
 

 

 

 

 

Observer-based composite adaptive dynamic terminal sliding-mode controller 

for nonlinear uncertain SISO systems 
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Abstract: In the present paper, the observer-based composite adaptive terminal sliding-mode control is investigated 

for the nonlinear uncertain system. First, an adaptive observer is designed to estimate the unavailable high-order 

derivative of the output. Then, a new dynamic terminal sliding surface is proposed with a state filter, which aims to 

develop the dynamic terminal sliding mode controller. By the composite adaptive control methods, a new adaptive 

law is designed, and the stability of the overall system is proofed based on the Lyapunov method. Finally, some 

numerical simulations are conducted to validate the effectiveness of the proposed algorithm. 
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1. INTRODUCTION 

In control systems, sliding mode control (SMC) is a 

nonlinear control method that alters the dynamics of a 

nonlinear system to “slide” along a normal cross-

section of the system by applying a discontinuous control 

signals. Many studies on SMC have been conducted. Y. 

Wei. et al. proposed a output-feedback sliding mode 

controller for uncertain continuous-time semi-Markovian 

jump systems which could driving the underlying closed-

loop system on the sliding surface in finite time [1]. 

Furthermore，W. Qi et al. designed an observer-based 

adaptive SMC with applications to DC motor which could 

effectively reduce the adverse effects of parameter 

variations and external disturbances [2]. 

In recent decades, terminal sliding-mode control 

(TSMC) has been paid increasing attention [3-7]. The 

traditional sliding mode variable structure control utilizes 

a linear sliding mode, and the deviation between the 

system state and a given trajectory converges 

asymptotically. Compared with the traditional sliding-

mode control, the TSMC introduces a nonlinear term in 

the sliding surface function to improve the system's 

convergence characteristics, so that the system state can 

converge to a given trajectory within finite time. 

Therefore, the TSMC has the advantages of fast dynamic 

response, finite time convergence, and high steady-state 

tracking accuracy [8]. However, chattering of the control 

signal and high-frequency noise are main drawbacks of 

TSMC due to discontinuous switching term of the control 

signal and sensitivity to high-frequency noise. To 

overcome these problems, Liu and Sun [5] proposed a 

method, namely the dynamic terminal sliding-mode 

(DTSM) control, in which the time derivative of control 

input was treated as control variable for the augmented 

system. The control input becomes chattering-free 

because of an integrator (like a low-pass filtering) placed 

in front of the system.   

Despite the superiorities of DTSM control, the 

application of DTSM control is challenging for the 

following reasons. In non-matching uncertain nonlinear 

systems, there is no general integral relationship among 

the system states, and thus the various derivatives of the 

system state cannot be obtained. Therefore, those sliding 

mode control methods based on the various orders of the 

system state can not be achieved [9].In addition，as like 

traditional dynamic sliding-mode control [10, 11], the 

augmented system is one dimension larger than the 

original system in the DTSM control design, and hence 

the dynamic sliding variable contains an uncertainty term 

due to the variations of parameters and external 

disturbance [12]. As a result, tracking errors based on 

adaptive law will face the same dilemma.  

Moreover, unlike the foregoing adaptive law of the 

observer-based adaptive controller, a provably stable 

adaptive law employing both the tracking error and the 

prediction error to update the parameters is proposed, 
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which is inspired by the principle of composite adaptive 

control [13, 14]. In Ref. [12], based on traditional DSM 

control, a robust observer was proposed to estimate the 

state-dependent uncertainty in dynamic sliding variable. 

Another approach called observer-based adaptive control 

has achieved great development in recent years [15-20]. 

Compared with some general state estimators proposed 

in[21，22], the robust observer is employed to estimate 

the unavailable system states, so the parameters of 

controller can be adjusted on-line by the adaptive 

controller in this observer-based adaptive control scheme. 

In the previous studies, observer-based adaptive controller 

was used online to adjust control parameters by 

employing the observation error [16] or the estimation of 

tracking error solely [19]; however it would chuck away 

the information of parameters contained in the one not 

covered. Furthermore, estimation will be slower owing to 

the very small observer error in general. If high 

compensation coefficient or high adaption gain is used to 

deal with this problem, the amplification of the 

uncertainties contained in the observation errors may lead 

to chattering. 

In this paper, the observer-based adaptive controller is 

integrated into the dynamic terminal sliding-mode control 

to overcome the obstacle to the application of DTSM 

control. 

 

 

2. PROBLEM FORMULATION 

 

We let R denote the real numbers, nR the real n-

vectors and n mR  the real n m matrices. The norm of 

matrix n mA R  defined as 
max ( )TA A A , max ( )A

and min ( )A stand for the maximum and minimum 

eigenvalues of matrix n mA R  , 2 2
1 nx x x 

stands for the norm of vector nx R . 

Consider the n th-order single input single output 

nonlinear system of the form 

 ( ) ( ) ( ) ,

.

x Ax B f x g x u d t

y Cx

   


                    

(1)                                       
                                                                        

 

where nx R is the accessible state vector of system, 

1u R is the scalar control input, 1y R  is the scalar 

output of system,   1f x R and   1g x R  are unknown 

but continuous functions,   1d t R is the external 

bounded disturbance. The pair  ,A B is controllable, and 

1nB R  . The row vector 1 nC R  is a design parameter 

chosen such that  ,A C is observable and zeros of system

 , ,A B C are all in the open left-half plane.  

Because of the system uncertainty (i.e. external 

disturbance, parameters variation and unmodeled 

dynamic), the dynamic model of the system is an 

approximation of the real [23]. Hence in the presence of 

uncertainties, functions  f x and  g x can be represented 

the form as  

     

     

ˆ ,

ˆ .

f x f x f x

g x g x g x

  

  
                              (2)

                                                     

where  f̂ x and  ĝ x are the known parts, and  f x

and  g x are the unknown parts of  f x and  g x

respectively. In this paper  f̂ x ,  ĝ x ,  f x ,  g x

and  d t satisfy the assumption as follows.  

