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ABSTRACT 

Aim 

The distribution of marine predators is driven by the distribution and abundance of their prey; areas 

preferred by multiple marine predator species should therefore indicate areas of ecological 

significance. The Southern Ocean supports large populations of seabirds and marine mammals and is 

undergoing rapid environmental change. The management and conservation of these predators and 

their environment relies on understanding their distribution and its link with the biophysical 

environment, since the latter determines the distribution and abundance of prey. We addressed this 

issue by using tracking data from 14 species of marine predators to identify important habitat. 

Location 

Indian Ocean sector of the Southern Ocean. 

Methods 

We used tracking data from 538 tag deployments made over a decade at the Sub-Antarctic Prince 

Edward Islands. For each real track, we simulated a set of pseudo-tracks that allowed a presence-

availability habitat modelling approach that estimates an animal’s habitat preference. Using model 

ensembles of boosted regression trees and random forests we modelled these tracks as a response 

to a set of 17 environmental variables. We combined the resulting species-specific models to 

evaluate areas of mean importance. 

Results 

Real tracking locations covered 39.75 million km2, up to 7,813 km from the Prince Edward Islands. 

Areas of high mean importance were located broadly from the Subtropical Zone to the Polar Frontal 

Zone in summer, and from the Subantarctic to Antarctic Zones in winter. Areas of high mean 

importance were best predicted by factors including wind speed, sea surface temperature, depth 

and current speed. 



Main conclusions 

The models and predictions developed here identify important habitat of marine predators around 

the Prince Edward Islands, and can support the large-scale conservation and management of 

Subantarctic ecosystems and the marine predators they sustain. The results also form the basis of 

future efforts to predict the consequences of environmental change. 
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INTRODUCTION 

The distribution and life history traits of marine predators are influenced by the distribution and 

abundance of their prey, which are themselves affected by physical and biological factors. Therefore, 

marine top predators are touted as sentinels of marine ecosystems, which potentially integrate 

diverse and complex environmental signals (e.g., Boyd & Murray 2001, Moore 2008, Durant et al. 

2009). Accordingly, areas with a high abundance or diversity of foraging top predators are regarded 

as representing ecologically important areas (Block et al. 2003, Hazen et al. 2013). Predators may 

also have significant top-down effects on ecosystems (Heithaus et al. 2008, Baum & Worm 2009). 

Quantitative information on the spatial distribution of marine predator assemblages is therefore 

required to better understand and manage marine systems. This is particularly so given the 

increasing anthropogenic impacts on the oceans (Maxwell et al. 2013, Halpern et al. 2015). While 

the distributions of many marine predator species are becoming well-known, there is an increasing 

emphasis on considering species assemblages to identify important ecological areas and common 

drivers of distribution and habitat use (e.g., Block et al. 2011, Raymond et al. 2015, Patterson et al. 

2016, Thiers et al. 2017). 

The Southern Ocean is a vast area interspersed with very few terrestrial sites where seabirds and 

seals can breed. One such island group is the Prince Edward Islands, comprising Marion Island and 

Prince Edward Island.  At least 29 seabird species and three seal species breed there – collectively 

numbering millions of individuals making the Prince Edward Islands a globally significant site for 

seabirds and seals (Ryan & Bester 2008). In 2013 South Africa declared a 180,633 km2 marine 

protected area in the exclusive economic zone (EEZ) surrounding the islands, partly to protect this 

biodiversity (Lombard et al. 2007). A number of seabird species breeding at the islands have a 

threatened or near-threatened conservation status (Supplementary Table S1). Wide-scale 

environmental changes in the southern Indian Ocean have influenced the population sizes of several 

seal and seabird species breeding at sub-Antarctic islands (Weimerskirch et al. 2003). At the Prince 



Edward Islands, mean sea surface temperatures increased by 1.4°C from 1949-1998 (Mélice et al. 

2003) and such changes, coupled with changes in prey abundance and distribution, are thought to 

affect the abundance and life history parameters of several top predators breeding there (Crawford 

et al. 2014, Wege et al. 2016a). 

Seabirds and marine mammals at the Prince Edward Islands have been studied since the 1950s 

(Cooper & Brown 1990, Bester et al. 2011), with the first studies using tracking devices to investigate 

their at-sea distribution conducted in the early 1990s (Bester & Pansegrouw 1992). Despite decades 

of research, most studies have focussed on individual species and no study has considered the 

distribution of an assemblage of top predators from the Prince Edward Islands. Thus, there is a 

significant gap in our understanding of the common patterns and drivers of marine predator 

distribution, and therefore the ecologically significant areas, in this region. 

In this study, we collate tracking data for 14 species, including 10 seabirds, 3 seals and 1 cetacean 

from the Prince Edward Islands, to contribute to a broader understanding of the distribution and 

habitat use of marine top predators in the Southern Indian Ocean. Specifically, we build habitat 

preference models for each species, based on a set of environmental covariates, and predict areas of 

high habitat preference. We then combine these preference scores for all species to identify 

common areas of high preference.  We focus on overlap and commonality at meso-scales (10s-100s 

of km), at which oceanographic and environmental features are likely to impact the foraging 

distribution of marine top predators. 

 

METHODS 

The Prince Edward Islands (46.9° S, 37.7° E) are situated in the western Indian Ocean sector of the 

Southern Ocean (Figure 1). The islands are the summit of a volcano which rises ~5,000 m from the 

surrounding seafloor. Oceanographically, the region is dominated by the east-flowing Antarctic 



Circumpolar Current and three associated fronts: the Subtropical, Subantarctic and Antarctic Polar 

Fronts (from north-south) (Lutjeharms & Ansorge 2008). 

We collated published and unpublished tracking data for 14 predator species tracked from the 

Prince Edward Islands from 2003-2014 (Table 1; additional details in Supplementary Table S1). 

Animals were tracked using a variety of satellite-linked (Argos) and global positioning system (GPS) 

tags. Details of animal capture and restraint, tags used, tag attachment methods, ethics approval 

and permitting are contained in the references cited in Table 1. After removing tracks with fewer 

than 30 at-sea locations and those flagged based on visual inspection, the data set contained 538 

individual tracks. Complete as well as incomplete tracks were retained. 

All analyses were conducted in the R environment (R Core Team 2017). First, we pre-processed 

tracks using the ‘argosfilter’ package (Freitas 2012) to remove position estimates that created 

location spikes (turning angles <15 and 25 degrees in conjunction with displacements >2.5 and 5 km, 

respectively) and high movement speeds (Freitas et al. 2008). We estimated animal locations at 

regular time intervals by fitting a continuous-time correlated random walk model (Johnson et al. 

2008) to each track using the ‘crawl’ 1.5 package (Johnson 2015). This model accounts for errors 

around Argos location estimates, but we also fit the model to GPS tracks, assuming the same 

accuracy as the highest Argos location quality class. The time interval chosen was the whole number 

nearest the median time interval in the unprocessed tracking data for the given species and tag type 

(Supplementary Table S1). While the tracks therefore had different inherent accuracies, these 

differences are negligible with respect to the spatial scale of variation of the environmental data and 

the scale of the study. The tracking data were classified into ‘summer’ tracks and ‘winter’ tracks. The 

dates defining these two putative seasons for each species were the two minima of tracking effort in 

approximately April and October (Supplementary Figure S1). Where a track comprised dates in both 

seasons we assigned the whole track to the season with the larger proportion of locations. 

We assessed the representativeness of the tracking data for each species in each season by drawing 



curves of the cumulative number of grid cells visited against the number of individuals tracked. The 

order in which individuals were sampled was randomly shuffled to generate 1000 curves in each 

case. The mean of these curves was then modelled as a non-linear asymptotic regression, and the 

cumulative number of cells visited as a percentage of the estimated number of cells at the 

asymptote was used as a measure of the representativeness (cf. Hindell et al. 2003, Lascelles et al. 

2016). 

