉

for all b, b′ ∈ L (H).
We therefore define the dual L′ of L via the representations by

requiring

〈Ω, π(b)π′(L′(b′))Ω〉 = 〈Ω, π(L(b))π′(b′)Ω〉
for all b, b′ ∈ L (H), i.e.

Tr(ρ1/2aρ1/2(L′(b))ᵀ) = Tr(ρ1/2L(a)ρ1/2bᵀ)

for all a, b ∈ L (H). Note that L′ is indeed the dual (with respect to
ζ) of L in the sense of Theorem 3.1.4, but represented on H instead of
on the GNS Hilbert space. It is then straightforward to verify that

(64) L′(b) = R∗1−lbR1−l +RlbR
∗
l − b+ i[h, b]

for all b ∈ L (H). From this one can see that L′ is also the generator of
a uniformly continuous semigroup T ′ = (T ′t )t≥0 in H, which in addition
satisfies

〈Ω, π(b)π′(T ′t (b′))Ω〉 = 〈Ω, π(Tt(b))π′(b′)Ω〉
and therefore

π′(T ′t (b′)) = β′t(π
′(b′))

for all b, b′ ∈ L (H). As with L′ above, T ′t is the dual of Tt in the sense
of Definition 3.1.3, but represented on H. So we correspondingly call
the semigroup T ′ the dual of the semigroup T .

We now have a complete description of the systems, as well as their
duals.

4.4. Balance

We now show examples of balance between

A : = (L (H),S, ζ) and B : = (L (H), T , ζ)

and illustrate a number of points made in this thesis. Remember that
since we now have a continuous time parameter t ≥ 0, the balance
condition in Definition 3.1.7 is required to hold at every t. However, it
then follows that A and B are in balance with respect to ω if and only
if

Tr(κ(K(a)⊗ b)) = Tr(κ(a⊗ L′(b))
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for all a, b ∈ L (H). From this one can easily check that A and B are
in balance with respect to ω if and only if

(Rk ⊗ 1)κ(Rk ⊗ 1)∗ + (R1−k ⊗ 1)∗κ(R1−k ⊗ 1)− i[g ⊗ 1, κ]

= (1⊗R1−l)κ(1⊗R1−l)
∗ + (1⊗Rl)

8κ(1⊗Rl)− i[1⊗ h, κ]

holds. However, equating the real and imaginary parts respectively
(keeping in mind that κ as given in Section 4.2 is a real infinite matrix
in the basis ep ⊗ eq), we see that this is equivalent to

(Rk ⊗ 1)κ(Rk ⊗ 1)∗ + (R1−k ⊗ 1)∗κ(R1−k ⊗ 1)

= (1⊗R1−l)κ(1⊗R1−l)
∗ + (1⊗Rl)

∗κ(1⊗Rl)(65)

and

(66) [g ⊗ 1, κ] = [1⊗ h, κ]

both being true.
To proceed, we refine the construction of κ in Section 4.2, by only

allowing

Yn =
⋃
p∈In

Zp

where Z1 = {1, 2, ..., r1}, Z2 = {r1 + 1, r1 + 2, ..., r1 + r2}, etc., and
where I1, I2, I3, ... is any sequence of disjoint subsets of N+ such that
∪n∈N+In = N+. Note that an In is allowed to be empty (then Yn is
empty), and it is also allowed to be infinite.

It then follows that A and B are in balance with respect to ω if
and only if

(Rk ⊗ 1)κn(Rk ⊗ 1)∗ + (R1−k ⊗ 1)∗κn(R1−k ⊗ 1)

= (1⊗R1−l)κn(1⊗R1−l)
∗ + (1⊗Rl)

∗κn(1⊗Rl)(67)

and

(68) [g ⊗ 1, κn] = [1⊗ h, κn]

both hold for every n. To see that Eq. (67) and Eq. (68) fol-
low from Eq. (65) and Eq. (66) respectively, place the latter into
〈ep ⊗ eq, (·)ep′ ⊗ eq′〉 for p, q, p′, q′ ∈ Yn. The converse holds, since Eq.
(63) is convergent in the trace-class norm.

To evaluate these conditions in detail is somewhat tedious, so we
just describe it in outline below.