Assumption 1:  Assume that  f̂ x ,  ĝ x ,  f x ,

 g x ,  d t  and their derivative  f̂ x ,  ĝ x ,  f x ,

 g x ,  d x  satisfy  f̂ x F   ,  ˆ
df x F   ,

 min maxˆ0 G g x G   ,  min maxˆ0 d dG g x G   and 

Hd d , Hd d , respectively, for all 
n

xx R  , 

where F , dF , minG , maxG , mindG , maxdG , Hd , Hd are 

positive constants. 

Based on (2), system dynamic (1) can be rewritten as 

follows [15]  

    1
ˆ ˆ ,

.

x Ax B f x g x u T

y Cx

    
 


                

(3)                                        

Here 1T  is the uncertainty of system dynamic:   

     1T f x g x u d t                         
(4)                                              

From the Assumption 1, and the boundedness of u, we 

can conclude that 1T  is bounded.  

Suppose that dy is the reference signal, which satisfies 

the following assumption.  

 Assumption 2: The signal dy and its derivatives up 

to 
( 1)n
dy


are bounded for all time, and the  1
th

n  

derivative 
( 1)n
dy


is a continuous function of t .  Let

de y y  denote the tracking-error, nE R  denote 

 1
T

n
E e e e

 
 

. 

In the conventional DTSM control [5], the dynamic 

terminal sliding variable is defined as  

   s t KE KP t  (5)                                                         

where          1
T

n nP t p t p t p t R
  

 
,  p t

is a function designed such that the following assumption 

holds.  

 Assumption 3: Consider function  p t  , R R  , 

   0,np t C   , p , p  , …, ( )np L ,  p t  is 

bounded in interval  0,T  for some 0T  , 
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   0 0p e ,    0 0p e  , …,    ( ) ( )0 0n np e . 

Moreover, when t T ,   0p t   ,   0p t   , …, 

 ( ) 0np t   .  0,nC   represent the set of all rank 

differentiable continuous functions defined in  0,  . 

  1
0 1 1

n
nK k k k R 
  is a positive vector, 

defined by the follow:  

     
1

0

n
d

s t KE KP t e p t
dt




 

        
 

       
(6)                    

where 0  is a positive design parameter.  

Define terminal function  p t as 

( ) 1

1
0 0

( )

( (0))

( ) 1
(0) ,  t T

!

0,                         t T

n n
jl l j n

j l n
j l

n
k k

i

a
e t

T

p t
e t if

i

if

 

  
 

  
  
  


 
 


 

 


         (7)                                

The dynamic terminal sliding surface  t is defined 

as 

      1t s t s t                           (8)                                                         

where 1  is a positive design parameter.  

For system (1), the conventional DTSM control used 

in general design is  

 
   

   

       

   

1
1 21

1
1 1 1

1
1 1 2 1 2 3

1 1 0 1 0 1 2

1 ˆ ˆˆ{
ˆ

ˆ ˆˆ

}

n
c nn

n

n n
n n

n n
n n n n

u k CA B f x g x u T
k CA Bg x

k CA B f x g x u T k CA Bx

k k y k k y

k k y k y I I sign



 

   





 


   

     
 

    
 

    

     

     

    (9)  

where   is a positive design parameter, 1I  and 2I  

are described as  

     

 

1

1 1 1 1 2

1 1 0 1 0

n n

n n nd d

d d

I k y k k y

k k y k y



 



     

 
                

(10) 

       

     

1

2 1 1 1 2

1 1 0 1 0

n n

n n nI k p t k k p t

k k p t k p t



 



     

  
            

(11

) 

Consider a Lyapunov function candidate as follows: 

1
( )

2

TV t  
                              

(12) 

( 1) ( 1)

0

( ) ( ) ( )
n

l l
l

l

s t K E P k e p 



   
          

(13)        

The derivative of ( )s t is  

1
( ) ( ) ( ) ( )

1

( ) ( )

( ) ( )
n

n n i i
n i

i

s t K E P

k e p k e p




 

               (14) 

The dynamic terminal sliding surface and its derivative 

are: 

1
( ) ( ) ( ) ( )

1

( 1) ( 1)
1

1

( ) ( )

( )

n
n n i i

n i

i

n
l l

l

l

k e p k e p

k e p









 



   

 




       (15)           

1
( 1) ( 1) ( 1) ( 1)

1

( ) ( )
1

1

( ) ( )

( )

n
n n i i

n i

i

n
l l

l

l

k e p k e p

k e p






   





   

 




     (16)         

Since 

( )( 1) ( ) ( ) ,
nn n n

n ndde e y y y y     
 

( 1) ( 1) ( 1)

( 1)

( ) ( )

( ( ) ( ) ( ) ( ) ( ) ( ) ),

n n n
n n n nd

n
n nd

k e p k y y p

k f x g x u t g x u t d t y p

  



   

     
 

1
( 1) ( 1)

1

( )
1

2
( 1) ( 1)

1

( )

( ( ) ( ) ( ) ( ) ) 

   + ( ),

n
i i

i

i

n
n nd

n
i i

i

i

k e p

k f x g x u t d t y p

k e p


 






 





    







 

( ) ( )
1

1

( )
1

1
( ) ( )

1

1

( )

( ( ) ( ) ( ) ( ) )

   + ( ).

n
l l

l

l

n
n nd

n
l l

l

l

k e p

k f x g x u t d t y p

k e p















    







 

Therefore 

1 1

1 1

( 1)

( )
1 1

2 1
( 1) ( 1) ( ) ( )

1

1 1

( ( ) ( ) ( )) ( )

( ) ( ) ( ( ) ( ) ( ))

( ( ) )

( )( ( ) )

( ) ( )

n n n

n n n

n
n nd

n
n n nd

n n
i i l l

i l

i l

k g x k k g x u t

k k d t k g x u t d t

k f x y p

k k f x y p

k e p k e p

 















 
 

 

  

   

  

   

    

    (17)   

Substituting the dynamic control law (9) into (17), then 

the sufficient condition for the existence of DTSM can be 

obtained as:   

1
1 2 1 1

n n
n nk CA BT k CA BT 
              (18)                                   

which ensures the derivative of Lyapunov function 

0V   when 0  . That means this Lyapunov function 
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will decrease gradually [13] and the sliding surface 
will converge to zero. According to (5) - (8) and 

Assumption 2, it is easy to know that  0 0s  ,  0 0s  , 

 0 0  . Thus, it implies that   0t  ,   0s t   . 