To characterize the environment potentially available to individuals, and thus allowing a case-control 

design for habitat preference modelling (Aarts et al. 2008), we simulated random or pseudo-tracks.  

For each real track, we simulated 20 pseudo-tracks by fitting a first-order vector autoregressive 

model characterized by the step lengths and turning characteristics of the real track – estimated 

from the random walk model – as detailed in Raymond et al. (2015). This maintains characteristics of 

the real tracks relevant for estimating the space available to an individual if it had no habitat 

preferences. This also means that characteristics of the tracking data due to the tag type (e.g., 

sampling frequency) are reflected in both the real and pseudo tracks for each individual animal, 

thereby minimizing any biases in the final results due to different tag types used on different 

species. The number of pseudo-tracks was chosen, as in Raymond et al. (2015), as a compromise 

between adequately characterizing the available environment and limiting the dataset size for 

computation. Pseudo-locations falling on land were rejected and re-sampled. 

At each real and pseudo-location, we extracted a set of 17 environmental covariates - mainly 

remotely-sensed by satellites - using the ‘raadtools’ (Sumner 2016) and ‘raster’ (Hijmans 2016) 

packages (Table 2; additional details in Supplementary Table S2). For dynamic environmental 

covariates, we matched the date and time of the location to the nearest environmental data in 

space and time. We chose widely available environmental covariates which are commonly used to 

model the habitat of marine predators (Supplementary Table S2). They are assumed to represent 

bio-physical factors influencing predators and/or their prey directly or indirectly; however, some 



covariates may be proxies for unknown or unmeasured environmental factors. 

We assessed habitat preference by modelling the relationship between the space-use of animals and 

environmental covariates. We adopted the aforementioned case-control design (Aarts et al. 2008), 

where location estimates from a real track were treated as presences (1) and the pseudo-locations 

from the 20 simulated tracks were treated as habitat potentially available to an individual (0). 

Classification models were used to discriminate these two sets of points based on their 

environmental covariates (Table 2). 

These habitat preference models do not explicitly account for habitat accessibility – an important 

constraint for central place foragers (such as breeding seabirds and female seals provisioning pups). 

We therefore constructed separate accessibility models for each species for prediction purposes. 

Here, the response was whether a given cell contained any real or pseudo locations (1) (i.e., it was 

potentially accessible) or did not contain any location estimates (0); the sole predictor variable was 

distance from colony, as we assumed accessibility to be a function of distance. Predictions from the 

habitat preference models were then weighted by the predictions from the accessibility models, 

yielding a prediction surface of preference, given availability. The habitat preference predictions are 

not absolute estimates of the probability that a habitat is preferred, and are not directly comparable 

between different species (e.g. Beyer et al. 2010). To enable comparisons between species, we 

therefore transformed each prediction map by percentile to give a habitat importance (hereafter 

percentile habitat) score (Raymond et al. 2015). 

Habitat preference scores were calculated from ensemble models (combination or set of models) 

which combined boosted regression trees (Friedman 2001) and random forests (Breiman 2001). 

These constituent models were fitted through the ‘caret’ (Kuhn 2016) package (Supplementary Table 

S3). Models were tuned by compiling sets of candidate models with different parameter 

combinations and then comparing the average area under the receiver operating characteristic 

curve (AUC) scores – calculated from 10-fold cross validation – of these candidate models 



(Supplementary Tables S3, S4). Cross validation folds were created by randomly dividing individuals 

into 10 groups containing an approximately equal number of individuals. The real and simulated 

tracks from any one individual were always kept together in the same fold. AUC scores calculated 

from random cross validation are usually overoptimistic due to spatial autocorrelation (Hijmans 

2012), but our cross validation scheme should result in AUC scores which reflect the generalized 

model performance more accurately. Indeed, AUC scores calculated using this cross validation 

scheme were on average 0.19 lower (range = -0.31 – -0.08) than those calculated using random 

stratified cross validation during preliminary model runs. We then created ensembles (or 

combinations) of these models by ‘stacking’ them using the ‘caretEnsemble’ package (Deane-Mayer 

& Knowles 2016). The weight of each model in the ensemble (or ‘stack’) is its coefficient in a logistic 

regression of the model predictions (probability of being a real location estimate) against the original 

outcome (real or pseudo-location estimate) (Zhou 2012). Model performance in all cases was 

evaluated using AUC scores. To generate prediction maps, we calculated the mean of each 

environmental covariate for the study period (summer and winter separately) based on input data at 

the same spatio-temporal resolution as that used to model habitat preference. We used ordinary 

Kriging to interpolate any missing values. Values of these variables were then sampled on a new 0.1° 

x 0.1° grid which was used for prediction. By predicting to the mean environmental conditions over 

the study period while matching the locations used in the models to the spatio-temporally nearest 

environmental covariates, the interannual variation typical of this dynamic marine system should be 

accounted for to some extent. However, this assumes that the correlation between animal 

behaviour and environmental covariates holds across years, and interannual variation will likely still 

have some unquantified influence on our output. 

To evaluate which species showed similar habitat preferences, we used affinity propagation 

clustering (Frey & Dueck 2007) to identify the number and composition of clusters (‘apcluster’ 

package; Bodenhofer et al. 2011). For visualization, we calculated kernel utilization distributions 

(Worton 1989) for each species (‘adehabitatHR’ package; Calenge 2006), with h-values selected 



using the ad-hoc method (Silverman 1986). Finally, we calculated mean habitat importance; first, as 

the mean of all percentile habitat scores in each cell. However, because the diverse suite of species 

in this study can be expected to use the environment in different ways, we also calculated mean 

habitat importance scores using the top 8 percentile habitat scores for each cell and using only the 

top four scores – a more lenient overlap measure (cf. Raymond et al. 2015). 

For mapping and further modelling, we used only cells with mean habitat importance in the 95th 

percentile. To identify the environmental variables associated with these areas of high mean 

importance, we also modelled the relationship between mean importance scores and the set of 

environmental covariates using a model ensemble (as above). In this case models were regression 

rather than classification models, as the response values are continuous, and models were evaluated 

using root mean square error (RMSE) and the coefficient of determination (R2). 

 

RESULTS 

We analysed 538 tracks from 14 species, which yielded 244,276 at-sea location estimates, covering 

an area of 39.75 million km2. Location estimates were up to 7,813 km from the deployment location 

(Figure 1). More than half the location estimates (126,835; 52%) were in the EEZ around the Prince 

Edward Islands, but most location estimates (152,265; 62%) were outside the Prince Edward Islands 

marine protected area. Few locations were in the EEZ around mainland South Africa (3,181 

locations; 1.3%). The estimated representativeness of the tracking data for each species ranged from 

32.7% (killer whales) to 96.5% (Subantarctic fur seals) during summer and from 45.0% (killer whales) 

to 97.4% (Subantarctic fur seals) during winter (Supplementary Table S5). 

Many species showed strong directional tendency in their movement, as well as having marked 

differences between summer and winter distributions (Figure 2). Based on the kernel utilization 

distributions, species fell into several groups with similar patterns of space use. In summer, these 



were species with (i) core areas south of the islands (Antarctic fur seal, macaroni penguin and 

rockhopper penguin), (ii) around the islands and to the north (wandering albatross, sooty albatross, 

killer whale, Subantarctic fur seal and grey-headed albatross), (iii) north of the islands, particularly 

near South Africa (white-chinned petrel and Indian yellow-nosed albatross), and (iv) to the south-

west of the islands (southern elephant seal and light-mantled albatross) (Figure 2). In winter, four 

core use areas were identified: (i) to the southwest of the islands (macaroni penguin, Antarctic fur 

seal, rockhopper penguin, king penguin and southern elephant seal), (ii) around the islands 

(Subantarctic fur seal, northern giant petrel and killer whale), (iii) broadly distributed (light-mantled 

albatross and sooty albatross) and (iv) near South Africa (Indian yellow-nosed albatross) (Figure 2). 