Note that, roughly speaking, in a term like (Rk⊗1)κn(Rk⊗1)∗, for
κn of the entangled or mixed type, the first slot in the tensor product
structure of κn is advanced by one step in each cycle appearing in Rk.
In a term like (1⊗ Rl)

∗κn(1⊗ Rl), on the other hand, the second slot
is rolled back by one step in each cycle, which is equivalent to the first
slot being advanced by one step. So, if κn is of the entangled or mixed
type, and

(69) kp = lp
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for each p ∈ In, then Eq. (67) holds.
Conversely, for p ∈ In, note from the definitions of the entangled

and mixed type κn that since rp > 2, the terms (Rk ⊗ 1)κn(Rk ⊗ 1)∗

and (1⊗Rl)
∗κn(1⊗Rl) have to be equal (hence kp = lp), for Eq. (67)

to hold; the terms (R1−k⊗1)∗κn(R1−k⊗1) and (1⊗R1−l)κn(1⊗R1−l)
∗

involve other basis elements of H⊗H and therefore can not ensure Eq.
(67) when (Rk ⊗ 1)κn(Rk ⊗ 1)∗ 6= (1⊗Rl)

∗κn(1⊗Rl).
For the product type κn, Eq. (67) always holds, since κn then

commutes with Rk ⊗ 1 and 1⊗Rl.
When κn is of the entangled type, one can verify by direct calcula-

tion that Eq. (68) holds if and only if

(70) gp − gq = hp − hq
for all p, q ∈ Yn. For the other two types of κn, Eq. (68) always holds,
since then κn, g ⊗ 1 and 1 ⊗ h are diagonal, and so the commutators
are zero.

We conclude that A and B are in balance with respect to ω if and
only if the following is true: Eq. (69) holds for all p ∈ In for every n
for which κn is either of the entangled or mixed type, and Eq. (70)
holds for all p ∈ In for every n for which κn is of the entangled type.

We now also have an example where the transitivity in Theorem
3.4.1 is trivial, meaning that ω◦ψ = µ�ξ′ despite having ω 6= µ�ν ′ and
ψ 6= ν� ξ′. To see this, let C be a system constructed in the same way
as A and B above, so it has the same von Neumann algebra and state.
However the generator giving its dynamics can use different choices in
place of k, g and l, h. As above, construct two couplings ω and ψ (giving
balance of A and B with respect to ω, and of B and C with respect to
ψ), but with entangled and mixed types not in overlapping parts of the
two couplings respectively (i.e. the respective Yn sets corresponding to
these two types in the respective couplings should be disjoint), while
the rest of each coupling is a κn of the product type. Then it can be
verified using Proposition 3.4.5 that we indeed obtain ω ◦ ψ = µ � ξ′,
despite having ω 6= µ� ν ′ and ψ 6= ν� ξ′. This illustrates that to have
ω ◦ ψ 6= µ � ξ′, we need sufficient “overlap” between ω and ψ, where
this overlap condition has been made precise in Hilbert space terms (in
the cyclic representations) by Proposition 3.4.5.

4.5. A reversing operation

Here we consider Θ-sqdb in Definition 3.5.3 and Corollary 3.5.6, as
well as the two generalized detailed balance conditions suggested at the
end of Section 3.5.

We will need the modular conjugation operator associated with µ
(and ζ), which can here be obtained as the conjugate linear operator
J : H → H defined by

J(ep ⊗ eq) = eq ⊗ ep
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for all p, q = 1, 2, 3, .... Furthermore,

(71) j(π(a)) := Jπ(a)∗J = π′(aᵀ)

for all a ∈ B(H), where aᵀ denotes the transpose of a in the basis
e1, e2, e3, ....

Take Θ to be transposition in the basis e1, e2, e3, ..., i.e.

Θ(a) := aᵀ

for all a ∈ L (H). This is the standard choice of a reversing op-
eration for (L (H), ζ), used for example in [29, Section 2]. In the
cyclic representation, Θ would be given by π(a) 7→ π(aᵀ). It is readily
confirmed from Eq. (71) that in this case the Θ-KMS dual of B is
BΘ = (L (H), T ′, ζ), i.e. in the cyclic representation we would have
αΘ
t = α′t for all t.

For the diagonal coupling δ, obtained when κ1 is of the entangled
type with Y1 = N+, then from Eqs. (69) and (64) we see that B and
BΘ are in balance with respect to δ, i.e. B satisfies Θ-sqdb (Corollary
3.5.6), if and only if lp = 1− lp, i.e. lp = 1/2, for all p.

More generally, consider the situation where B satisfies Θ-sqdb, and
A and B are in balance with respect to ω. It then follows from Eq.
(69) that kp = 1/2 for all p in every In such that κn is of the entangled
or mixed type, but we need not have kp = 1/2 for other values of p.
This is therefore a strictly weaker condition on A than Θ-sqdb, as long
as not all the κ′ns are of the entangled or mixed type.

Next consider the situation where A and AΘ are in balance with
respect to ω, where again not all the κ′ns are of the entangled or mixed
type. Then in a similar way we again see that kp = 1/2 for all p in
every In such that κn is of the entangled or mixed type, but we need
not have kp = 1/2 for other values of p. So again this is a strictly
weaker condition than Θ-sqdb.

This illustrates the two conditions suggested at the end of Section
3.5, albeit in a very simple situation. Here the two conditions are
essentially equivalent when applied to A, but we expect this not to be
the case in general.
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