  Remark 1: It follows from assumptions before that 

  

(0) ( (0) (0)) 0,

(0) ( (0) (0)) 0.

s K E P

s K E P

  

    

From (8), we can get (0) 0  . According to Lyapunov 

analysis, (0) 0  can be achieved. Consider (0) 0 

and (8), we have  0 0s  for all the time. Then, if we 

choose ( )( )P t t T  , the tracking error ( )( )E t t T  will 

converge to zero in finite time T . 

From (9) - (11), it can be seen that the control law 

contains the high-order derivative of the output  n
y  . 

And system described in this paper as show as follows:  

 
 

     

1 1

1
1

,

,

,

ˆ ˆ .

n n

n n n

y Cx

y CAx

y CA x

y CA x CA B f x g x u T

 









    
 

   (19)   

The high-order derivative of the output  n
y cannot be 

available, since it contains the uncertain component 1T  .  

However, system state x  can be measured exactly and 

the system input u  can be obtained directly by system 

controller. Furthermore, from Assumption 3 and (5), it 

can be known that the design for function  p t  needs 

the initial value of  n
e . Since  n

y  cannot be obtained 

directly, it can’t get the exact value of    0
n

e . As a 

result, the original DTSM control cannot guarantee that 

the initial value of dynamic terminal sliding surface 

satisfies  0 0   .  

From the discussions above, it is clear that the original 

dynamic terminal sliding mode control is not applicable to 

the system described in this paper. To overcome these 

problems, a new observer-based adaptive dynamic 

terminal sliding mode (ADTSM) control is designed in the 

following content.  

 

 

3. ADAPTIVE OBSERVER DESIGN  

 

In this section an adaptive observer based on algebraic 

Lyapunov equation [18，24] is proposed to estimate the 

unavailable high-order derivative of the output ( )ny .  

Define a new two-dimensional state as  

 

 

1
2

n

n

y
q R

y

 
  
  

                          (20)                                                                       
                                          

where, the first component is accessible for evaluation, 

but the second one is not accessible due to the 

uncertainties in (19). From (20), estimated value of  n
y  

can be obtained by estimating the state q .   

Taking the time derivative of (20), can get the dynamic 

of state q  

   

     

1
2 2 1

1
2

ˆ ˆ{

ˆ ˆ ˆ },

n n

n

q A q B CA x CA B f x g x u T

CA B f x g x u g x T





     
 

    
  

 

 1
2 .

n
y C q


                 (21)                                                                               

where u  is the dynamic of system input, and 

system matrices described as  

2

0 1

0 0
A

 
  
 

 , 2

0

1
B

 
  
 

 , 2

1

0

TC
 

  
 

 

1T  and 2T  are unknown uncertainties defined as 

follows [20]  

   1 ,T f x g x u d                      (22)                                             

     2 1 .T T f x g x u g x d                    
                             

To estimate the state q, the following adaptive observer 

is proposed: 

   

     

2

1
2 2 1

1
2

1 1
2

ˆ ˆˆ ˆ ˆ{

ˆ ˆˆ ˆ }

,

n n

n

T

q A q B CA x CA B f x g x u T

CA B f x g x u g x T

Q C Cq









 

     
 

    
  

 

 

 1
2ˆ ˆ.

n
y C q


                         (23)                            

where
2

2

1
1,diag


 
   

 
is a positive constant. 

q̂ , 1T̂ , 2T̂  are estimated value of q , 1T , 2T  

respectively and updated on-line by adaptive law 

designed in section 5. q  is the observation error vector 

defined as    1
ˆ

T
n n

q q q y y
   

 
. Q  is the 

unique solution of the following Lyapunov equation: 

2 2 2 2 0T TQ A Q QA C C                      (24)                                               

The explicit solution of (16)can be obtained as  

    1
2, 1

i j

i jQ i j l
 

    ,1 i , 2j             (25)                          
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where 
 

!

! !

r
n

n
l

n r r



. 

Furthermore, Q  is a symmetric positive definite 

matrix [24].  

Theorem 1: Supposed that the system satisfies 

Assumptions (1) and (2), and 1T̂ , 2T̂  are bounded. The 

observer given by (23)-(25) can ensure that the 

observation error q  is uniformly bounded and 

converges to q  defined as  

 
 

2 2

min 2

2 T n

q

B Q CA B T
q q

Q 

 
 

   
  

         

(26)                          

Moreover, the radius of set q can be made arbitrarily 

small, if 2  is chosen to be sufficiently large.  

Proof: From (21) and (23), the observation error 

dynamic can be written as  

  2

1 1 1
2 2 1 2 2 2 2

n n Tq A q B CA BT CA BT Q C C q            

                                                
(27)            

here 1 1 1
ˆT T T  ， 2 2 2

ˆT T T  . Since 1T , 2T  , 1T̂  , 

2T̂  are bounded and the closed-loop system (27) is stable, 

1T , 2T  and q  are also bounded.   

