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ABSTRACT
Developing non-invasive techniques for monitoring physiological stress responses
has been conducted in a number of mammal and bird species, revolutionizing field-
based endocrinology and conservation practices. However, studies validating and
monitoring glucocorticoid concentrations in reptiles are still limited. The aim of the
studywas to validate amethod formonitoring glucocorticoidmetabolite concentrations
in urine (uGCM) and faeces (fGCM) of the cordylid lizard, the Sungazer (Smaug
giganteus). An adrenocorticotropic hormone (ACTH) challenge was conducted on
one male and two females with both urine and faecal material being collected during
baseline and post-injection periods. Steroid extracts were analysed with four enzyme
immunoassays (EIAs)namely: 11-oxoaetiocholanolone, 5α-pregnane-3β-11β-21-triol-
20-one, tetrahydrocorticosterone, and corticosterone. A considerable response in
fGCM and uGCM concentrations following ACTH administration was observed in all
subjects, with the 5α-pregnane-3β-11β-21-triol-20-one and tetrahydrocorticosterone
EIAs appearing to be the most suited for monitoring alterations in glucocorticoid
metabolite concentrations in S. giganteus using faeces or urine as hormonematrix. Both
EIAs showed a significantly higher concentration of glucocorticoidmetabolites in faeces
compared to urine for both sexes. Collectively, the findings of this study confirmed that
both urine and faeces can be used to non-invasively assess adrenocortical function in
S. giganteus.

Subjects Animal Behavior, Conservation Biology, Ecology, Veterinary Medicine, Zoology
Keywords Validate, Endocrinology, Non-invasive hormone monitoring, Stress, Sungazer,
Enzyme immunoassay, Faeces, Urine

INTRODUCTION
Historically, reptiles have been seen as a vertebrate group with limited importance to the
natural environment, with the disappearance of the taxa unlikely to make any noteworthy
difference (Zim & Smith, 1953). Thankfully, this sentiment has disappeared as scientists
realize the importance of reptiles as an integral part of the ecosystem and thus important
indicators of environmental quality (Gibbons & Stangel, 1999). Despite research showing
that reptile numbers decline on a similar scale in terms of taxonomic breadth, geographic
scope and severity as amphibians (Gibbons et al., 2000), reptiles remain one of the least
studied vertebrate groups, being considered of less general interest compared to other
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fauna (Bonnet, Shine & Lourdais, 2002). The cryptic colorations and nature of reptiles
(Zug, Vitt & Caldwell, 2001), as well as the general low population numbers inherent to
the taxa (Todd, Willson & Gibbons, 2010), often results in a limited number of individuals
available to monitor during a study. A number of factors have been suggested to contribute
to the currently recognized decline in reptiles globally (see Todd, Willson & Gibbons, 2010
for a review). However, the direct and indirect effects of factors such as global climate
change, disease, and habitat pollution are sometimes difficult to quantify and relate to
individual and population health and survivability (Gibbons et al., 2000). In this regard,
monitoring physiological stress patterns in reptiles may provide an important insight into
the susceptibility of reptiles to population declines when faced with various environmental
threats.