Overlap was generally lower in winter than in summer.  

Model performance (AUC) ranged from 0.54-0.85. Boosted regression trees generally had the 

highest AUC scores, but scores were nearly always within one standard deviation of each other 

(Supplementary Figure S2). The predictions of models used in the ensemble generally showed strong 

correlation (mean = 0.83, range = 0.44 – 0.99). 

The predictor variables differed in their importance rank across species and seasons, but during 

summer the variables sea surface temperature (SST), distance to the ice edge (DISTICE), depth (DEP) 

and primary productivity (PROD) (ranked by mean variable relative importance across species) were 

often the most important predictors of habitat preference (Supplementary Figure S3). These four 

predictors had combined importance of 28.2-84.2 (mean = 43.1) across the species. During winter, 

the same four variables were generally most important, but ranked DISTICE, DEP, PROD, SST. Their 

combined importance across species was 28.7-58.0 (mean = 38.2) (Supplementary Figure S3). 

Cluster analysis of the percentile habitat scores indicated four species clusters in summer and in 

winter. Nine species comprised a single large cluster in summer and five species a single cluster in 

winter. In summer, light-mantled sooty albatross, macaroni penguins and white-chinned petrels 

each formed their own independent clusters, while in winter killer whales, sooty albatrosses and 



Indian yellow-nosed albatrosses each formed an independent cluster (Supplementary Figure S4). The 

hierarchical clustering did not match taxonomic relationships among the species. 

Prediction maps for each species are shown in Figure 3. In this figure, we mapped predictions only 

above an arbitrarily chosen threshold of 95, but generally, cells with predicted habitat importance in 

the 99th percentile showed good agreement with kernel utilization distributions. In summer, cells 

with the highest mean habitat importance generally ranged from the approximate location of the 

Antarctic Polar Front to north of the approximate location of the Subtropical Front (Figure 4). Mean 

habitat importance for all species indicated the highest value areas around the Subantarctic Front. In 

contrast to the mean importance calculated for 4 and 8 species, the mean importance for all species 

did not identify as many important cells in proximity to the Prince Edward Islands (Figure 4). In 

winter, the highest mean importance areas (4 and 8 species) included cells slightly further south 

than in summer and areas south and south-west of the islands in the Polar Frontal Zone were 

important (Figure 4). Mean importance for all species highlighted some far-lying areas, including 

small patches nearer the Antarctic continent. The Crozet Islands to the east of the Prince Edward 

Islands were included among important areas. Cells with high mean habitat importance for all 

species were generally more patchily distributed than cells with high mean importance for 4 and 8 

species (Figure 4). 

Areas with the highest mean habitat importance were often situated outside the Prince Edward 

Islands EEZ (Figure 4, Supplementary Figure S5). Within the EEZ, the proportion of important grid 

cells inside versus outside the marine protected area was relatively even across mean habitat 

importance values (Supplementary Figure S5) and the marine protected area often encompassed 

cells with very high mean habitat importance (Supplementary Figure S6). Virtually all cells in the EEZ 

around the Prince Edward Islands met the 95th percentile threshold (see methods) and therefore 

the proportion of important cells in the marine protected area matched the proportion of the EEZ 

represented by the marine protected area (~34%).  



Ensemble models of mean habitat importance indicated that wind (WINDV and WINDU), SST, DEP, 

SST gradient (SSTgrad) and meridional current (CURRV) were generally important environmental 

predictors during summer and winter (Supplementary Figure S7). Partial plots of the predictions 

(Supplementary Figure S8) show similar relationships between mean importance and environmental 

variables across seasons and models. During summer, areas of high mean importance are 

characterised by high SST, negative WINDV (i.e., northerly wind), positive WINDU (i.e., westerly 

wind), shallower DEP, and lower SSTgrad. These relationships were similar during winter, however, 

SST of important areas showed a lower peak, mean habitat importance was high in very shallow and 

very deep areas, and distance to sea ice (DISTICE) of ~1,000 km was related to important areas 

(Supplementary Figure S8). 

 

DISCUSSION 

Using tracking data from 14 species and an ensemble modelling approach, this is the first study that 

quantitatively describes important habitats for an assemblage of marine top predators around the 

Prince Edward Islands in the Southern Indian Ocean. The study illustrates the extensive at-sea 

distribution of predators breeding at the islands. Tracking locations covered nearly 40 million km2, 

with animals travelling nearly 8,000 km from the islands; almost half of the location estimates were 

outside of the South African EEZ. Cluster analysis of the habitat preference model predictions shows 

different habitat use among the species, which is unsurprising considering their taxonomic diversity. 

However, habitat use did not necessarily follow taxonomic similarities. Important areas were 

situated from subtropical waters north of the Subtropical Front to Antarctic waters south of the 

Polar Front (Figure 4). During winter, important areas were more broadly distributed. Seabirds and 

seals are, in general, less constrained by dependent offspring during this time and can search for 

prey more extensively. More extensive search areas may also be required by seasonal changes in the 

abundance and distribution of prey, including possible prey depletion following more concentrated 



summer foraging. 

The Marine Protected Area in South Africa’s EEZ around the Prince Edward Islands was designed 

during a systematic conservation planning study, with the aim of conserving biodiversity patterns 

and processes around the islands, while minimizing constraints of an existing fishery (Lombard et al. 

2007). Kernel utilization distributions for three species – southern elephant seals, wandering 

albatrosses and grey-headed albatrosses – were among the data layers used to define pelagic 

‘flexible processes’. These data identified several of the important areas identified in the present 

study – including areas to the south-west and north-west of the islands – but inadequately 

represented the broader top predator community. Lombard et al. (2007) recommended that new 

information, such as presented here, be used to reassess the spatial plan. The authors also pointed 

to the importance of a management framework beyond the Prince Edward Islands EEZ, and our 

results show that this is indeed necessary. The latter point was also highlighted in a study that used 

tracking data from 10 seabird species at the Crozet, Kerguelen and Amsterdam islands to identify 

Important Bird Areas using criteria set out by BirdLife International (Delord et al. 2014). The authors 

identified 19 candidate Important Bird Areas in the southern Indian and southern Atlantic Oceans, 

several of which include important habitat identified in our study. An analysis of global tracking data 

from 60 seabird species also identified a high concentration of IBAs in the southwest Indian Ocean, 

including many in the high seas (Lascelles et al. 2016). 

Tracking data for nine species of seabirds and marine mammals has similarly been used to identify 

important habitat for top predators around the Kerguelen Archipelago, ~2,300 km east southeast of 

the Prince Edward Islands (Thiers et al. 2017). The authors of that study developed habitat models 

for four of the nine species included, which they considered representative of the top predator 

community at the islands. Using these models, they predicted that the shallow Kerguelen/Heard 

plateau and its shelf-break was important to the community (Thiers et al. 2017), echoing the findings 

of an earlier effort to identify areas of ecological significance based on tracking data for five species 



from Kerguelen and Heard islands (Hindell et al. 2011). The Prince Edward Islands, in contrast, have a 

small (~1,000 km2) shelf between the two islands, limiting shelf and shelf-break habitats for 

predators. Some species made use of distant shelf and shelf-break habitats off South Africa (Indian 

yellow-nosed albatross and white-chinned petrel), but high mean importance areas were generally 

pelagic. This has two notable implications. Firstly, much of the important area is in the high seas, 

beyond the jurisdiction of any nation, which presents a conservation and management challenge 

(Game et al. 2009). Secondly, the processes and features associated with favourable pelagic foraging 

habitat for meso- and apex predators are often dynamic (Hazen et al. 2013). It is therefore important 

to explicitly link predator distributions with environmental data to accurately predict the spatial 

occurrence of such areas for any management actions (Hyrenbach et al. 2000, Game et al. 2009). 

Our habitat models were primarily predictive but the environmental covariates in the models have 

mechanistic links with biological productivity and therefore the distribution and abundance of prey. 