Consider the Lyapunov function as   

0

1

2

TV q Qq                                       

(28

)
                                 

The derivation of (28) along (27) is given by  

 

 

2 2

0

1
2 2 1 2

1 1 1 1
2 2 2 2 2 2

2 2 2

1 1

2 2

1

2

1 1

2 2

1

2

T T

T T T n n

T T T T

T T

V q Qq q Qq

q QA q B Qq CA BT CA BT

q Q Q C C q q C C Q Qq

q C C q

  





   

 

   

   



               

(29) 

Because of 

  
2 2

1 1 1 1
2 2 2 2

2
1

2 2

T T T T

nT T

q Q Q C C q q C C Q Qq

q C C q y

 
   



  

 
  

(29) can be re-arranged as: 

 

  

1
0 2 2 1 2

2
1

2

1

2

1

2

T T T n n

n

V q QA q B Qq CA BT CA BT

y





   


  

(30)  

Since 
 1n

y q


 ,

    1
0 min 2 2 1 2

1
2

2

T n nV q Q q B Q CA B T CA B T              

                                      (31)                                                                                                                              

Obviously, 0V  is negative as long as q is outside of 

the compact set q  defined as   

 
 

1
2 1 2

min 2

2 T n n

q

B Q CA B T CA B T
q q

Q 

  
   

  

   (32)  
 

According to Lyapunov theorem [13], it can be 

concluded that q is bounded and converges to q . 

Moreover, the radius of the set q can be made arbitrarily 

small, if 2  is chosen to be sufficiently large.  

 

 

4. ADTSM CONROLLER DESIGN  

 

According to the discussion in section 2,  p̂ t cannot 

be designed and the initial state of  t cannot be made 

satisfy  0 0  ,due to the unavailable state  n
y . To 

deal with this problem, a new terminal sliding-mode 

surface is designed:  

        1
3ˆ ˆf t L p s t s t R    

  (33)                             

where    f fL p p   ,  L p  is a state filter, p  

is the Laplace operator, 3 and f are positive 

parameters. ŝ  is a new terminal sliding mode, defined 

as:   

  1ˆŝ KE KP t R                          (34)                                           

In (34), K  and E  are the same with (5) and (6), 

 p̂ t  is a design function which satisfies the following 

assumption.  

 Assumption 4: Consider the function  ˆ :p t R R  ,

   ˆ 0,np t C  , p̂ , p̂ ,…,  ˆ
n

p L .  p̂ t is a 

bounded in interval  0,T for some 0T  ,    ˆ 0 0p e , 

   ˆ 0 0p e , …,        1 1
ˆ 0 0

n n
p e

 
 , moreover, 

when t T ,  ˆ 0p t  ,  ˆ 0p t   , …, 

   1
ˆ 0

n
p t


 .  0,nC  represents the set of all rank 

continuously differentiable functions defined in  0, .  

 In this paper, the function  p̂ t  chosen as follows  

 
       

1 1 1
1

1
0 0 0

1
0 0 ,   0

ˆ !

0                                                                     ,   

n n n
jli li j n

j l n
i j l

a
e t e t if t T

p t i T

if t T

  
 

  
  

  
    

  




        
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(35) 

where jla can be obtained by Assumption 4. 

 Since    f fL p p   ,(33) can be rewritten as 

     
2

2
ˆ ˆ

f f

f f
f

t s t s t
p

  
 




 


               

(36)                                       

From Assumption 4 and (34), it can be known that  n
y

and its initial value    0
n

y do not exist in  p̂ t  and 

 ŝ t . Since    1,2, , 1
i

y i n  and their initial values 

    0 1,2, , 1
i

y i n  are available,  p̂ t  and  ŝ t

can be exactly calculated by (35) and (34), thus  f t is 

available. Moreover,  0 0f  , if Assumption 4 holds. 

Consider the control law: 

A A Ac Aru                                    
(37)                                                        

The term Ac  is the adaptive control, which is designed 

based on the observed state  ˆ
n

y  and the adjustable 

parameters 1T̂ and 2T̂ . 

 
   

   

       

  

1
1 21

1
1 1 1

1
3 1 2 3 2 3

3 1 0 3 0 1 2

1 ˆ ˆˆ
ˆ

ˆ ˆˆ

ˆ

n
Ac nn

n

n n
n n

n n
n n n n

A A

k CA B f x g x u T
k CA Bg x

k CA B f x g x u T k CA Bx

k k y k k y

k k y k y I I



 

 





 


   

    
  

    
 

   

     

     

(38)  
       

1

1 1 3 1 2 3 1 0

3 0

n n

n n n dd d

d

I k y k k y k k y

k y

 





       


 

(39)        
         

     

1
2 1 3 1 2

3 1 0 3 0

ˆ ˆ

ˆ ˆ

n n
A n n nI k p t k k p t

k k p t k p t



 


     

  
                 

(40) 

where 1T̂  and 2T̂ are estimated values of 1T  and 2T

respectively. A composite adaptive law will be derived in 

section 5.  

The compensated control Ar is employed to guarantee 

the dynamic terminal-sliding surface to be an invariant set 

by compensating the system uncertainties and the external 

disturbance. In this paper, Ar  is chosen such as:  

 1

1

ˆ
Ar fn

nk CA Bg x
 


                       

(41)                                             

where   is a positive design parameter .  

 

 

5. COMPOSITE ADAPTIVE LAW DESIGN  

 

In this section, a new adaptive law which extracts 

parameters information from both observation errors and 

tracking errors is developed. In the following, the 

observation errors and tracking errors are presented 

based on adaptive law, and the composite adaptive law is 

generalized.  

 

5.1. Observation errors based adaptive law design  

Observation errors based on adaptive law is the most 

common employed adaptive law in observer-based 

adaptive control [25] which based on the observation error 

vector q . However, in system (1), the state of q  is 

unavailable, so the q cannot be used to design adaptive 

law directly. To deal with this problem, inspired by the 

works in Ref. [26], a new state fq is  introducted as 

follows     

 fq L p q                              (42)                                                           

where 
   1

T
n n

f f fq y y
 

  
 ,    f fL p p   .