Stress is commonly referred to as the stimulus that may threaten, or appear to threaten,
the general homeostasis of an individual (Wielebnowski, 2003; Hulsman et al., 2011). The
perception of a stressor leads to the activation of the hypothalamic-pituitary-adrenal (HPA)
axis and, consequently, to an increase in glucocorticoid (GC) secretion (Sapolsky, Romero &
Munck, 2000;Hulsman et al., 2011). An acute increase inGC concentrations can be adaptive
in nature, increasing energy availability and altering behavior, while indirectly regulating
cardiovascular and metabolic parameters (Romero, 2002; Sapolsky, 2002; Reeder & Kramer,
2005; Walker, 2007). However, prolonged elevation of GC concentrations can lead to a
number of deleterious effects, such as the suppression of the immune and reproductive
systems, muscle atrophy, growth suppression, and a shortened life span (Möstl & Palme,
2002; Sapolsky, 2002; Charmandari, Tsigos & Chrousos, 2005; Cohen, Janicki-Deverts &
Miller, 2007). Thus, monitoring GC concentration in endangered and threatened species
can be an important tool for assessing physiological stress in individuals exposed to natural
and anthropogenic stressors. Non-invasive hormone monitoring techniques, through
the collection of urine or faeces, hold numerous advantages over the traditional use of
blood collection. Firstly, there is no need to capture or restrain study animals for sample
collection, thus removing any potential stress-related feedback, and thereby also increases
safety for both animal subjects and researchers (Romero & Reed, 2005). Further, as a result
of the general ease of collection, longitudinal sampling and hormonemonitoring of specific
individuals are possible (Heistermann, 2010). Finally, hormone metabolite concentrations
determined from matrices like faeces, urine, or hair are usually less affected by episodic
fluctuations of hormone secretion, as circulating hormone concentrations are accumulating
in these matrices over a certain period of time (Vining et al., 1983; Creel, MarushaCreel
& Monfort, 1996; Russell et al., 2012). However, prior to the first use of the chosen assays
and specific matrices for monitoring physiological stress in a species, it is important that
the approach is carefully validated to ensure a reliable quantification of respective GCs
(Touma & Palme, 2005). A preferred method of validation is the physiological activation of
the HPA axis through the injection of adrenocorticotropic hormone (‘‘ACTH challenge’’,
(Touma & Palme, 2005), which results in a distinct increase in GC production from the
adrenal gland. Collected pre- and post-injection samples are subsequently analyzed to
determine which of the tested enzyme immunoassays (EIA) reflects the induced increase
in GC concentrations best. Historically, GC patterns in reptiles have been monitored via
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serum analysis, for example in the red-eared slider turtle (Trachemys scripta elegans, Cash,
Holberton & Knight, 1997), the Galapagos marine iguana (Amblyrhynchus cristatus, Romero
& Wikelski, 2001), or the tuatara (Sphenodon punctatus, Tyrrell & Cree, 1998). However,
some more recent studies attempting to understand the physiological response inherent
in reptiles to environmental stressors have already opted for non-invasive hormone
monitoring in reptiles, e.g., in Nile crocodiles (Crocodylus niloticus, Ganswindt et al., 2014),
the three-toed box turtle (Terrapene carolina triunguis, Rittenhouse et al., 2005), the green
anole (Anolis carolinensis, Borgmans et al., 2018) or the green iguana (Iguana iguana,
Kalliokoski et al., 2012).

The Sungazer (Smaug giganteus, formerly Cordylus giganteus; Fig. S1) is a cordylid
lizard endemic to the grassland of the Free State and Mpumalanga provinces of South
Africa (De Waal, 1978; Jacobsen, 1989). It is unique among the cordylid lizards as an
obligate burrower rather than rupicolous (Tonini et al., 2016; Parusnath et al., 2017). The
species is currently facing large scale habitat degradation and population declines as a
result of anthropogenic activities such as agricultural repurposing of its natural habitat,
road construction, electricity infrastructure, mining developments, as well as the pet and
traditional medicine trade (Van Wyk, 1992; McIntyre & Whiting, 2012; Mouton, 2014).
Consequentially, S. giganteus is now listed as vulnerable by the International Union for the
Conservation of Nature (IUCN, Alexander et al., 2018).

The aim of the study was to examine the suitability of four enzyme immunoassays
(EIA) namely, 11-oxoaetiocholanolone, 5α-pregnane-3β-11β-21-triol-20-one, tetrahydro-
corticosterone, and corticosterone, for monitoring adrenocortical function in S. giganteus
by determining the stress-related physiological response in faeces and urine following an
ACTH challenge test.