The relative importance of environmental covariates in our habitat models offer some insight into 

the factors that influence top predator distributions. However, it is critical to note that our models 

allow interactions among covariates, and that these interactions are themselves likely to be very 

important (Dorman 2007). 

In species-specific models, sea surface temperature, primary productivity and depth were often 

important predictors of habitat preference. In a tagging study of 23 top predator species in the 

Pacific Ocean, Block et al. (2011) showed a positive relationship between SST and predator 

abundance. Similarly, a global analysis of marine species richness showed that SST was the best 

predictor of species richness across diverse taxa (Tittensor et al. 2010). In the same study, however, 

primary productivity was a better predictor of species richness in cetaceans and pinnipeds (Tittensor 

et al. 2010). In our species-specific models, productivity was also of high importance. SST and 

productivity are linked and are among the main factors influencing ocean ecosystems (Kaiser et al. 

2005, Garrison 2009). While these predictors may be decoupled in time and space, and from prey 

availability at higher trophic levels (e.g., Grémillet et al. 2008), we might expect that they broadly 



indicate profitable foraging areas for marine top predators (e.g., Block et al. 2011). Depth is also an 

important predictor in both species-specific and mean habitat importance models and bottom slope 

was important in a winter mean habitat importance model. Bathymetric characteristics have often 

been linked to predator diversity (Morato et al. 2010, Bouchet et al. 2015), as the seafloor has a 

fundamental influence on biophysical processes (Kaiser et al. 2005, Garrison 2009). For example, 

features like seamounts and shelf breaks can interact with currents to increase vertical mixing and 

upwelling, which increases productivity and in turn may attract higher order predators (Morato et al. 

2010, Bouchet et al. 2015). 

SSTgrad, SSHA and SSHgrad are linked to ocean fronts and eddies, which are considered important 

to a range of marine top predators (Nel et al. 2001, Bost et al. 2009, Scales et al. 2014). While these 

had moderate influence for some species (e.g., light-mantled albatross in summer), only SSTgrad was 

an important predictor in the mean habitat importance models, and the direction of this relationship 

was contrary to expectation, with lower SSTgrad in high mean importance areas. Eddy kinetic energy 

was a poor predictor even in species-specific models. It may be that such associations will only be 

detected at finer spatio-temporal scales, or if along-track behaviour of the animals is modelled 

rather than using a case-control design (see below).  

In terms of mean habitat importance, SST was influential but wind typically had a greater influence. 

Wind affects the depth of the mixed layer (MLD), which in turn affects primary productivity and 

chlorophyll-a concentration (Sallée et al. 2010), but it is interesting that these variables themselves 

(CHL, PROD, MLD) were not of higher importance than wind for predicting mean importance 

(although both PROD and CHL were generally more influential in species-specific models). Our use of 

monthly climatologies (MLD and CHL) and coarse resolution data (MLD) may have masked this 

relationship, as well as the secondary nature of the mean habitat importance model. Response 

curves for the environmental variables, particularly SST and WINDU, illustrate the seasonal 

southward shift of important areas, from the Subtropical and Subantarctic Zones in summer to a 



more Polar Frontal Zone distribution in winter. 

Given the diverse space-use and foraging strategies of predators included in this study, it is possible 

that these factors identified as most influential for mean habitat importance only correlate with high 

mean importance areas, rather than being the mechanistic cause thereof. This should have been 

alleviated somewhat by using only the 4 or 8 highest species scores for each cell, which should select 

sets of predators with similar responses to environmental conditions (as identified in the cluster 

analysis). However, different sets of predators will be selected in each case which may preclude 

broad inference in this study. The dataset we assembled may be used to further explore such 

mechanistic links. However, our results show that there is unlikely to be a simple relationship linking 

areas of high top predator overlap with environmental predictors in this region. The results 

underscore the utility of predictive modelling for management and conservation purposes. Along 

with other studies around French and Australian islands in the Indian Ocean sector of the Southern 

Ocean (Hindell et al. 2011, Delord et al. 2014, Patterson et al. 2016, Thiers et al. 2017), we show the 

advantages of analysing multi-species tracking data to identify important marine habitat for top 

predators, but also illustrate diverse foraging areas and space-use patterns for sub-Antarctic top 

predators breeding at different archipelagos. 

 

Limitations and future research 

The study makes a significant contribution to our knowledge of marine top predator distribution in 

the Southern Ocean. However, some caveats should be noted. 

The tracking data available for the study are not representative of all top predators breeding at the 

Prince Edward Islands. Although we included a broad range of taxa with varied foraging strategies, 

smaller seabirds are not represented due to the logistical challenges of tracking them. Inshore-

feeding species – Gentoo penguins (Pygoscelis papua) and Crozet shags (Phalacrocorax [atriceps] 



melanogenis) – were also not included. However, the inter-island shelf and inshore areas typically 

used by the latter species (e.g., Carpenter-Kling et al. 2017) represent a very small number of grid 

cells in our study, and most of these cells are already highlighted. Therefore, the inclusion of tracking 

data for these species would be unlikely to significantly change our findings. 

Not all life history stages of each species are represented in our study: data are primarily from adult 

individuals, and breeding phases are better represented. Although our analysis suggests that 

tracking data are representative of the population of each species, these results apply only to the life 

history stage during tracking. Moreover, representativeness can only be estimated and, in our 

method, the representativeness score was dependent on the non-linear regression used. 

We compared environmental covariates along observed tracks to those along simulated tracks to 

estimate broad-scale habitat preferences. Alternatively, we could calculate indices of foraging 

behaviour (or ‘area-restricted search’) along each track and compare characteristics of putative 

foraging locations with those of putative non-foraging locations (e.g., Reisinger et al. 2015). While 

this may reveal environmental features related to foraging specifically, the selected indices of 

foraging behaviour may show weak correspondence with actual foraging (e.g., Weimerskirch et al. 

2007, Ramasco et al. 2015) and a single index might not be appropriate across species with different 

foraging modes. Furthermore, this approach typically does not account for environments that were 

available but not used by the animals, which may underestimate habitat preference. 

The data and results presented here form the basis of future efforts to predict the consequences of 

environmental change (e.g., Hazen et al. 2013) and it would be useful to identify species 

representative of the distribution of the broader suite of marine predators. Explicitly identifying 

specific priority areas requires choosing thresholds for habitat percentile and mean habitat 

importance values, and further work is required in this regard. Further effort should also be directed 

towards exploring alternative approaches for modelling the distribution and overlap of this set of 

marine top predators, including multivariate models (e.g., Elith & Leathwick 2007, Warton et al. 



2015). 
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TABLES 

Table 1 

Tracking data from 14 top predator species used to model important habitat around the Prince Edward Islands. Further details in Supplementary Table S1. 

DEA – Department of Environmental Affairs; MRI – Mammal Research Institute; FIAO – FitzPatrick Institute for African Ornithology. 