 L p is a state filter as same as the filter in (33). From 

(27) and (42), (42) can be expressed as          

 

2

1
2 2 1 2 1

1 1
2

n n
f

T
f

q A q B CA BT CA BT w

Q C Cq



 

   

 
        (43) 

where  

    1 1
1 1 2 1 2

n n n nw CA BT CA BT L p CA BT CA BT                     

(44) 

Since    f fL p p   ,the 
 1n

fy


and
 n

fy

can be expressed as 

     1 1
,

n n
f ffy p y 

   
   

       1 12 .
n n n

f f ffy y p y  
    

   

The system state  1n
y

 is available and  1
ˆ

n
y

  

can be obtained directly, so
 n

fy is available, then 

 1n

fy


, 
 n

fy  and fq are available. Therefore, the 

observation errors based on adaptive law can be 

designed as   

1 1 2
ˆ ,T n

fT B QMq CA B                                 (45)                                                                        

1
2 2 2
ˆ .T n

fT B QMq CA B                     (46)                                             

where  0, 1,2i i    is adaptive gain. In this paper, i  

is chosen as appropriate positive constant. 

 , 1M I   is a compensation gain matrix, which 

used to compensate for the filter-induced signal 

attenuation. Here is a positive design parameter, which 

is satisfied 1  . I is the identity matrix. 
 

 

5.2. Tracking error based adaptive law design  

From (33) and (34), it is clear that the new terminal 

sliding mode surface  f t contains the tracking errors. 
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In this section,  f t is used to design the adaptive law.    

Taking the time derivative of f gives the dynamic of

f as follows: 

       

 

1
1 2

1
1 1 1

1
3 1 2 3 2 3

3 1 0 3 0 1 2

ˆ ˆˆ( ){ [ ( ) ( ) ]

ˆ ˆˆ[ ( ) ( ) ]

}

n
f n

n n
n n

n n
n n n n

A A

L p k CA B f x g x u T

k CA B f x g x u T k CA Bx

k k y k k y

k k y k y I I



 

 





 


   

  

   

   

     

  (47) 

                                                                                                

where, 1AI  and 2AI have the same definition as (39) 

and (40). Taking the adaptive control law (38) - (41) into 

(47), we have: 

   1
1 1 1 2 3 1 2

2

ˆ ˆ nn n
f n n n n f

f

k CA BT k CA BT k k y

w

 




      

 
 

(48) 

where 

 

 

 

 

1 1
2 1 1 1 2 1

1
1 1 1 2

1
1

ˆ

ˆ

n n n
n n n r

n n
n n

n
n r

w k CA BT k CA BT k CA Bg x

L p k CA BT k CA BT

k CA Bg x





 
  


 




    
 

 





                                       (49)
  

Since f is available, the tracking-error-based 

adaptive law of parameters 1T̂ , 2T̂  can be designed as 

follows  

 1 3 1
ˆ ,n

n fT k CA B                         (50)                                                                  

1
2 4 1
ˆ .n

n fT k CA B  
                      (51)                                            

where  0, 3,4j j    is adaption gain, in this paper, 

j  is chosen as appropriate positive constants.  

 

5.3. Composite adaptive law design  

In this section, inspired by the composite adaptive 

control methods [27, 28], a fast, stable and relatively 

smooth adaptive law which extracts parameter 

information from both the tracking-error and the 

observed-error is proposed. The new adaptive law is 

designed as  

 1 1 2 1 1 1
ˆ ˆT n n

c c f n fT B QM q CA B k CA B T                 

(52)       

 1 1
2 2 2 1 2 2
ˆ ˆT n n

c c f n fT B QM q CA B k CA B T   
         

                                     (53)    

where 1 2,c c  are adaption gains chosen as appropriate 

positive constants.  1c c cM I    is a compensation 

gain matrix, where c   is the design parameter satisfied

1c   . I is an identity matrix. 1 2,   are positive 

design parameters as the  modification employed to 

avoid the parameter shift problem [29, 30] defined in next 

section.  

 

 

6. STABILITY ANALYSIS  

 

In this section, the stability of proposed adaptive 

controller is analyzed. The following lemma is required 

in the stability analysis.  

  

Lemma 1: If Assumptions 1 and 2 are satisfied, then 

there exists positive constants 1 2,c c  and 3c  such as: 

(a) 1 1 1 2 2w c T c T                             
(54)                                                 

(b) 2 1 1 2 2 3w c T c T c                          
(55)                                           

Proof: Equations (44) and (49) can be arranged as 

follows 

  

  

1 1 1 1 1

1 1
1 2 1 2

n n
n n

n n
n n

w k CA BT L p k CA BT

k CA BT L p k CA BT

 

 
 

    
 

 
 

              

(56)                                                                                               

  

  
      

2 1 1 1 1

1 1
1 2 1 2

1 1
1 1ˆ ˆ

n n
n n

n n
n n

n n
n r n r

w k CA BT L p k CA BT

k CA BT L p k CA BT

k CA Bg x L p k CA Bg x 

 

 
 

 
 

   
 

  
 

  


     

                                      (57)                                                                                                                                  

From (56) and (57),  

    

  

  

1
1 1 1 1 1 1 2

1
1 2

n n n
n n n

n
n

w k CA BT L p k CA BT k CA BT

L p k CA BT


  




    



(58)                                                                                                

 

  

    

   

1
2 1 1 1 1 1 2

1 1
1 2 1

1
1

ˆ+

ˆ

n n n
n n n

n n
n n r

n
n r

w k CA BT L p k CA BT k CA BT

L p k CA BT k CA Bg x

L p k CA Bg x






  

 
 




    

 

 
 

(59)                                                                                               

Since the system (1) satisfied Assumptions 1 and 2, 

 L p  is a stable filter, and r is bounded. It is clear that 

there exist positive constants 1 2,c c  and 3c such as: 

 

  

  

     

1 1 1 1 1 1

1 1
1 2 1 2 2 2

1 1
1 1 3

,

,

ˆ ˆ .

n n
n n

n n
n n

n n
n r n r

k CA BT L p k CA BT c T

k CA BT L p k CA BT c T

k CA Bg x L p k CA Bg x c 

 

 
 

 
 

  

  

   
 

 

Using the inequalities above, (58) and (59) can be 

bounded by  
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1 1 1 2 2

2 1 1 2 2 3

,

.

w c T c T

w c T c T c

 

  
 

Lemma 2: If the sliding mode surface is defined as

   
1n

ss t d dt e


  , where de x x   is the tracking 

error, and 1n  is the relative degree of the system. 