MATERIALS & METHODS
Study site and animals
The study was conducted at the SANBI National Zoological Garden (NZG), Pretoria, South
Africa (25.73913◦N, 28.18918◦E) from the 24th of November 2017 to the 5th of December
2017. The study animals, consisting of one male (M1:291 g) and two females (F1: 295 g)
and F2: 344 g), were housed in individual enclosures within the Reptile and Amphibian
Section of the NZG. Individuals were separated by a 1.5m high wall, which resulted in study
animals not being in visual contact with one another. Each enclosure (2 m × 1.5 m) was
covered in coarse river sand and included an artificial burrow constructed from fiberglass,
UV-light and a water bowl with water available ad libitum. The light regime (13 L: 11D) and
humidity (range: 44–50%) were kept constant throughout the study period. A combination
of meal worms and fresh, green vegetables were provided daily to all individuals. Prior
to the start of the study, all individuals were given a two-week acclimatization period to
the new enclosure and presence of researchers. The limited number of individuals used
during the study reflects the availability of study animals in a suitable setting, as well as the
difficulty in receiving approval to conduct research on vulnerable and endangered species.
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Sample collection and ACTH challenge
In reptiles, urine and faeces can be excreted in unison, though not mixed (Fig. S2; Singer,
2003); urine is a white, solid substance, compared to the dark, solid faecal component, which
allows for the separation of the two matrices with limited levels of cross-contamination
(Kummrow et al., 2011). During the entire monitoring period, collected urine and
faeces were separated during collection, and the two parts placed into separate 1.5 ml
microcentrifuge tubes, sealed, and immediately stored at −20 ◦C until further processing.
Following a two-week acclimatisation period, enclosures were checked for urine and faecal
samples during the active period of S. giganteus (6 am–6 pm), for seven days. Cages were
checked hourly to limit the effect of bacterial and environmental degradation of urine and
faecal samples. In the morning hours of the eighth day all three individuals were injected
intramuscularly with 0.45 µg synthetic ACTH g−1 bodyweight (SynACTH R©, Novartis,
South Africa Pty Ltd) in a 100 µl saline transport. This ACTH dose was chosen as it has
been used successfully by a number of studies conducted on amphibian species such as the
Fijian ground frog (Platymantis vitiana, Narayan et al., 2010), tree frog (Hypsiboas faber,
Barsotti et al., 2017) and the American bullfrog (Rana catesbeiana, Hammond et al., 2018)
to evoke a stress response. Subsequently, the individuals were released back into their
individual enclosures, with faecal and urine collection continuing until day 15 of the study.
The study was performed with the approval of the National Zoological Garden’s Animal
Use and Care Committee (Reference: P16/22).

Steroid extraction in urine and faecal samples
Urine and faecal samples were lyophilized, pulverized and sifted through a mesh strainer to
remove any undigested material, resulting in a fine faecal and urine powder (Heistermann,
Tari & Hodges, 1993). Subsequently, 0.050–0.055 g of the respective urine and faecal powder
was extracted with 1.5 ml 80% ethanol in water. After vortexing for 15 min, the suspensions
were centrifuged for 10 min at 1,600 g and the resulting supernatants transferred into new
microcentrifuge tubes and stored at −20 ◦C until analysis.

Enzyme immunoassay analyses
Depending on the original matrix, steroid extracts were measured for immunoreactive
faecal glucocorticoid metabolite (fGCM) or urinary glucocorticoid metabolite (uGCM)
concentrations using four different EIAs: (i) an 11-oxoaetiocholanalone (detecting
fGCMs with a 5β-3α-ol-11-one structure), (ii) a 5α-pregnane-3β-11β-21-triol-20-one
(measuring 3β-11β–diol-CM), (iii) a tetrahydrocorticosterone, and (iv) corticosterone
EIA. Details about assay characteristics, including full descriptions of the assay
components including cross-reactivities, can be found in Möstl et al. (2002) for the 11-
oxoaetiocholanalone EIA, Touma et al. (2003) for the 5α-pregnane-3β-11β-21-triol-20-
one, Palme & Möstl (1997) for the corticosterone EIA and in Quillfeldt & Möstl (2003)
for the tetrahydrocorticosterone EIA. Assay sensitivities, which indicates the minimum
amount of respective immunoreactive hormone that can be detected at 90% binding, as
well as the intra- and inter-assay coefficients of variation of high and low quality controls
for each EIA is shown in Table 1. Serial dilutions of extracted faecal and urine samples gave
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Table 1 The enzyme immunoassay specific parameters used during this study. The sensitivity as well
as the intra- and inter-assay coefficient of variation (CV) of the four enzyme immunoassays used during
the study.

Enzyme immunoassay Sensitivity
(ng/g dry weight)

Intra-assay CV Inter-assay CV

11-oxoaetiocholanalone 2.4 4.24% & 5.31% 1.69% & 7.06%
5α-pregnane-3β-11β-21-triol-20-one 0.6 6.62% & 6.70% 7.33% & 9.79%
Tetrahydrocorticosterone 9.0 6.33% & 6.64% 11.94% & 14.20%
Corticosterone 1.8 4.15% & 5.41% 13.94% & 14.58%

displacement curves that were parallel to the respective standard curves in the two assays
of choice (5α-pregnane-3β-11β-21-triol-20-one and tetrahydrocorticosterone EIAs), with
a relative variation in slope of <4%. All EIAs were performed at the Endocrine Research
Laboratory, University of Pretoria, South Africa, as described previously (Ganswindt et al.,
2002).