Family Species Common name Abbreviation Tracks 

(n) 

Start date End date Location 

estimates 

(n) 

Reference/data source 

Birds         

Albatrosses Phoebetria palpebrata Light-mantled albatross LMS 23 2008/04/13 2014/01/15 7845 DEA unpubl. data 

FIAO unpubl. data 

Albatrosses Phoebetria fusca Sooty albatross DMS 41 2008/04/02 2013/12/31 16072 DEA unpubl. data 

Schoombie et al. 2017 

Albatrosses Thalassarche chrysostoma Grey-headed albatross GHA 47 2012/12/16 2014/12/29 23860 FIAO unpubl. data 

Albatrosses Thalassarche carteri Indian yellow-nosed 

albatross 

IYA 24 2008/12/18 2011/03/31 1813 DEA unpubl. data 

Albatrosses  Diomedea exulans Wandering albatross WAB 26 2009/04/15 2014/03/30 8453 FIAO unpubl. data 

Penguins Aptenodytes patagonicus King penguin KIN 16 2008/04/03 2013/07/31 14451 Pistorius et al. 2017 

Penguins Eudyptes chrysocome Southern rockhopper 

penguin 

SRP 60 2008/04/19 2014/03/26 9772 DEA unpubl. data 

FIAO unpubl. data 

Whitehead et al. 2016 

Penguins Eudyptes chrysolophus Macaroni penguin MAC 57 2008/04/01 2013/12/24 22123 DEA unpubl. data 

FIAO unpubl. data 



Whitehead et al. 2016 

Petrels Procellaria aequinoctialis White-chinned petrel WCP 19 2012/12/05 2013/03/09 11240 FIAO unpubl. data 

Petrels Macronectes halli Northern giant petrel NGP 10 2008/04/07 2010/10/26 2962 DEA unpubl. data 

Mammals         

Dolphins Orcinus orca Killer whale ORC 10 2012/04/28 2013/05/21 1991 Reisinger et al. 2015 

Eared seals Arctocephalus gazella Antarctic fur seal AFS 41 2009/12/10 2014/08/05 31245 Wege 2017 

Eared seals Arctocephalus tropicalis Subantarctic fur seal SFS 76 2009/04/26 2013/09/06 62119 de Bruyn et al. 2009 

Kirkman et al. 2016 

Wege et al. 2016b 

Wege 2017 

True seals Mirounga leonina Southern elephant seal SES 88 2003/11/03 2013/01/08 30330 McIntyre et al. 2012 

Tosh et al. 2012 

Tosh et al. 2015 

MRI unpubl. data 

Total: 14   538   244276  

  



Table 2 

Environmental variables used as predictors in habitat selectivity models for 14 top predator species tracked from the Prince Edward Islands. Further details 

in Supplementary Table S2. 

Abbreviati

on 

Description Type Unit Spatial 

resolution 

Temporal 

resolution 

Source 

DEP Ocean depth Static m 0.02° - General Bathymetric Chart of the Oceans hosted by the British 

Oceanographic Data Centre 

TRI Terrain ruggedness index (Wilson et al. 

2007) 

Static - 0.02° - Derived from DEP 

SLOPE Ocean floor slope Static ° 0.02° - Derived from DEP 

SST Sea surface temperature Dynamic °C 0.25° Monthly NOAA/OAR/ESRL 

SSTgrad Sea surface temperature gradient Dynamic ° 0.25° Monthly Derived from SST 

SSHa Sea surface height anomaly Dynamic m 0.12° Daily Ssalto/Duacs, produced and distributed by the Copernicus 

Marine and Environment Monitoring Service 

SSHgrad Sea surface height gradient Dynamic ° 0.25° Daily Produced by Ssalto/Duacs, distributed by Aviso with support 

from Cnes 

CURRU Horizontal (zonal) geostrophic velocity Dynamic cm/s 0.25° Weekly Produced by Ssalto/Duacs, distributed by Aviso with support 

from Cnes 

CURRV Vertical (meridional) geostrophic velocity Dynamic cm/s 0.25° Weekly Produced by Ssalto/Duacs, distributed by Aviso with support 

from Cnes 

EKE Eddy kinetic energy Dynamic cm2/s2 0.25° Weekly Derived from CURRU and CURRV 

MLD Mixed layer depth Climatolo

gy 

m 1° Monthly Scripps Institution of Oceanography/UCSD 

CHLA Chlorophyll-a concentration Climatolo

gy 

mg/m3 9 km Monthly NASA Goddard Space Flight Center, Ocean Ecology Laboratory, 

Ocean Biology Processing Group 

PROD Net primary production Dynamic mg C/m2/day 0.08° Monthly Ocean Productivity Web 



ICE Sea ice concentration Dynamic % 25 km Monthly National Snow and Ice Data Center 

DISTICE Distance from sea ice concentration 

>15% 

Dynamic km 25 km Monthly Derived from ICE 

WINDU Horizontal (zonal) wind Dynamic m/s 1.9° Daily NOAA/OAR/ESRL PSD 

WINDV Vertical (meridional) wind Dynamic m/s 1.9° Daily NOAA/OAR/ESRL PSD 

 

 



FIGURES 

 

Figure 1 

Location estimates for 538 tracking deployments on 14 species of marine predators at the Prince 

Edward Islands (filled black point), used to model important habitat around the islands. Utilization 

distributions for each species are shown in Figure 2. 

AFS – Antarctic fur seal, DMS – sooty albatross, GHA – grey-headed albatross, IYA – Indian yellow-

nosed albatross, KIN – king penguin, LMS – light-mantled albatross, MAC – macaroni penguin, NGP – 

northern giant petrel, ORC – killer whale, SES – southern elephant seal, SFS – Subantarctic fur seal, 

SRP – rockhopper penguin, WAB – wandering albatross, WCP – white-chinned petrel.  



 

 

Figure 2 

Kernel utilization distributions of 14 predator species tracked from the Prince Edward Islands during 

summer (green) and winter (purple). Lower utilization distribution values, typically below 50%, 

indicate the core areas. Grey lines indicate positions of major fronts after Orsi et al. (1995); from 

north to south: the Subtropical Front, Subantarctic Front, Antarctic Polar Front, Southern Antarctic 

Circumpolar Front and the southern boundary of the Antarctic Circumpolar Current. 

AFS – Antarctic fur seal, DMS – sooty albatross, GHA – grey-headed albatross, IYA – Indian yellow-

nosed albatross, KIN – king penguin, LMS – light-mantled albatross, MAC – macaroni penguin, NGP – 

northern giant petrel, ORC – killer whale, SES – southern elephant seal, SFS – Subantarctic fur seal, 

SRP – rockhopper penguin, WAB – wandering albatross, WCP – white-chinned petrel.  





 

 

 Figure 3 

Habitat preference predictions of ensemble models for 14 predator species tracked from the Prince 

Edward Islands during a) summer and b) winter. Predictions have been percentile-transformed to 

yield a habitat importance score which is comparable among species, and only cells with values >95 

are shown (representing 5% of the most important cells in the study area). Grey lines show the 

positions of oceanographic fronts, as in Figure 2. 

AFS – Antarctic fur seal, DMS – sooty albatross, GHA – grey-headed albatross, IYA – Indian yellow-

nosed albatross, KIN – king penguin, LMS – light-mantled albatross, MAC – macaroni penguin, NGP – 

northern giant petrel, ORC – killer whale, SES – southern elephant seal, SFS – Subantarctic fur seal, 

SRP – rockhopper penguin, WAB – wandering albatross, WCP – white-chinned petrel.



 

Figure 4 

Maps showing mean habitat importance scores for top predators tracked from the Prince Edward 

Islands during summer (left panels) and winter (right panels). Habitat importance was calculated as 

the mean of the four highest scores in each cell (upper panels), eight highest scores in each cell 

(middle panels) and of all scores in each cell (bottom panels). Only cells with scores in the 95th 

percentile are shown. Solid black lines show the South African Exclusive Economic Zone, solid red 

lines show the Prince Edward Islands Marine Protected Area, and dashed black lines show average 

locations of important oceanographic fronts (Orsi et al. 1995). From north to south these are: the 

Subtropical Front, Subantarctic Front, Antarctic Polar Front, Southern Antarctic Circumpolar Current 

Front, and the southern boundary of the Antarctic Circumpolar Current.
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Supplementary Table S1 

Tracking data from 14 top predator species used to model important habitat around the Prince Edward Islands. Conservation status after the IUCN RedList 

(2016): DD – Data Deficient; EN – Endangered; LC – Least Concern; NT – Near-Threatened; VU – Vulnerable. DEA – Department of Environmental Affairs; 

MRI – Mammal Research Institute; FIAO – FitzPatrick Institute for African Ornithology 

Family Species Common name 
Abbre-

viation 

Conservation 

status 
Tag type 

Tracks 

(n) 
Start date End date 

Time 

step 

(hours) 

Location 

estimates 

(n) 

Reference/data 

source 

Birds            

Albatrosses 

(Diomedeidae) 
Phoebetria palpebrata 

Light-mantled 

albatross 
LMS NT Argos; GPS 23 2008/04/13 

2014/01/

15 
6; 2 7845 

DEA unpubl. data 

FIAO unpubl. data 

Albatrosses 

(Diomedeidae) 
Phoebetria fusca Sooty albatross DMS EN Argos; GPS 41 2008/04/02 

2013/12/

31 
7; 1 16072 

DEA unpubl. data 

Schoombie et al. 