Bounds of s  can be directly translated into bounds of 

tracking error vector 
 1

T
n

E ee e
 

 
. Specifically, if 

 0 0E   ,then 

 

     1

0,

0, , 1,2 1
t

n i
s

t s t

t e t i n




  

   

    
       (60)                                                                            

here 0   is the up-bound of the sliding surface 

 s t .  Finally, the theorem 2 can be established.  

Theorem 2: Consider the nonlinear system (1) with the 

control law given by (38)-(41) and the observer given by 

(23) which estimating the unavailable state  n
y . Let 

the parameters 1T̂ and 2T̂ be adjusted by the composite 

adaptive laws (52) and (53). If Assumptions 1 and 2 are 

satisfied, the design parameters are selected such as:  

2 2 c    , 1 12   , 2 22   ,   ,where

2 , c , 1 , 2 and   are constants defined later. Then 

1T , 2T , q  , u , w and    t
e t  ,  1,2, , 1i n   are 

uniformly ultimately bounded (UUB), moreover, the 

tracking error converges to following bound in finite time 

T.  

    
     2

8 8 9

1 0

4

2

t

i

t t t
e t

  


 

   
 
 
 

     (61)    

here  1,2, 1 ,i n t T    .  

Proof: Consider the Lyapunov function candidate:  

1 2 3V V V V                               

(62) 
                                                                   

Where 

1

1

2

T
f C fV q M Qq                                   

(63)                                                              

2
2

1

2
fV                                            (64)                                                                                                                 

2 2
3 1 2

1 2

1 1

2 2c c

V T T
 

                        

(65)                                    

The derivation of 1V  along system (43) and (24) is 

given by 

 

 

2 2

1

1
2 1 2 1

1 1 1 1
2 2 2 2 2 2

2 2 2

1 1

2 2

1

2

1 1
 

2 2

1
  +

2

T T
f C f f C f

T T n n
f C f C f

T T T T
f C f f C f

T T
f C f

V q M Qq q M Qq

q M Qq B M Qq CA BT CA BT w

q M Q Q C C q q C C Q M Qq

q M C C q

  





   

 

    

   

     

                                      (66) 

                                                                                          

Since

  
2 2

1 1 1 1
2 2 2 2

2
1

2 2

T T T T
f C f f C f

nT T
f C f c f

q M Q Q C C q q C C Q M Qq

q M C C q y

 



   



  

 
            

(66) can be rearranged as  

 

 

  

1
1 2 2 1 2 1

2
1

2

1

2

1

2

T T T n n
f C f C f

n

c f

V q M QA q B M Qq CA BT CA BT w

y 





    



     

                                   (67)  

Based on (48), the derivation of 2V  can be written as  

 
 

   

2

1
1 1 1 2

3 1 2 2

f f

nn
f n n

n

n n ff

V

k CA BT k CA BT

k k y w

 



  


 

 



 


    

        (68)                                                                                      

Because of
1 1 1

ˆT T T  ,
2 2 2

ˆT T T   , the 

differentiation of 3V  is written as follows  

3 1 1 2 2 1 1 2 2
1 2 1 2

1 1 1 1ˆ ˆ

c c c c

V T T T T T T T T
   

    
    (69)                

When 1T  , 2T are arbitrarily large and slowly varying 

with time, the last two terms can be negligible [23].  

Based on (62) - (69), and by substituting the composite 

adaptive laws (52) and (53), the time derivative of V

can be described as  

  
   

1 2 3

2
1

2 1 2

2
3 1 2 2 1 1 1

2 2 2 1 1 2 2
1 2

1 1

2 2

ˆ

1 1ˆ

nT T
f C f C f c f

n

f n n f ff

c c

V V V V

q M Qq B M Qq w y

k k y w T T

T T T T T T

 

    


 



 

  

   

    

  

            

(70

)  

Since 2 2
T T

C cB M Q B Q ,
 1n

ffy q


  , 

 n

ffy q  , (70) can be rewritten as follows  
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 

 

2

min 2 2 1

2

3 1 2 2

1 1 1 2 2 2 1 1 2 2
1 2

1

2

1 1ˆ ˆ ˆ ˆ

T
c f c f

n n f f f f

c c

V Q q B Q q w

k k q w

T T T T T T T T

   

    

 
 

 

     

   

   

(71)    

 

From lemma 1,  

  

2 1 1 2 1 2 2 2

2 2 2

4 1 1 2 2

T T T
c f c f c

f

B Q q w c B Q q T c B Q Z T

q T T

  

    

 

  

   

                                                                                      

(72

) 

 

2 1 1 2 2 3

2 2 2 3
4 1 1 2 2

2

f f f f

f

w c T c T c

c
c T c T

   

 

  

   
      (73)               

where 1 1 20.5 T
cc B Q  , 2 2 20.5 T

cc B Q   , 

3 1 2     and 4 1 2 30.5c c c     . 