Data analysis
A total of six faecal and urine samples were analyzed for each individual. Individual median
fGCM and uGCM concentrations from pre-injection samples were calculated, reflecting
individual baseline concentrations. To determine the effect of the ACTH injection on
the HPA axis, the fGCM and uGCM concentrations from post-injection samples were
converted to percentage response, by calculating the quotient of individual baseline and
related fGCM/uGCM samples. In this regard, a 100% (1-fold) response represents the
baseline value.

Furthermore, themean absolute deviation (MAD) was calculated for the baseline sample
set (pre-injection). The MAD of the particular dataset shows the average distance between
each baseline period data point and the calculated mean thereof, which represents the
variability of the baseline samples collected. Thus, the lower a MAD value is for a specific
EIA, the more stable the assay. Here, the individual baseline uGCM/fGCM concentration
was subtracted from all pre-injection fGCM/uGCM values for each EIA-specific data
set. The differences were noted as absolute values and the mean of the absolute values
calculated, representing the MAD value for each EIA. The MAD values were converted
to a percentage deviation value (MAD/Baseline Value*100) to allow for the comparison
between EIAs. To determine the effect of the ACTH injection, the absolute change in
fGCM and uGCM concentration was determined by calculating the quotient of baseline
and post-injection peak fGCM and uGCM samples. MAD values below 15% were regarded
as preferable.

Themost appropriate EIA formeasuring fGCM and uGCM concentrations in the species
was chosen by comparing (1) the highest post-injection signal and (2) lowest MAD values
observed. Values are given as mean± standard deviation (SD) where applicable. Analytical
statistics and graphical designs were performed using R software (R 3.2.1; R Development
Core Team, 2013).
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Table 2 Urinary and faecal excretion rate, along with the time to peak urinary and faecal glucocorti-
coid metabolite peaks. The average faecal and urine excretion rate for female and male individuals of the
study. Time to peak fGCM and uGCM response, as well as the respective sample numbers, are shown for
each study animal. Values are given as mean± standard deviation.

ID Faecal excretion
rateHours

Urine excretion
rate hours

Time to peak
fGCM sample
post-injection hours
+ (sample number)

Time to peak
uGCM sample
post-injection hours
+ (sample number)

Female 1 56.6± 39.9 38.8± 30.8 24 (1) 27 (1)
Female 2 57.8± 20.0 39.8± 21.3 24 (1) 27 (1)
Male 37.8± 36.1 43.2± 30.8 105 (1) 97 (3)

RESULTS
Defecation rate and MAD results
The average defecation rate (time between defecation events) showed considerable variation
between individuals and matrices (Table 2).

The percentage MAD values were considerably lower in all EIAs when analyzing
faecal (range: 3.17–15.67%) compared to urine (range: 13.31–56.52%) samples. For
faeces, although the corticosterone EIA showed the lowest average percentage MAD value
(mean ± SD = 8.37 ± 5.54%), the remaining three EIAs all showed comparable low
average MAD levels (range: 9.95–11.02%). In contrast, all four EIAs showed high average
percentage MAD levels in urine, with the 11-oxoaetiocholanalone EIA having the lowest
average MAD value (mean ± SD = 17.17 ± 5.77%).

Faecal glucocorticoid metabolite analyses
All four EIAs showed a considerable response (178.46–744.84%) in fGCM concentration
following the ACTH injection in all three study animals (Table 3). For F1, the 5α-
pregnane-3β-11β-21-triol-20-one and tetrahydrocorticosterone EIAs showed the highest
response, exceeding 450%, at 24 h post ACTH administration (Tables 2 and 3, Fig. 1A).
Following this, fGCMconcentrations did not return to baseline levels during themonitoring
period. For F2, the tetrahydrocorticosterone and corticosterone EIA performed best, with
responses exceeding 300%, at 24 h post ACTH injection (Tables 2 and 3, Fig. 1B). The
fGCM concentrations returned to baseline levels 80 h post ACTH administration for
F2. For M1, the 5α-pregnane-3β-11β-21-triol-20-one EIA showed the highest response,
exceeding 700%, at 105 h post ACTH administration (Tables 2 and 3, Fig. 1C). Similar
to F2, the respective fGCM concentrations returned to baseline levels 120 h post ACTH
administration (Fig. 1C).