2017 

Albatrosses 

(Diomedeidae) 
Thalassarche chrysostoma 

Grey-headed 

albatross 
GHA EN GPS 47 2012/12/16 

2014/12/

29 
1 23860 FIAO unpubl. data 

Albatrosses 

(Diomedeidae) 
Thalassarche carteri 

Indian yellow-nosed 

albatross 
IYA EN Argos 24 2008/12/18 

2011/03/

31 
6 1813 DEA unpubl. data 

Albatrosses 

(Diomedeidae) 
 Diomedea exulans Wandering albatross WAB VU Argos; GPS 26 2009/04/15 

2014/03/

30 
2; 1 8453 FIAO unpubl. data 

Penguins 

(Spheniscidae) 
Aptenodytes patagonicus King penguin KIN LC Argos 16 2008/04/03 

2013/07/

31 
3 14451 Pistorius et al. 2017 

Penguins 

(Spheniscidae) 
Eudyptes chrysocome 

Southern 

rockhopper penguin 
SRP VU Argos; GPS 60 2008/04/19 

2014/03/

26 
3; 1 9772 

DEA unpubl. data 

FIAO unpubl. data 

Whitehead et al. 

2016 

Penguins 

(Spheniscidae) 
Eudyptes chrysolophus Macaroni penguin MAC VU Argos; GPS 57 2008/04/01 

2013/12/

24 
1 22123 

DEA unpubl. data 

FIAO unpubl. data 



Whitehead et al. 

2016 

Petrels (Procellariidae) Procellaria aequinoctialis 
White-chinned 

petrel 
WCP VU GPS 19 2012/12/05 

2013/03/

09 
1 11240 FIAO unpubl. data 

Petrels (Procellariidae) Macronectes halli 
Northern giant 

petrel 
NGP LC Argos 10 2008/04/07 

2010/10/

26 
6 2962 DEA unpubl. data 

Mammals            

Dolphins 

(Delphinidae) 
Orcinus orca Killer whale ORC DD Argos 10 2012/04/28 

2013/05/

21 
3 1991 Reisinger et al. 2015 

Eared seals (Otariidae) Arctocephalus gazella Antarctic fur seal AFS LC Argos 41 2009/12/10 
2014/08/

05 
3 31245 Wege 2017 

Eared seals (Otariidae) Arctocephalus tropicalis Subantarctic fur seal SFS LC Argos 76 2009/04/26 
2013/09/

06 
3 62119 

de Bruyn et al. 2009 

Kirkman et al. 2016 

Wege et al. 2016 

Wege 2017 

True seals (Phocidae) Mirounga leonina 
Southern elephant 

seal 
SES LC Argos 88 2003/11/03 

2013/01/

08 
12 30330 

McIntyre et al. 2012 

Tosh et al. 2012 

Tosh et al. 2015 

MRI unpubl. data 

Total: 14    Total: 538    244276  

  



Supplementary Table S2 

Environmental variables used as predictors in habitat selectivity models for 14 top predator species tracked from the Prince Edward Islands. 

Abbrevia

tion 

Description Type Unit Spatial 

resolution 

Temporal 

resolution 

Source and URL 

DEP Ocean depth 

GEBCO_08 grid 

Static m 0.02° - General Bathymetric Chart of the Oceans hosted by the British 

Oceanographic Data Centre 

http://www.gebco.net/data_and_products/gridded_bathymetry_data

/ 

TRI Terrain ruggedness index (Wilson et al. 2007) 

Calculated from DEP using raster package 

Static NA 0.02° - Derived from DEP 

SLOPE Ocean floor slope 

Calculated from DEP using raster package 

Static ° 0.02° - Derived from DEP 

SST Sea surface temperature 

NOAA optimum interpolation sea surface temperature, 

version 2. 

Dynamic °C 0.25° Monthly NOAA/OAR/ESRL 

https://www.ncdc.noaa.gov/oisst 

SSTgrad Sea surface temperature gradient 

Calculated from SST using raster package 

Dynamic ° 0.25° Monthly Derived from SST 

SSHa Sea surface height anomaly 

Delayed-time, multi altimeter satellite, gridded sea surface 

heights computed with respect to a twenty-year mean (DT-

MSLA-H) 

Dynamic m 0.12° Daily Ssalto/Duacs, produced and distributed by the Copernicus Marine and 

Environment Monitoring Service 

http://marine.copernicus.eu 

http://marine.copernicus.eu/services-portfolio/access-to-

products/?option=com_csw&view=details&product_id=SEALEVEL_GL

O_SLA_MAP_L4_REP_OBSERVATIONS_008_027 

SSHgrad Sea surface height gradient 

Gradient of delayed-time, multi altimeter satellite, gridded 

sea surface heights (DT-MADT-H), calculated using raster 

package 

Dynamic ° 0.25° Daily Ssalto/Duacs. distributed by Aviso with support from Cnes 

http://www.aviso.altimetry.fr/duacs/ 

http://www.aviso.altimetry.fr/en/data/products/sea-surface-height-

products/global/madt-h-uv.html 

CURRU Horizontal (zonal) geostrophic velocity 

Delayed-time, multi-altimeter satellite, gridded vertical 

geostrophic velocity (DT-MADT-UV) 

Dynamic cm/s 0.25° Weekly Ssalto/Duacs. distributed by Aviso with support from Cnes 

http://www.aviso.altimetry.fr/duacs/ 

http://www.aviso.altimetry.fr/en/data/products/sea-surface-height-

http://www.gebco.net/data_and_products/gridded_bathymetry_data/
http://www.gebco.net/data_and_products/gridded_bathymetry_data/
https://www.ncdc.noaa.gov/oisst
http://www.marine.copernicus.eu/
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=SEALEVEL_GLO_SLA_MAP_L4_REP_OBSERVATIONS_008_027
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=SEALEVEL_GLO_SLA_MAP_L4_REP_OBSERVATIONS_008_027
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=SEALEVEL_GLO_SLA_MAP_L4_REP_OBSERVATIONS_008_027
http://www.aviso.altimetry.fr/duacs/
http://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/madt-h-uv.html
http://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/madt-h-uv.html
http://www.aviso.altimetry.fr/duacs/
http://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/madt-h-uv.html


products/global/madt-h-uv.html 

CURRV Vertical (meridional) geostrophic velocity 

Delayed-time, multi-altimeter satellite, gridded vertical 

geostrophic velocity (DT-MADT-UV) 

Dynamic cm/s 0.25° Weekly Ssalto/Duacs. distributed by Aviso with support from Cnes 

http://www.aviso.altimetry.fr/duacs/ 

http://www.aviso.altimetry.fr/en/data/products/sea-surface-height-

products/global/madt-h-uv.html 

EKE Eddy kinetic energy 

Calculated from CURRU and CURRV as: 

EKE = 0.5(CURRU2 + CURRV2) 

Dynamic cm2/s2 0.25° Weekly Derived from CURRU and CURRV 

MLD Mixed layer depth 

Monthly mixed layer depth climatology, 2000-2015, compiled 

from Argo profiles using the hybrid algorithm 

Climatology m 1° Monthly Scripps Institution of Oceanography/UCSD 

http://mixedlayer.ucsd.edu 

CHL Chlorophyll-a concentration 

Chlorophyll-a concentration from NOAA MODIS Aqua (OCI 

Algorithm) 

Climatology mg/m3 9 km Monthly NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean 