Substituting (72) and (73) to (71) with the following 

inequalities  

 

 

2 2

3 1 2 5 5

2 2

2 22 2

1 1 2 2 6 1 6 1 7 2 7 2
1 2

,

1 1ˆ ˆ 1,2 ,
2 2

1 1
.

n n f f f f

i i i i

c c

k k q q

T T T T i

T T T T T T T T

    

   
 

    

  

    

where  5 3 1 2 2n nk k      , 6 11 2 c   and

7 21 2 c    are positive constants, yields  

  

 

 

2

min 2 3 1 1 1 6

2 2 22 2

1 1 1 2 2 6 1 7 2

2 2

2 2 1 1 1

22

2 2 2

1 1
2

2 2

3 1 1

2 2 2

1 1

2 2

1

2

c c f

c f

f

V Q q c

c
T T T T T

q T

T

       

   

    

     

  
        

 

    

 
     

 

 
     
 

     

                                                
(74)                                                                                    

where  2 3 5 min2 2 c Q        , 1 1 1 6c     , 

2 2 2 7c     , 4 5      and

 
2 22 2

3 1 1 2 2 6 7 22 ic T T T T          . If 

design parameters chosen as 2 2 c    , 1 12   ,

1 22   ,   . It is clear that V  is negative as 

long as fq is outside the compact set qf  defined as 

2 2

2
|qf f f

c

q q


  

  
   

  
              (75)                           

According to the Lyapunov theorem [31], it can be 

concluded that fq  is bounded and converges to qf . 

This means fq is uniformly ultimately bounded (UUB). 

Moreover, the radius of qf  can be made arbitrarily 

small, if 2  is chosen to be sufficiently large. Since the 

stable filter is in a bounded input bounded output (BIBO) 

form, there exist a positive constant qf  such as 

qf fq q  [32], thus q  is uniformly ultimately bounded 

(UUB).  

Similarly, 1T and 2T are uniformly ultimately bounded 

(UUB) and converge to 
1T

 and
2T

 respectively.
1T

 and

2T
 .defined as 

1

2

1 1
1 1

2 2
2 2

2
|

2

2
|

2

T

T

T T

T T



 



 

  
   

  

  
   

  

               (76)                       

Since Assumption 1, 1T and 2T are bounded, 1 1 1
ˆT T T   

and 2 2 2
ˆT T T   , thus 1T̂ and 2T̂  are uniformly 

ultimately bounded (UUB).  

From the inequality (74), it can be obtained  

 

 
2

3 1 2 2 2 1

1 1 1 2 2 2 1 1 2 2
1 2

2

8 9

1 1ˆ ˆ

T
f n n f f f c f

c c

f f

V k k q w B Q q w

T T T T T T T T

     

 
 

    

      

   

   

     

                                                                                          

(77)  

where 8 9, 0     ,  8 3 1 2 2n n fk k q w       ,

9 2 1 1 1 1

2 2 2 1 1 2 2
1 2

ˆ

1 1ˆ .

T
c f

c c

B Q q w T T

T T T T T T

  


 

 

  
  

Since 1T  , 2T  , 1T̂  , 2T̂  , 1T  , 2T  , fq  , 1w  and 2w

are bounded,it can be known that 8  , 9  are bounded. 

Based on the inequality (74), it is clear that V  is 

negative as long as f  is outside the compact set f
  

defined as 

  2
8 8 94

| 0
2f f f

t


  
 



    
    

  

   (78)
         

Based on the Lyapunov theorem [31], f is uniformly 

ultimately bounded and converges to compact set f
 .   

According to Assumption 4, definition (33) and (34) , it 

can be seen that  0 0f  . Based on (78), there exist   
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 

   
     2

8 8 94
| 0 0

2

f t

f f

t t t
t t t



  
 



 

    
    

  

     

   (79) 

  Since the stable filter is in a BIBO form ,  0 0  . It 

can be concluded that   is uniformly ultimately 

bounded (UUB). Here,  

 

 

   
     2

8 8 94
| 0 0

2

t

t t t
t t t



  
  



 

          
    

     

                                      (80) 

                                                                                       

and  is a positive constant.  

Based on (80) and lemma 2, it is clear that  ŝ t  is 

uniformly ultimately bounded. The bound of  ŝ t is 

defined as   

 

 

   
     

ˆ

2
8 8 9

0

4
ˆ ˆ| 0 0

2

s t

t t t
s t s t t

  




 

          
    

                                                          

(81) 
According (81) the lemma 2, it is easy to know that   

       
 

 ˆ , 1,2, , 1
ii

t e t p t i n        is bounded, 

and the bound is defined as  

 

   

       
     2

8 8 9

3 0

4
| 0

2

i
t

i i

i

t t t
t t



  
  

 

 

        
    

 

(82

)                                              

here  1,2, , 1 , 0i n t    . 

From the Assumption 4,      ˆt e t p t   and (82), it 

can be concluded that      , 1,2, , 1
i

e t i n   is UUB 

and converges to zero in finite time T ,where defined as 
 

   
     2

8 8 9

3 0

4

2

i

i

t t t
e t

  


 

   
 
 
 

      

(83)             

here  1,2, , 1 ,i n t T     . 

Because system (1) satisfies the Assumption 1 and 2, 

based on the (83), it can be seen that the system states 
 

, , ,
n

y y y  are UUB. And it can be concluded that x  is 

UUB, due to the controllable  , ,A B C and observable 

 ,A C . From (1) and Assumption 1, it can be seen that 

input u is UUB, furthermore, the boundedness of u w

can be obtained from (38)-(41).  

Remark 2: In order to prove the stability of the 

proposed adaptive controller [33, 34], a three-part 

Lyapunov function is constructed: 1V for observation 

errors with state filter, 2V for terminal sliding mode surface 

contains the tracking errors, 3V for the unknown 

uncertainties of the system. The key difficulty in deriving 

the stability theorem is scaling down the time derivative 

of V and guaranteeing its time derivative negative. 

 

ADTSMC Original Plant

Adaptive Observer

Composite Adaptive Law Filter





1

S

1 2
ˆ ˆ,T T

fq

f

dy

u y

( 1)ny 

( 1)ˆ ny 

dy

-
+

-
+

Fig. 1. Structure of Observer-based Adaptive DTSMC 

 

 

7. SIMULATION  

  

In this section, two numerical simulations are 

presented to demonstrate the properties of the proposed 

adaptive control algorithm. First, the proposed adaptive 

control algorithm is applied to a second order SISO 

system (see Fig. 1). The tracking performance in 

comparison with tracking-error-based adaptive control 

and observation-error-based adaptive control is presented. 