Urinary glucocorticoid metabolites analysis
Similar to the fGCM findings, all four EIAs showed a considerable response in uGCM
concentrations (149.53%–651.82%) following the ACTH injection (Table 3). For the
two females, the 5α-pregnane-3β–11β–21-triol-20-one and tetrahydrocorticosterone EIA
showed the highest response, exceeding 340%, in the first collected faecal sample 27
h post ACTH administration (Tables 2 and 3, Fig. 2A & Fig. 2B). Respective uGCM
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Table 3 The urinary and faecal glucocorticoid metabolite response following ACTH administration in Smaug giganteus. The peak percentage
glucocorticoid response in both faeces and urine, across all four enzyme immunoassays tested, in the two female and one male individual following
the adrenocorticotropic hormone challenge. Values are given as mean± SD.

ID Matrix 11-oxoaetiocholanolone
(%)

5α-pregnane-3
β-11β-21-triol-20-one
(%)

Tetrahydrocorticosterone
(%)

Corticosterone
(%)

F1 Faeces 230.4 697.5 461.9 214.6
F2 Faeces 178.5 219.5 436.6 317.6
M1 Faeces 262.6 744.8 546.6 307

Mean± SD 223.8± 42.4 554± 290.6 481.7± 57.6 279.7± 56.7
F1 Urine 149.5 341.5 651.8 246.9
F2 Urine 159.7 210.3 554 239.6
M1 Urine 391.3 347.4 347.9 195.3

Mean± SD 233.5± 136.8 299.7± 77.5 517.9± 155.2 227.3± 27.9

concentrations returned to baseline levels at 51 h and 80 h post ACTH administration for
F1 and F2, respectively. In contrast to the female profiles, the highest response to the ACTH
administration in the male was found using the 11-oxoaetiocholanalone EIA (391.37%%),
with both the 5α-pregnane-3β-11β-21-triol-20-one and tetrahydrocorticosterone EIAs
also showing suitable responses (347.36%–347.87%; Fig. 2C). The peak response occurred
97 h post ACTH injection (Table 2), and thus male uGCM concentrations did not return
to baseline levels during the monitoring period.

DISCUSSION
In the current study, the defecation rate of study animals were prolonged and varied
substantially within and between individuals. Extended defecation rates have been observed
in a number of reptile species such as the Italian wall lizard (Podarcis sicula,∼50 h, (Vervust
et al., 2010), veiled chameleon (Chamaeleo calyptratus, ∼96 h, (Kummrow et al., 2011), six
striped runner (Cnedmidophurs sexlineatus, 23–26 h, (Hatch & Afik, 1999) and a variety
of snake species (45–3,180 h, (Lillywhite, De Delva & Noonan, 2002). Additionally, these
studies have also shown high levels of individual variability in terms of gut retention times;
for example, Kummrow et al. (2011) observed an individual excretion rate in C. calyptratus
ranging from 48–120 h, whileHatch & Afik (1999) found the excretion rate inC. sexlineatus
to range from 20–72 h. Understanding species-specific differences and individual variability
in faecal and urinary defecation rates are important for a number of reasons. Firstly, the
infrequent and extended excretion rate of urinary and faecal material in reptiles may
complicate data interpretations (Ganswindt et al., 2014). Furthermore, the movement of
urine into the cloaca (urodeum) beforemoving into the intestines, where urinary and faecal
material can be excreted in unison (Singer, 2003), can further complicate the distinction
between matrix-specific retention time and steroid hormone metabolite excretion routes.
As it is difficult to collect frequent faecal and urine samples consistently in S. giganteus and
other reptile species, it may be advisable to monitor GC metabolite patterns over a longer
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Figure 1 The faecal glucocorticoid metabolite response in the study animals following ACTH admin-
istrations. The percentage fGCM response displayed by each of the four tested enzyme immunoassays for
F1 (A), F2 (B) and the male (C), following ACTH administration (time 0). Pre-injection baseline values
were used as reference concentrations and set as 100%.

Full-size DOI: 10.7717/peerj.6132/fig-1

time period to successfully determine the possible effect a defined stressor may have on an
individual or species (Kummrow et al., 2011).

The MAD values for the four EIAs used in the fGCM analysis indicated low levels of
variation from the predetermined baseline values. In contrast to this, the MAD values
calculated for the four uGCM EIAs showed high levels of variation from calculated baseline
levels. As such, GC metabolite excretion via faeces may be less prone to regular fluctuation
than urine, although further research is required to confirm this.