Biology Processing Group 

http://oceancolor.gsfc.nasa.gov/cms/doi/10.5067/AQUA/MODIS/L3B/

CHL/2014 

PROD Net primary production 

Carbon net primary production calculated using the Vertically 

Generalized Production Model 

Dynamic mg 

C/m2/day 

0.08° Monthly Ocean Productivity Web 

http://www.science.oregonstate.edu/ocean.productivity/standard.pro

duct.php 

ICE Sea ice concentration 

Near-real-time DMSP SSMIS gridded sea ice concentrations 

version 1 

Dynamic % 25 km Monthly National Snow and Ice Data Center 

http://nsidc.org/data/NSIDC-0081 

DISTICE Distance from sea ice 

Distance to nearest cell with sea ice concentration >15%; 

calculated from ICE 

Dynamic km 25 km Monthly Derived from ICE 

WINDU Horizontal (zonal) wind 

NCEP/DOE AMIP-II Reanalysis (Reanalysis-2) 

Dynamic m/s 1.9° Daily NOAA/OAR/ESRL PSD 

http://www.esrl.noaa.gov/psd/ 

http://www.esrl.noaa.gov/psd/cgi-

bin/db_search/DBSearch.pl?&Dataset=NCEP/DOE+AMIP-

II+Reanalysis+(Reanalysis-2)+Daily+Averages&Variable=U-wind 

WINDV Vertical (meridional) wind Dynamic m/s 1.9° Daily NOAA/OAR/ESRL PSD 

http://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/madt-h-uv.html
http://www.aviso.altimetry.fr/duacs/
http://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/madt-h-uv.html
http://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/madt-h-uv.html
http://mixedlayer.ucsd.edu/
http://oceancolor.gsfc.nasa.gov/cms/doi/10.5067/AQUA/MODIS/L3B/CHL/2014
http://oceancolor.gsfc.nasa.gov/cms/doi/10.5067/AQUA/MODIS/L3B/CHL/2014
http://www.science.oregonstate.edu/ocean.productivity/standard.product.php
http://www.science.oregonstate.edu/ocean.productivity/standard.product.php
http://nsidc.org/data/NSIDC-0081
http://www.esrl.noaa.gov/psd/
http://www.esrl.noaa.gov/psd/cgi-bin/db_search/DBSearch.pl?&Dataset=NCEP/DOE+AMIP-II+Reanalysis+(Reanalysis-2)+Daily+Averages&Variable=U-wind
http://www.esrl.noaa.gov/psd/cgi-bin/db_search/DBSearch.pl?&Dataset=NCEP/DOE+AMIP-II+Reanalysis+(Reanalysis-2)+Daily+Averages&Variable=U-wind
http://www.esrl.noaa.gov/psd/cgi-bin/db_search/DBSearch.pl?&Dataset=NCEP/DOE+AMIP-II+Reanalysis+(Reanalysis-2)+Daily+Averages&Variable=U-wind


NCEP/DOE AMIP-II Reanalysis (Reanalysis-2) http://www.esrl.noaa.gov/psd/ 

http://www.esrl.noaa.gov/psd/cgi-

bin/db_search/DBSearch.pl?&Dataset=NCEP/DOE+AMIP-

II+Reanalysis+(Reanalysis-2)+Daily+Averages&Variable=V-wind 

  

http://www.esrl.noaa.gov/psd/
http://www.esrl.noaa.gov/psd/cgi-bin/db_search/DBSearch.pl?&Dataset=NCEP/DOE+AMIP-II+Reanalysis+(Reanalysis-2)+Daily+Averages&Variable=V-wind
http://www.esrl.noaa.gov/psd/cgi-bin/db_search/DBSearch.pl?&Dataset=NCEP/DOE+AMIP-II+Reanalysis+(Reanalysis-2)+Daily+Averages&Variable=V-wind
http://www.esrl.noaa.gov/psd/cgi-bin/db_search/DBSearch.pl?&Dataset=NCEP/DOE+AMIP-II+Reanalysis+(Reanalysis-2)+Daily+Averages&Variable=V-wind


Supplementary Table S3 

Tuning parameters tested for each modelling approach. Method – method argument to the train 

function in R package caret (Kuhn 2016). R package – R package called by caret for model fitting. 

Tuning parameters – tuning parameters which were tested for each model; the best parameter 

combination was chosen per mean area under the receiver operating characteristic curve during 10-

fold cross validation. The final parameters chosen are listed in Supplementary Table S4.  

Modelling 

approach 

Method R package Tuning parameters Values 

Boosted regression 

trees (BRT) 

gbm gbm 

(Ridgeway 2015) 

Number of trees 

(n.trees) 

1-10,000 at 1000 intervals 

   Learning rate/shrinkage 

(shrinkage) 

0.1, 0.5, 0.01, 0.005 

   Tree complexity/interaction depth 

(interaction.depth) 

1, 3, 5, 9 

   Minimum number of observations in a node 

(n.minobsinnode) 

20 

Random forests 

(RF) 

rf randomForest 

(Liaw & Wiener 2002) 

Number of predictors selected at each node 

(mtry) 

3, 4, 5 

 

Liaw, A., Wiener, M. (2002) Classification and Regression by randomForest. R News, 2, 18-22. 

Ridgeway, G. (2015) gbm: Generalized Boosted Regression Models. R package version 2.1.1. 

https://CRAN.R-project.org/package=gbm 



Supplementary Table S4 

Parameter values used to fit summer and winter habitat preference models for 14 marine predator 

species at the Prince Edward Islands. Model details are given in the methods and in Supplementary 

Table S3. GBM – boosted regression trees, RF – random forests. 

AFS – Antarctic fur seal, DMS – sooty albatross, GHA – grey-headed albatross, IYA – Indian yellow-

nosed albatross, KIN – king penguin, LMS – light-mantled albatross, MAC – macaroni penguin, NGP – 

northern giant petrel, ORC – killer whale, SES – southern elephant seal, SFS – Subantarctic fur seal, 

SRP – rockhopper penguin, WAB – wandering albatross, WCP – white-chinned petrel. 

Species Season GBM RF 

interaction.depth n.trees shrinkage n.minobsinnode mtry 

AFS Summer 3 1000 0.005 20 3 

AFS Winter 5 2000 0.005 20 3 

DMS Summer 5 1000 0.01 20 5 

DMS Winter 3 7000 0.005 20 5 

GHA Summer 9 1000 0.005 20 5 

GHA Winter - - - - - 

IYA Summer 3 1000 0.005 20 3 

IYA Winter 9 4000 0.01 20 3 

KIN Summer - - - - - 

KIN Winter 9 1000 0.01 20 5 

LMS Summer 3 6000 0.005 20 4 

LMS Winter 5 1000 0.005 20 3 

MAC Summer 1 1000 0.005 20 3 

MAC Winter 1 3000 0.005 20 4 

NGP Summer - - - - - 

NGP Winter 5 1000 0.1 20 4 

ORC Summer 1 1000 0.005 20 3 

ORC Winter 3 1000 0.005 20 5 

SES Summer 1 1000 0.01 20 3 

SES Winter 5 1000 0.005 20 4 

SFS Summer 5 1000 0.005 20 3 

SFS Winter 3 1000 0.005 20 3 

SRP Summer 1 1000 0.005 20 3 

SRP Winter 5 4000 0.01 20 3 

WAB Summer 5 1000 0.005 20 3 

WAB Winter - - - - - 

WCP Summer 3 1000 0.01 20 3 



WCP Winter - - - - - 

 

  



Supplementary Table S5 

Estimated representativeness of the tracking data for each species. Values represent the actual 

number of cells used as a percentage of the asymptote of the number of cells predicted by non-

linear regression of accumulation curves. 