Next, an application to an inverted pendulum system is 

illustrated, and the performance of observer-based 

composite adaptive terminal sliding-mode control is 

compared with original terminal sliding-mode control.   

  

Example 1. Consider the second order SISO system: 

       
1 2

2

1

,

, , ,

.

x x

x f x t g x t u t d t

y x



  



  
(77)                                     

where  1 2

T
x x x ,  u t is the system input,  ,f x t   

and  ,g x t are the dynamics which are not exactly 

known,  d t is the external disturbance. 
 

In this simulation,  ,f x t  and  ,g x t have the 

same expression as (2). The control objective is to 

maintain the system to track the desired trajectory 

0dy   , under the condition that only 1x  and 2x  are 

available, the initial values is    0 0.1 0
T

x  .The 

proposed observer and adaptive controller are designed 
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as given in (23) and (37), and the design parameters used 

in this simulation are chosen as 1 10k  , 2 5k  , 

2 =15  , 3=25 .  

The following cases are simulated:   

Case 1. Let   1, 30f x t x  and  , 150g x t  , the 

known parts of them are  ˆ , 10f x t   and  ˆ , 130g x t 

respectively. No external disturbance exists in this case.   

Case2. Let     1, 26 4sinf x t t x     and

 , 140g x t   ,  the known parts are  ˆ , 10f x t   and 

 ˆ , 130g x t  . The external disturban  d t is defined as 

   5 5cosd t t   . 

 

Fig. 2. The tracking-error of case 1 

In the present work, C-A denote the composite 

adaptation proposed in this paper; T-A denote the 

tracking-error based adaptation with 800   ; O-A1 

denote the observation based adaptation with 800  , 

500  ; O-A1 denote the observation based adaptation 

with 800   , 250  . 

Figs. 2. and 3. compare the tracking error of the tracking 

error-based adaptive controller with adaption gain with 

the observer error-based adaptive controller with two 

different compensation gains 250  and 500  . It 

can be seen that the tracking error converged to a small 

bound in time 0.6T s .   

 

Fig. 3. The tracking-error of case 2 

According to (77) - (83), it can be seen that the bound

   i
e t  relates to the adaption error. That means the 

good tracking performance can be obtained by a stable 

and fast adaption. From Fig. 2, when the uncertainties are 

time-invariable, the tracking performance of our 

proposed adaptive law is better than it of the observation 

error-based adaptive law, since the composite adaptive 

law extracts parameter information from both the 

tracking-error and the observation-error. It is not as good 

as the tracking error-based adaptive law, due to the signal 

weakening which is caused by the composite adaptive 

law. However, for this property, the proposed adaptive 

law has better robustness to fast time-varying 

uncertainties  d t  than tracking error-based adaptive 

law (see Fig. 3).
  

  

Example 2. Consider the inverted pendulum system. 

Let 1x   be the angle of the pendulum with respect to 

the vertical line and 2x  . The dynamic equations of 

the inverted pendulum system are expressed as follows  

 

 

 
 

1 2

2
1 2 1 1 1

2 2
1

1

,

sin cos sin cos
,

4 / 3 cos

.

x x

M m g x mlx x x u x
x d t

l M m ml x

y x



  
 

 



where g is the acceleration due to gravity, M is the mass 

of the cart, m  is the mass of the pole, l  is the half 

length of the rod, y is the system output, u is the applied 

force ( the control signal ), and  d t  is the external 

disturbance.  

In this simulation, it is assumed that the external 

disturbance  d t is a band-limited white noise with 

sampling period 0.001 whose magnitude is 2  . 

Another system parameters are given as

 1 0.5cos 3M t  ,  0.1 0.25sin 5m t   , 0.5l  . The 

control objective is to keep the system tracking the desired 

trajectory  0.1sindy t  under the condition that only 

the states x1 and x2 are measurable and the initial values

   0 0.15 0
T

x  .  

The observer-based adaptive DTSMC is designed as 

given in (23), (37) - (41), (52) and (53) ,and the design 

parameters used in this simulation are chosen as 1 5k  , 

2 1k  , 2 =10  , 3=15 . In order to illustrate the 

effectiveness of the proposed method, we randomly 

choose the initial values of 1M   , 1m   and 1l   (i.e. 

there is no previous knowledge of the system 

nonlinearities).  
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Fig. 4. The tracking performance of proposed O-

ADTSMC     

 
Fig. 5. Comparison of the tracking errors between O-

ADTSMC and TSMC  

 

  Fig. 6. The control input of Observer-based Adaptive 

DTSMC  

 
Fig. 7. The control input of TSMC  

To compare the control performance, this system is also 

controlled by the original terminal sling mode controller 

with control gain 10TSMCK  ,boundary layer width

0.03   and 0.6T   .  

As shown in Fig. 5, the performance of Observer-

based Adaptive DTSMC is similar to it of TSMC. 

However, from Figs. 6 and 7, it is clear that the chattering 

of control input generated by Observer-based Adaptive 

DTSMC is reduced effectively. Therefore, the observer-

based dynamic sliding-mode control which proposed in 

this paper has a good robustness to uncertainties, 

immunity to the noise and effective reduction of input 

chattering.    

 

 

8. CONCLUSION 

  

In this paper, the proposed observer-based composite 

adaptive terminal sliding-mode control has good 

practicability. Based on the algebraic Lyapunov equation, 

an adaptive observer which dispense with the famous SPR 

condition is designed. By employing an appropriate state 

filter and a new function  p t ,both the filtering 

observation error vector and a new terminal sliding-mode 

surface which is available for the state-unavailable 

systems can be obtained. The stability analysis and 

numerical simulations are provided to illustrate stability, 

fast adaptation, good robustness and effectively reduction 

of input chattering by using the proposed controller. 
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