Short-term adsorption of gold using self-flocculating microalga from wastewater and its

regeneration potential by bio-flocculation

Supplementary material

Na Shen* and Evans M.N. Chirwa

Department of Chemical Engineering, University of Pretoria, Pretoria, 0028, South Africa

nashen2016@gmail.com

Adsorption isotherm

The Langmuir isotherm model (1918) essentially describes the monolayer type of adsorption and it is expressed as the following linearized Eq. (1):

$$\frac{C_e}{q_e} = \frac{C_e}{q_m} + \frac{1}{bq_m}$$
(1)

Where, q_e is the amount of metal ions absorbed at equilibrium (mg g⁻¹); C_e is the equilibrium concentration of metal ions remaining in the solution (mg L⁻¹); q_m represents the maximum adsorption capacity (mg g⁻¹) and *b* is a constant related to the energy of adsorption (L mg⁻¹).

The Freundlich isotherm (1906) is represented by the linearized equation as follows:

$$\ln q_e = \ln K_f + \frac{1}{n} \ln C_e \tag{2}$$

Where, K_f is the Freundlich constant related to adsorption capacity of biomass, and n is a constant indicative of biosorption intensity.

Adsorption kinetics

The linearized expression for the Pseudo-first-order is given by the following equation:

$$\ln(q_e - q_t) = \ln q_e - k_1 t \tag{3}$$

The expression for the Pseudo-second-order is given by the following linearized equation:

$$t'_{q_{t}} = \frac{1}{k_{2}q_{e}^{2}} + t'_{q_{e}}$$
(4)

Where, k_1 is the rate constant of Pseudo-first-order adsorption (min⁻¹) and k_2 is the rate constant of second-order adsorption (g mg⁻¹ min⁻¹).

Thermodynamics of adsorption

Based on the thermodynamics, the relation between ΔG° and the equilibrium constant (K) is given by the equation (5):

$$\Delta G^{\circ} = -RT \ln (K) \tag{5}$$

Again, ΔH° and ΔS° of the reaction at constant temperature is related to the ΔG° according to the following equation:

$$\ln (\mathbf{K}) = \frac{\Delta \mathbf{S}^{\circ}}{\mathbf{R}} - \frac{\Delta H^{\circ}}{RT}$$
(6)

Where, K can be considered as the Langmuir constant, b if the system follows Langmuir isotherm and R is the universal gas constant (8.314 J mol⁻¹ K⁻¹). The thermodynamic parameters determine the spontaneity of the reaction and randomness of the system during the sorption process. The ΔH° and ΔS° values of adsorption are measured from the slope and the intercept of the plot between 1/T verses ln (K).