Species Representativeness 

Abbreviation Common name Summer Winter 

AFS Antarctic fur seal 96.4 87.8 

DMS Sooty albatross 78.7 80.6 

GHA Grey-headed albatross 84.6 - 

IYA Indian yellow-nosed albatross 67.6 96.2 

KIN King penguin - 83.8 

LMS Light-mantled albatross 89.1 60.1 

MAC Macaroni penguin 86.3 68.2 

NGP Northern giant petrel - 87.7 

ORC Killer whale 32.7 45.0 

SES Southern elephant seal 65.9 89.2 

SFS Subantarctic fur seal 96.5 97.4 

SRP Southern rockhopper penguin 86.4 61.7 

WAB Wandering albatross 83.7 - 

WCP White-chinned petrel 81.0 - 

 

 



 

 

 

Supplementary Figure S1 

Tracking effort by species and month for the 14 top predator species used in this study. Further 

details of the tracking data are given in Supplementary Table S1.  

0

5000

Sooty albatross

Grey-headed albatross

Indian yellow-nosed albatross

Light-mantled albatross

Wandering albatross

King penguin

Macaroni penguin

Southern rockhopper penguin

Northern giant petrel

White-chinned petrel

Killer whale

Antarctic fur seal

Subantarctic fur seal

Southern elephant seal

1 2 3 4 5 6 7 8 9 10 11 12 0 5000 10000 15000

Month

Number of tracking days

(per species per month)

0 1000 2000



 

 

Supplementary Figure S2 

Model performance of two model types –boosted regression trees (GBM) and random forests (RF) – 

and an ensemble of these two models, used to model the habitat preference of 14 top predator 

species tracked from the Prince Edward Islands. 

Model performance was measured as the mean area under the receiver operating characteristic 

curve (AUC) during 10-fold cross validation. Error bars represent standard deviations of the AUC 

scores. 

AFS – Antarctic fur seal, DMS – sooty albatross, GHA – grey-headed albatross, IYA – Indian yellow-

nosed albatross, KIN – king penguin, LMS – light-mantled albatross, MAC – macaroni penguin, NGP – 

northern giant petrel, ORC – killer whale, SES – southern elephant seal, SFS – Subantarctic fur seal, 

SRP – rockhopper penguin, WAB – wandering albatross, WCP – white-chinned petrel.  
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Supplementary Figure S3 

Overall relative variable importance of 17 environmental covariates used in ensemble models to 

model the habitat preference of 14 top predator species tracked from the Prince Edward Islands. 

Variable importance was calculated by taking the mean of the variable importance across each 

model in the ensemble (boosted regression tree and random forest), weighted by the model’s 

weight in the ensemble (refer to Methods). The value of DEP in Summer ORC is 71.2, but the bar has 

been truncated at 40.0 for presentation. 

AFS – Antarctic fur seal, DMS – sooty albatross, GHA – grey-headed albatross, IYA – Indian yellow-

nosed albatross, KIN – king penguin, LMS – light-mantled albatross, MAC – macaroni penguin, NGP – 

northern giant petrel, ORC – killer whale, SES – southern elephant seal, SFS – Subantarctic fur seal, 

SRP – rockhopper penguin, WAB – wandering albatross, WCP – white-chinned petrel. 

CHLA - chlorophyll-a concentration, CURRU - horizontal (zonal) geostrophic velocity, CURRV - vertical 

(meridional) geostrophic velocity, DEP - ocean depth, DISTICE - distance from sea ice concentration 

>15%, EKE - eddy kinetic energy, ICE - sea ice concentration, MLD - mixed layer depth, PROD - net 

primary production, SLOPE - ocean floor slope, SSHa - sea surface height anomaly, SSHgrad - sea 

surface height gradient, SST - sea surface temperature, SSTgrad - sea surface temperature gradient, 

TRI - terrain ruggedness index, WINDU - horizontal (zonal) wind, WINDV - vertical (meridional) wind.  



 

 

Supplementary Figure S4 

Dendrogram of affinity propagation cluster analysis of percentile habitat importance scores for 14 

species of top predators tracked from the Prince Edward Islands. Colours show clusters identified 

using affinity propagation clustering. 

AFS – Antarctic fur seal, DMS – sooty albatross, GHA – grey-headed albatross, IYA – Indian yellow-

nosed albatross, KIN – king penguin, LMS – light-mantled albatross, MAC – macaroni penguin, NGP – 

northern giant petrel, ORC – killer whale, SES – southern elephant seal, SFS – Subantarctic fur seal, 

SRP – rockhopper penguin, WAB – wandering albatross, WCP – white-chinned petrel.  
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Supplementary Figure S5 

Proportions of grid cells with high mean habitat importance that were located outside the Exclusive 

Economic Zone (EEZ) around the Prince Edward Islands, in the EEZ but outside the Prince Edward 

Islands marine protected area (MPA) and in the MPA. Here, the mean habitat importance based on 

all species scores in each grid cell was used (see Methods for further details), and only grid cells with 

scores in the 95th percentile are considered. 
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Supplementary Figure S6 

Maps showing mean habitat importance scores for top predators tracked from Prince Edward 

Islands during summer (left panels) and winter (right panels). Habitat importance was calculated as 

the mean of the four highest scores in each cell (top panels), eight highest scores in each cell (middle 

panels) and of all scores in each cell (bottom panels). Only cells with scores in the 95th percentile are 

shown and the maps focus on the South African Exclusive Economic Zone around the Prince Edward 

Islands (solid black lines) and the Marine Protected Area (solid red lines). Dashed black lines show 

average locations of important oceanographic fronts (Orsi et al. 1995). From north to south these 

are: the Subtropical Front, Subantarctic Front and the Antarctic Polar Front.



 

 

 

Supplementary Figure S7 

Relative importance of variables used in an ensemble model of the relationship between 

environmental covariates and mean habitat importance in summer (top panels) and winter (bottom 

panels). Mean habitat importance was calculated as the mean of the four and eight highest habitat 

importance scores in each cell (first two columns: ‘4’ and ‘8’, respectively) and as the mean of all 

percentile habitat scores in each cell (third column: ‘All’). Variable importance was calculated by 
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taking the mean of the variable importance across each model in the ensemble (boosted regression 

tree and random forest), weighted by the model’s weight in the ensemble (refer to Methods). 

CHLA - chlorophyll-a concentration, CURRU - horizontal (zonal) geostrophic velocity, CURRV - vertical 

(meridional) geostrophic velocity, DEP - ocean depth, DISTICE - distance from sea ice concentration 

>15%, EKE - eddy kinetic energy, ICE - sea ice concentration, MLD - mixed layer depth, PROD - net 

primary production, SLOPE - ocean floor slope, SSHa - sea surface height anomaly, SSHgrad - sea 

surface height gradient, SST - sea surface temperature, SSTgrad - sea surface temperature gradient, 

TRI - terrain ruggedness index, WINDU - horizontal (zonal) wind, WINDV - vertical (meridional) wind. 
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Supplementary Figure S8 

Partial dependence plots showing ensemble model predictions of the effect of environmental 

variables on habitat overlap during summer (top panels) and winter (bottom panels). Black lines 

show the partial dependence while blue lines show a smooth thereof. Mean habitat importance was 

calculated as the mean of four highest percentile habitat scores per cell (top rows), eight highest 

scores (middle rows) and all scores per cell (bottom rows). Only the four best predictors are shown 

for each model; variable importance is shown in Supplementary Figure S7. 

CHLA - chlorophyll-a concentration, CURRU - horizontal (zonal) geostrophic velocity, CURRV - vertical 

(meridional) geostrophic velocity, DEP - ocean depth, DISTICE - distance from sea ice concentration 

>15%, EKE - eddy kinetic energy, ICE - sea ice concentration, MLD - mixed layer depth, PROD - net 

primary production, SLOPE - ocean floor slope, SSHa - sea surface height anomaly, SSHgrad - sea 

surface height gradient, SST - sea surface temperature, SSTgrad - sea surface temperature gradient, 

TRI - terrain ruggedness index, WINDU - horizontal (zonal) wind, WINDV - vertical (meridional) wind. 
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