Following ACTH injection, the peak fGCM response was observed in the first faecal
sample collected from all study animals. Ganswindt et al. (2014) found peak fGCM
concentration, following the ACTH injection, in the first collected faecal sample from
C. niloticus. Similarly, Cikanek et al. (2014) observed peak fGCM concentrations in the
first collected faecal sample in Harlequin frogs (Atelopus certus) following a biological
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Figure 2 The urinary glucocorticoid metabolite response for all study animals following ACTH ad-
ministration. The percentage uGCM response displayed by each of the four tested enzyme immunoassays
for F1 (A), F2 (B) and the male (C) 1, following ACTH administration (time 0). Pre-injection baseline val-
ues were used as reference concentrations and set as 100%.

Full-size DOI: 10.7717/peerj.6132/fig-2

stressor. The pooling of faecal material in the reptile gut, over an extended period of time,
may explain why peak fGCM responses are observed in the first sample post-injection in
reptiles and other infrequent defecators. However, the available literature on reptile fGCM
monitoring is limited, with a number of studies failing to highlight when the peak fGCM
levels were observed or choosing to pool samples into larger time periods (Rittenhouse
et al., 2005). Although all four EIAs displayed considerable peak fGCM responses for
both sexes, the tetrahydrocorticosterone and 5α-pregnane-3β-11β-21-triol-20-one EIA
performed best in our study, based on (i) EIA stability as seen in the low MAD values and
(ii) the magnitude of peak percentage fGCM response following the ACTH injection. As
such, both EIAs seem to be suitable for monitoring alterations in fGCM concentration in
S. giganteus faecal material.
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The peak uGCM concentrations following ACTH administrations were observed in
the first and third collected urine sample for the females and male respectively. To our
knowledge this is the first study to quantify the uGCM response following the activation
of the HPA axis through physiological or biological stressors. In reptiles, the movement of
urine into the intestine, and the resulting pooling effect along with faeces over time, may
explain why peak uGCM responses were observed within the first collected samples for
females and third sample for males. Similar to the fGCM analysis, all four EIAs used during
the study were able to monitor alterations in uGCM concentrations following the ACTH
administration; the tetrahydrocorticosterone and 5α-pregnane-3β-11β-21-triol-20-one
EIAs again showed the highest uGCM response in this regard. With all uGCMMAD values
considerably higher than observed for the fGCM analysis, the peak uGCM response values
were used to determine EIA suitability; in this regard, both the tetrahydrocorticosterone
and 5α-pregnane-3β-11β-21-triol-20-one EIAs were deemed suitable for monitoring
alterations in uGCM concentration in S. giganteus urine.

Conclusion
The ability to monitor physiological stress patterns in endangered reptile species, through
non-invasive hormone monitoring techniques, offers conservationists an ideal tool which
can be implemented within both free-ranging and captive setups with limited effort. With
the increase in human-driven factors leading to substantial decreases in reptile populations,
the need for such techniques are becoming more important. This study has successfully
validated such a technique for monitoring the stress response in S. giganteus in both urine
and faeces by using the 5α-pregnane-3β-11β-21-triol-20-one or tetrahydrocorticosterone
EIA. Both assays showed low MAD values as well as a considerable response in fGCM
and uGCM concentrations following ACTH injection. As such, both sample matrices
can be used to monitor physiological stress in S. giganteus. Despite the results of this
study, a number of uncertainties need to be addressed by researcher conducting further
studies on the topic. Of greatest concern is the observed gut passage time and time to
peak fGCM and uGCM concentrations between individuals. Although the time to peak
fGCM (24 h) and uGCM (27 h) responses were similar in both females, the monitored
male showed a prolonged gut passage time with peak fGCM and uGCM concentrations
81 h and 70 h later, respectively. However, if in fact differences in gut passage time or
GC metabolite patterns between individuals or sexes of the species exist is yet to be
determined by examining larger study populations. Currently, we recommend collecting
only the faecal or urine component for GC metabolite monitoring in S. giganteus. Despite
the limitations of this study the findings increased our understanding of stress hormone
production, metabolism and excretion pattern in the species. We hope this will encourage
and stimulate future research not only on this species, but reptiles in general, especially
concerning the non-invasively examining the physiological stress response linked to a host
of anthropogenic and natural factors.
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